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PROPAGATION OF SINGULAR SURFACES IN
A NON-IDEAL GAS WITH AXIAL MAGNETIC FIELD

SONU MEHLA AND J. JENA

ABSTRACT. In this paper, a system of equations de-
scribing the motion of a one-dimensional, cylindrically sym-
metrical, inviscid, non-ideal gas with a constant axial mag-
netic field is considered and the singular surface theory is
used to study different modes of wave propagation and its
culmination into a shock wave. The transport equation for
the jump in the velocity gradient is derived and solved nu-
merically to study the affects of the ratio of specific heat,
non ideal parameter and initial magnetic fields on jump in
the velocity gradient.

1. Introduction. In the case of the study of nonlinear wave propa-
gation, we often encounter discontinuities such as shock waves, acceler-
ation waves, singular surfaces, etc. Due to nonlinearity, any perturba-
tion in which the flow variables such as density, pressure, etc., increase
gradually, will steepen before decreasing. The steepening results in the
formation of a discontinuity, i.e., a shock wave. The flow variables or
their derivatives across a discontinuity or shock are interrelated, and
the relations are called compatibility conditions. The Rankine Hugo-
niot jump conditions, which are derived from the conservation form of
the system of equations, relate the flow variables across the shock and
are known as the first set of compatibility conditions. Compatibility
conditions of the first order are the relations which connect the first
order derivatives of the flow variables on both sides of the discontinuity
surface and are known as the second set of compatibility conditions
[8]. The geometrical and kinematical compatibility conditions of first
and second order for a singular surface are developed in [14]. The evo-
lutionary behavior of shock using singular surface theory is discussed
in [1, 3, 5, 7, 9, 12, 13]. The singular surface theory is used in
[4, 10, 11] to study steepening of waves and variation of the jump in
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first order derivatives of flow variables in different mediums such as ra-
diative magnetohydrodynamics, non-ideal gas with dust particles and
non-ideal relaxing gas.

In the present work, an attempt is made to determine the steepening
of shock waves under the influence of an axial magnetic field in a non
ideal gas. We consider a system of equations describing the motion
of a one-dimensional, cylindrically symmetrical, inviscid, non-ideal gas
with an axial magnetic field. An axial magnetic field is assumed to exist
initially in the conducting gas. The transport equation for the gradient
of flow variables in terms of jump in velocity gradient is derived. The
affects of initial magnetic field and the non ideal parameter on the jump
in velocity gradient are studied.

2. Basic equations. In the case when the magnetic Raynold’s
number Rm ≫ 1, i.e., the gas is ionized, the system of equations
describing the motion of a one-dimensional, cylindrically symmetrical,
inviscid, non-ideal gas with a constant axial magnetic field is given by
[2, 15, 16]

ρt + u ρx + ρ ux +
ρ u

x
= 0,

ut + uux +
px
ρ

+
BBx

µρ
= 0,(2.1)

pt + u px − a2 (ρt + u ρx) = 0,

Bt +B ux + uBx +
B u

x
= 0,

with the van der Walls equation of state

p =
ρRT

1− bρ
.

Here, x is the spatial coordinate, t is the time, ρ is the density, u is the
particle velocity, p is the pressure, γ is the ratio of specific heats,

a =

(
γp

(1− bρ)ρ

)1/2

is the equilibrium speed of sound, R is the specific gas constant, T is the
translational temperature and b is the van der Waals excluded volume
which lies in the range 0.9× 10−3 ≤ b ≤ 1.1× 10−3. The quantity B is
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the axial magnetic induction at distance x from the axis of symmetry,
and µ is the magnetic permeability. A variable as a subscript indicates
partial differentiation with respect to that variable, if not otherwise
defined. The case b = 0 corresponds to the ideal gas.

