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A NEW BLOW-UP CRITERION FOR
NON-NEWTON FILTRATION EQUATIONS

WITH SPECIAL MEDIUM VOID

YUZHU HAN

ABSTRACT. This paper deals with the finite time blow-
up of solutions to the initial boundary value problem of a
non-Newton filtration equation with special medium void. A
new criterion for the solutions to blow up in finite time is
established by using the Hardy inequality. Moreover, the
upper and lower bounds for the blow-up time are also
estimated. The results solve an open problem proposed by
Liu in 2016 [8].

1. Introduction. In this paper, we investigate the blow-up proper-
ties of solutions to the following non-Newton filtration equation with
special medium void:

(1.1)


ut
|x|2

−∆pu = uq (x, t) ∈ Ω× (0, T ),

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x) x ∈ Ω,

where ∆pu = div(|∇u|p−2∇u), Ω is a bounded domain in Rn, n ≥ 3,
with smooth boundary ∂Ω, 0 ∈ Ω, 2 < p < n, p < q + 1 <
p∗ = np/(n− p), 0 ≤ u0 ∈ W 1,p

0 (Ω) and u0(x) ̸≡ 0. Moreover, for

x = (x1, x2, . . . , xn) ∈ Rn, |x| =
√
x21 + x22 + · · ·+ x2n.

By the conservation law, the motion of a fluid in a rigid porous
medium can be described, under certain assumptions, by the following
equation

a(x)ut − div(u
−→
V ) = f(u),
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where a(x) is the void of the medium, u(x, t) is the density of fluid,
−→
V

is the velocity of filtration of fluid and f(u) is the source, [2, 12, 13].
For the non-Newtonian filtration fluid, one obtains the p-Laplacian
equation

a(x)ut − div(|∇u|p−2∇u) = f(u).

During the past few decades, much effort has been devoted to solving
the above problems, mainly, for the case a(x) = 1 (see [2]). In 2004,
Tan [12] considered the existence and asymptotic estimates of global
solutions and finite time blow-up of local solutions to problem (1.1).
By using the potential well method proposed by Sattinger and Payne
[9, 10] and Hardy’s inequality, he gave some sufficient conditions for the
solutions to exist globally or to blow up in finite time, when the initial
energy is subcritical, i.e., initial energy smaller than the mountain pass
level. These results were extended to porous medium equations with a
special medium void by Zhou [13]. In 2016, by defining new potential
wells and their corresponding sets, Liu [8] showed the existence of
global or finite time blow-up solutions to problem (1.1) when the initial
energy is critical. He also proposed an open problem as to whether or
not problem (1.1) admits blow-up solutions when the initial energy is
supercritical.

In this short paper, we will answer this question. Our main results
contain two aspects. Firstly, inspired by some ideas from [3, 4, 11] and
with the help of Hardy’s inequality, we will give a new criterion for the
solutions to problem (1.1) to blow up in finite time. More precisely, we

will show that, for any M > 0, there exists a u0 ∈ W 1,p
0 (Ω) satisfying

J(u0) > M , and the solutions to problem (1.1) with u0 as initial
value blow up in finite time. Secondly, the blow-up time is estimated
from both above and below. In this process, Gagliardo-Nirenberg’s
inequality will play an important role.

The paper is organized as follows. Some preliminaries and the
main results are introduced in Section 2, such as the definition of
weak solutions to problem (1.1) and some functionals, as well as some
auxiliary lemmas to be used later. The main results are proven in
Section 3.

2. Preliminaries and main results. Throughout this paper, we
denote the norm of Lr(Ω), 1 ≤ r ≤ ∞, by ∥·∥r, and denote by ( , ) the
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inner product in L2(Ω). ByW 1,p
0 (Ω), we denote the Sobolev space such

that both u and |∇u| belong to Lp(Ω) for any u ∈ W 1,p
0 (Ω). W 1,p

0 (Ω)
will be endowed with the equivalent norm ∥u∥W 1,p

0 (Ω) = ∥∇u∥p. In this

paper, we consider weak solutions to problem (1.1).