3. Transport equation for a singular surface. Let ψ be the
wave front with equation x = X(t) across which the flow variables ρ,
u, p and B are essentially continuous but discontinuities exist in their
derivatives. The wave front ψ is called a singular surface and propagates
with the speed V = dX/dt. If W is any of the flow variables ρ, u, p,
and B, then the geometrical and kinematical compatibility conditions
of the first and second order for a singular surface are given by [14]

(3.1)

|[Wx]| = A, |[Wt]| = −V A,

|[Wxx]| = A, |[Wxt]| = V

(
dA

dx
−A

)
,

where A and A are the quantities defined on ψ. Here, |[Z]| = Z − Z0

represents the jump, where Z0 denotes the value just ahead of ψ and
Z; the variable without a subscript denotes the value just behind ψ.
Assuming that

(3.2)

|[ρx]| = ζ, |[ux]| = λ,

|[px]| = ξ, |[Bx]| = η,

|[ρt]| = −V ζ, |[ut]| = −V λ,
|[pt]| = −V ξ, |[Bx]| = −V η,

and then evaluating (2.1) on the inner boundary of ψ and using (3.2),
we get

(3.3)

(V − u0)ζ = λρ0,

(V − u0)λ =
1

ρ0

(
ξ +

B0η

µ

)
,

(V − u0)ξ = λρ0a
2
0,

(V − u0)η = λB0.
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Since V is positive for an advancing wave, from equation (3.3), we
obtain the following relations

(3.4) V = u0 + C0, λ =
C0

ρ0
ζ =

C0

ρ0 a20
ξ =

C0

B0
η,

where C is the effective speed of sound given by C2 = a2 +B2/µ ρ.

Differentiating (2.1) with respect to x and then taking the jump
along ψ we get

|[ρxt]|+ 2 |[ux ρx]|+ u0 |[ρxx]|+ ρ0 |[uxx]|+
u0
x

|[ρx]|+
ρ0
x

|[ux]| = 0,

|[uxt]|+ |[(ux)2]|+ u0 |[uxx]|

+
|[pxx]|
ρ0

− |[ρx px]|
ρ20

+
|[(Bx)

2]|
ρ0 µ

+
B0

ρ0 µ
|[Bxx]| −

B0

µρ20
|[Bx ρx]| = 0,

(3.5) |[pxt]|+
(
1 +

ρ0 a
2
0

p0

)
|[ux px]|+ u0 |[pxx]|

+ ρ0 a
2
0

(
|[uxx]|+

1

x
|[ux]|

)
+

b ρ0 a
2
0

1− b ρ0
|[ρx ux]|

+
u0
x

(
ρ0 a

2
0

p0
|[px]|+

b ρ0 a
2
0

1− b ρ0
|[ρx]|

)
= 0,

|[Bxt]|+ 2 |[Bx ux]|+ 2 |[B uxx]|+ |[uBxx]|+
∣∣∣∣[Bx u

x

]∣∣∣∣+ ∣∣∣∣[B uxx
]∣∣∣∣ = 0.

From relations (3.1), (3.2) and (3.4) we get the following relations

|[ρxx]| = ζ, |[uxx]| = λ,(3.6)

|[pxx]| = ξ, |[Bxx]| = η,

|[ρxt]| = V (ζx − ζ), |[uxt]| = V (λx − λ),

|[pxt]| = V (ξx − ξ), |[Bxt]| = V (ηx − η).

Using equations (3.2), (3.4) and (3.6) in (3.5), we obtain

V ζx − C0 ζ + ρ0 λ+ 2((ζ + ρ0x)λ+ ζ u0x) +
1

x
(u0 ζ + ρ0 λ) = 0,
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(3.7) V λx − C0 λ + λ2 + 2u0xλ

+
1

ρ20

(
ρ0 ξ−ζ (ξ+p0x)−ρ0x ξ

)
+

1

ρ0 µ
(η2+2B0x η)

B0 η

ρ0 µ

− B0

µρ20
(η ζ +B0x ζ + η ρ0x ) = 0,

V ξx − C0 ξ + λ (ξ + p0x) + u0x ξ + ρ0 a
2
0

(
λ+

λ

x

)
+

γ b p0
(1− b ρ0)2

((
λ+ u0x +

u0
x

)
ζ + λ ρ0x

)
+

γ

1− b ρ0

((
λ+ u0x +

u0
x

)
ξ + p0x λ

)
= 0,

V ηx − V η + 2 η λ+ 2B0x λ+ 2u0x η +B0 λ+ u0 η +
u0
x
η +

B0

x
λ = 0.

Elimination of λ, η and ξ from (3.7) leads to the following Bernoulli-
type transport equation for λ

(3.8) 2
d λ

dt
+Θ1 λ+Θ2 λ

2 = 0,

where

Θ1 = u0x

(
a20
C2

0

+
(γ + b ρ0) a

2
0

C2
0 (1− b ρ0)

+ 2
B2

0

C2
0 ρ0 µ

+ 2

)
+ p0x

a20
C0 p0

+ ρ0x

(
b a20

C0(1− b ρ0)
− a20
C0 ρ0

− B2
0

µC0ρ20

)
+ 3B0x

B0

µ

+
1

x

(
a20
C0

+
b a20 u0 ρ0

C2
0 (1− b ρ0)

+
u0 a

4
0 ρ0

C2
0 p0

)
+

B2
0 u0

xµρ0 C2
0

+
B2

0

µρ0 C0
,

Θ2 =
a20

C2
0 (1− b ρ0)

(γ + b ρ0) + 1 +
2B2

0

C2
0 µρ0

It may be noted that the amplitude of the discontinuity waves, which
is also known as acceleration waves and are characterized by a discon-
tinuity in a normal derivative of the field itself, satisfy the transport
equation of Bernoulli type.

3.1. Particular case. We consider a particular case where the parti-
cle velocity exhibits linear dependence on the spatial co-ordinate and
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the flow ahead is characterized [6] by the following:
(3.9)
u0(x, t) = f(t)x, ρ0 = ρ0(t), p0 = p0(t), B0 = B0(t).

In view of (3.9), we integrate (2.1) to obtain

ρ0(t) = ρ0c(1 + fc(t− tc))
−2,(3.10)

f(t) = fc(1 + fc(t− tc))
−1,

p0(t) = p0c

(
1− bρ0c

(1 + fc(t− tc))2 − bρ0c

)γ

,

B0 = B0c(1 + fc(t− tc))
−2,

where fc, ρ0c, p0c and B0c are the reference values of velocity, density,
pressure and axial magnetic field at t = tc, respectively.

3.2. Evaluation of the velocity gradient. In order to compute the
velocity gradient, we consider the following dimensionless variables

t∗ =
t

tc
, f∗ = f tc, ρ∗0 =

ρ0
ρ0c

, p∗0 =
p0

ρ0ca20c
,(3.11)

x∗ =
x

tc a0c
, b∗ = ρ0c b, λ∗ = tcλ, B∗

0 =
B0

ρ0ca20c
.

In view of (3.11), the relations in (3.10), after suppressing the asterisk
sign, can be written as

ρ0(t) = (1 + fc(t− 1))−2,(3.12)

f(t) = fc(1 + fc(t− 1))−1,

p0(t) =
1

γ

(
1− b

(1 + fc(t− 1))2 − b

)γ

,

B0 = B0c(1 + fc(t− 1))−2.

Using (3.11) and (3.12), the transport equation (3.8) can be written in
the following form, after suppressing the asterisk sign:

(3.13) 2
dλ

dt
+Θ1λ+Θ2λ

2 = 0,

where
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Figure 1. Variation of jump in velocity gradient [ux] versus 1/t for varying
B0c and γ = 1.4, b = 1.1× 10−3, f0c = 0.01, ρ0c = 0.1, p0c = 0.1, µ = 0.1.

Θ1 = f

(
a20
C2

0

+
a20(γ + b ρ0)

C2
0 (1− b ρ0)

+ 2 +
3B2

0

C2
0 ρ0 µ

+
ba20 ρ0

C2
0 (1− b ρ0)

+
ρ0 a

4
0

p0 C2
0

)(3.14)

+
a20

x0 C0
+

B2
0

µρ0 C0
,

Θ2 =
a20(γ + b ρ0)

C2
0 (1− b ρ0)

+ 1 + 2
B2

0

µρ0 C2
0

.

Integration of (3.12) with respect to t leads to

(3.15) λ =
λ0 Υ(t)

1 + λ0 Ψ(t)
,

where
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Table 1. Critical time t̂ for various values of γ, b, f0c, B0c.