Definition 2.1 ([12]). A function u is called a (weak) solution to
problem (1.1) in Ω× (0, T ) if

u ∈ L∞(0, T ;W 1,p
0 (Ω)),

∫ T

0

∥∥∥∥ ut|x|
∥∥∥∥2
2

dt <∞,

and u(x, t) satisfies u(x, 0) = u0(x) and∫
Ω

(
ut
|x|2

v + |∇u|p−2∇u · ∇v
)
dx =

∫
Ω

uqv dx,

for all v ∈W 1,p
0 (Ω), t ∈ (0, T ).

Definition 2.2. Let u(x, t) be a weak solution to problem (1.1). We
say that u(x, t) blows up at a finite time T0, provided that

lim
t→T0

∥∥∥∥u(t)|x|

∥∥∥∥2
2

= +∞.

For any u ∈W 1,p
0 (Ω), define the functionals

J(u) =
1

p
∥∇u∥pp −

1

q + 1
∥u∥q+1

q+1

and

I(u) = ∥∇u∥pp − ∥u∥q+1
q+1.

Since q + 1 < p∗, both functionals are well defined and continuous
in W 1,p

0 (Ω). Let u(x, t) be a weak solution to problem (1.1). Then,
standard arguments show that J(u(x, t)) is non-increasing for t ∈ [0, T ).
Moreover, it has also been shown [12] that the solution to problem
(1.1) blows up in finite time when J(u0) ≤ 0. These results can be
summarized into the following lemma.

Lemma 2.3 ([8, 12]). Let u(x, t) be a weak solution to problem (1.1).
Then, J(u(x, t)) is non-increasing in t and it holds, for any t ∈ (0, T ),
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that

(2.1)

∫ t

0

∥∥∥∥uτ|x|
∥∥∥∥2
2

dτ + J(u(x, t)) = J(u0).

Moreover, if J(u0) ≤ 0, then u(x, t) blows up in finite time.

The next three lemmas are necessary for the proof of the main
results. The first classical result is essentially due to Hardy [5], the
second is a special form of Gagliardo-Nirenberg’s inequality [1] and
the third can be viewed as a descendant of Levine’s concavity method
[6].

Lemma 2.4. Assume that 1 < p < n and u ∈ W 1,p(Rn). Then,
u/|x| ∈ Lp(Rn), and

(2.2)

∫
Rn

|u|p

|x|p
dx ≤ Cn,p

∫
Rn

|∇u|pdx,

where Cn,p = (p/(n− p))p. Denote Cn,p by Cn when p = 2.

Remark 2.5. For any u ∈W 1,p
0 (Ω), extend u(x) to be 0 for x ∈ Rn\Ω.

Then, u ∈W 1,p(Rn), and therefore, (2.2) also holds for u ∈W 1,p
0 (Ω).

Lemma 2.6. Let 2 ≤ p < q + 1 < p∗ = np/(n− p). Then, for any

u ∈W 1,p
0 (Ω), we have

(2.3) ∥u∥q+1
q+1 ≤ CG∥∇u∥α(q+1)

p ∥u∥(1−α)(q+1)
2 ,

where

α =
q − 1

2(q + 1)

(
1

2
+

1

n
− 1

p

)−1

∈ (0, 1)

and CG > 0 is a constant depending only on n, p and q.

Lemma 2.7 ([7]). Suppose that a positive, twice-differentiable function
ψ(t) satisfies the inequality

ψ′′(t)ψ(t)− (1 + θ)(ψ′(t))2 ≥ 0,
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where θ > 0. If ψ(0) > 0 and ψ′(0) > 0, then ψ(t) → ∞ as

t −→ t∗ ≤ t∗ =
ψ(0)

θψ′(0)
.

For simplicity, we denote by u(t) the solution u(x, t) to problem
(1.1), and write U0 = ∥u0/|x|∥22,

U(t) =

∥∥∥∥u(t)|x|

∥∥∥∥2
2

in the sequel. The main results of this paper can be summarized in the
following two theorems.