γ b f0c B0c µ t̂
1 1.1× 10−3 0.5 0.1 0.1 1.497
1 0.9× 10−3 0.5 0.1 0.1 1.499
1 0 0.5 0.1 0.1 1.475
1 1.1× 10−3 1 0.1 0.1 1.786
1 1.1× 10−3 1.5 0.1 0.1 1.572
1 1.1× 10−3 2 0.1 0.1 1.464
1 1.1× 10−3 1 5 0.1 1.262
1 1.1× 10−3 1 10 0.1 1.172
1 1.1× 10−3 1 15 0.1 1.130

1.4 1.1× 10−3 0.5 0.1 0.1 1.628
1.4 0.9× 10−3 0.5 0.1 0.1 1.610
1.4 0 0.5 0.1 0.1 1.445
1.4 1.1× 10−3 1 0.1 0.1 1.449
1.4 1.1× 10−3 1.5 0.1 0.1 1.385
1.4 1.1× 10−3 2 0.1 0.1 1.347
1.4 1.1× 10−3 1 5 0.1 1.2610
1.4 1.1× 10−3 1 10 0.1 1.172
1.4 1.1× 10−3 1 15 0.1 1.130

1.7 1.1× 10−3 0.5 0.1 0.1 1.506
1.7 0.9× 10−3 0.5 0.1 0.1 1.492
1.7 0 0.5 0.1 0.1 1.398
1.7 1.1× 10−3 1 0.1 0.1 1.361
1.7 1.1× 10−3 1.5 0.1 0.1 1.326
1.7 1.1× 10−3 2 0.1 0.1 1.300
1.7 1.1× 10−3 1 5 0.1 1.258
1.7 1.1× 10−3 1 10 0.1 1.171
1.7 1.1× 10−3 1 15 0.1 1.130

Ψ(t) =

∫ t

t0

Θ2 Υ(s) ds,(3.16)

Υ(t) = exp

(
−

∫ t

t0

Θ1 ds

)
and λ0 = λ(t0). From equation (3.15), it is observed that the solution

breaks down at some critical time t = t̂, where 1 + λ0 Ψ(t) = 0. This
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shows that the compression wave turns into a shock at t = t̂, when the
initial discontinuity associated with the wave exceeds a critical value.

Equation (3.12) is numerically solved for different values of initial
axial magnetic field B0c, non ideal parameter b and ratio of specific
heats γ, and the results are depicted in Figures 1–3. It is observed
that, as t increases, the value of λ decreases and tends to zero as t→ ∞.

Figure 2. Variation of jump in velocity gradient [ux] versus 1/t for γ = 1.4,
B0c = 2, f0c = 0.01, ρ0c = 0.1, p0c = 0.1, µ = 0.1.

An increase in the initial axial magnetic field B0c or ratio of specific
heat γ leads to a decrease in λ, whereas an increase in the non ideal
parameter b leads to an increase in λ.

4. Results and conclusion. In this paper, we considered a system
of equations describing the motion of a one-dimensional, cylindrically
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Figure 3. Variation of jump in velocity gradient [ux] versus 1/t for γ and
b = 1.1× 10−3, B = 2, f0c = 0.01, ρ0c = 0.1, p0c = 0.1, µ = 0.1.

symmetrical, inviscid, non-ideal gas with a constant axial magnetic
field. The singular surface theory was used to study the propagation,
steepening of the wave and its culmination into a shock under the
influence of the axial magnetic field. The transport equation for the
jump in velocity gradient, which is a Bernoulli-type equation, was
derived. The affects of non ideal parameter and initial magnetic field
on the jump in velocity gradient were studied by numerically solving
the transport equation.

It was observed that there exists some critical time at which the
solution breaks down, implying thereby that the compression wave
turns into a shock at that critical time when the initial discontinuity
associated with the wave exceeds a critical value. It was also observed
that, as time t increases, the jump in the velocity gradient decreases
and tends to zero for a large value of t. An increase in the initial
axial magnetic field or the ratio of specific heat leads to a decrease
in the jump in velocity gradient, whereas an increase in the non ideal
parameter b leads to an increase in the jump in velocity gradient.
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