Theorem 2.8. Assume that 2 < p < n, p < q + 1 < p∗, and that
u(x, t) is a weak solution to problem (1.1). If

0 < K1J(u0) <
1

2
U0 −K2,

then T < +∞, which means that u(x, t) blows up at some finite time T .
Moreover, the upper bound for T has the following form

T ≤ 4K1U0

(q − 1)2H(0)
,

where H(0) = (1/2)U0 −K1J(u0)−K2 > 0,

K1 =
p(q + 1)Cn

2(q + 1− p)
, K2 =

Cn

2
|Ω|,

Cn is the positive constant given in Hardy inequality and |Ω| is the
Lebesgue’s measure of Ω.

Theorem 2.9. Let all of the assumptions in Theorem 2.8 hold, and
assume, in addition, that q + 1 < p(1 + 2/n). Then, the maximal

existence time satisfies T ≥ U1−γ
0 /C∗(γ − 1), where γ > 1 and C∗ > 0

are two constants that will be determined in the proof.
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3. Proofs of the main results.

Proof of Theorem 2.8. By using some ideas from [11] and an appli-
cation of Hardy’s inequality, we first show that the solutions to problem
(1.1) will blow up in finite time when 0 < K1J(u0) < (1/2)U0 −K2.

Suppose, on the contrary, that u(x, t) is global, i.e., T = +∞. Then,
for any t ∈ (0,∞), the following holds:
(3.1)∫ t

0

∥∥∥∥uτ (τ)|x|

∥∥∥∥
2

dτ ≥
∥∥∥∥ ∫ t

0

uτ (τ)

|x|
dτ

∥∥∥∥
2

=

∥∥∥∥u(t)|x|
− u0

|x|

∥∥∥∥
2

≥ U1/2(t)− U
1/2
0 .

By using Hölder’s inequality and recalling Lemma 2.3, we obtain
(3.2)

U1/2(t) ≤ U
1/2
0 +

(
t

∫ t

0

∥∥∥∥uτ (τ)|x|

∥∥∥∥2
2

dτ

)1/2

= U
1/2
0 +{t[J(u0)−J(u(t))]}1/2.

Since u(x, t) is global, from Lemma 2.3, it is known that J(u(t)) > 0
for any t ∈ [0,∞). Therefore, from (3.2), we see that

(3.3) U1/2(t) ≤ U
1/2
0 +[J(u0)−J(u(t))]1/2t1/2 < U

1/2
0 +J1/2(u0)t

1/2.

On the other hand, since p > 2, by Hardy’s inequality and direct
computation, we have

1

2

d

dt
U(t) = −I(u(t)) =

∫
Ω

uut
|x|2

dx = −∥∇u∥pp + ∥u∥q+1
q+1

(3.4)

=
q + 1− p

p
∥∇u∥pp − (q + 1)J(u(t))

≥ q + 1− p

p
(∥∇u∥22 − |Ω|)− (q + 1)J(u(t))

≥ 2(q + 1− p)

pCn

[
1

2
U(t)− p(q + 1)Cn

2(q + 1− p)
J(u(t))− Cn

2
|Ω|

]
, K0

(
1

2
U(t)−K1J(u(t))−K2

)
,

where

K0 =
2(q + 1− p)

pCn
, K1 =

p(q + 1)Cn

2(q + 1− p)
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and K2 = (Cn/2)|Ω|. Set H(t) = (1/2)U(t)−K1J(u(t))−K2. Noticing
from Lemma 2.3 that (d/dt)J(u(t)) ≤ 0, we further obtain

(3.5)
d

dt
H(t) ≥ d

dt

(
1

2
U(t)

)
≥ K0H(t).

Since H(0) = (1/2)U0 − K1J(u0) − K2 > 0, H(t) > 0 for all t ≥ 0.
Integration of (3.5) over [0, t] yields

(3.6) H(t) ≥ H(0)eK0t.

Since 0 < J(u(t)) ≤ J(u0) for all t ∈ [0,∞), from (3.6), we have

U(t) ≥ 2H(t) ≥ 2H(0)eK0t, t ∈ [0,∞),

which contradicts with (3.3) for sufficiently large t. Therefore, T <
+∞, and u(x, t) blows up in finite time.

Next, we derive the upper bound for T . We first observe from the
definitions of I(u), J(u), the initial condition K1J(u0)+K2 < (1/2)U0

and Hardy’s inequality that

I(u0) = (q + 1)J(u0)−
q + 1− p

p
∥∇u0∥pp

=
2(q + 1− p)

pCn

[
K1J(u0)−

1

2
U0 +K2

]
− q + 1− p

p

[
∥∇u0∥pp + |Ω| − 1

Cn
U0

]
≤ 2(q + 1− p)

pCn

[
K1J(u0)−

1

2
U0 +K2

]
− q + 1− p

p

[
∥∇u0∥22 −

1

Cn
U0

]
< 0.

We claim that I(u(t)) < 0 for all t ∈ [0, T ). If not, there would exist a
t0 ∈ (0, T ) such that I(u(t)) < 0 for all t ∈ [0, t0) and I(u(t0)) = 0. By
(3.4), we know that U(t) is strictly increasing in t for t ∈ [0, t0), and
therefore,

(3.7) K1J(u0) +K2 <
1

2
U0 <

1

2
U(t0).
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On the other hand, from the monotonicity of J(u(t)) and Hardy’s
inequality, we obtain

K1J(u0) +K2 ≥ K1J(u(t0)) +K2

=
Cn

2
(∥∇u(t0)∥pp + |Ω|) + pCn

2(q + 1− p)
I(u(t0))

≥ Cn

2
∥∇u(t0)∥22 ≥ 1

2
U(t0),

which contradicts with (3.7). Therefore, I(u(t)) < 0 for all t ∈ [0, T ),
as claimed, and U(t) is strictly increasing on [0, T ).

For any T ∗ ∈ (0, T ), β > 0 and σ > 0, define

(3.8) F (t) =

∫ t

0

U(τ)dτ + (T − t)U0 + β(t+ σ)2, t ∈ [0, T ∗].

By direct computations,

F ′(t) = U(t)− U0 + 2β(t+ σ)(3.9)

=

∫ t

0

d

dτ
U(τ) dτ + 2β(t+ σ)

= 2

∫ t

0

(
u(τ),

uτ (τ)

|x|2

)
dτ + 2β(t+ σ),

F ′′(t) = 2

(
u(t),

ut(t)

|x|2

)
+ 2β = −2I(u(t)) + 2β(3.10)

= −2(q + 1)J(u(t)) +
2(q + 1− p)

p
∥∇u(t)∥pp + 2β

= −2(q + 1)J(u0) + 2(q + 1)

∫ t

0

∥∥∥∥uτ|x|
∥∥∥∥2
2

dτ

+
2(q + 1− p)

p
∥∇u(t)∥pp + 2β.

For t ∈ [0, T ∗], set

f(t) =

(∫ t

0

U(τ)dτ + β(t+ σ)2
)(∫ t

0

∥∥∥∥uτ|x|
∥∥∥∥2
2

dτ + β

)
−
(∫ t

0

(
u,

uτ
|x|2

)
dτ + β(t+ σ)

)2

.
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Then it is easy to verify, by using the Cauchy-Schwarz inequality and
Hölder’s inequality, that f(t) is nonnegative on [0, T ∗]. Therefore, in
view of (3.8)–(3.10) and noting the monotonicity of U(t), we have

F (t)F ′′(t)− q + 1

2
(F ′(t))2

(3.11)

= F (t)F ′′(t)− 2(q + 1)

(∫ t

0

(
u,

uτ
|x|2

)
dτ + β(t+ σ)

)2

= F (t)F ′′(t)+2(q+1)

[
f(t)−(F−(T−t)U0)

(∫ t

0

∥∥∥∥uτ|x|
∥∥∥∥2
2

dτdτ+β

)]
≥ F (t)F ′′(t)− 2(q + 1)F (t)

(∫ t

0

∥∥∥∥uτ|x|
∥∥∥∥2
2

dτ + β

)
= F (t)

[
− 2(q+1)J(u0)+2(q+1)

∫ t

0

∥∥∥∥uτ|x|
∥∥∥∥2
2

dτ+
2(q+1−p)

p
∥∇u(t)∥pp

+ 2β − 2(q + 1)

∫ t

0

∥∥∥∥uτ|x|
∥∥∥∥2
2

dτ − 2(q + 1)β

]
> F (t)

[
− 2(q + 1)J(u0) +

2(q + 1− p)

p
∥∇u(t)∥pp − 2(q + 1)β

]
≥ F (t)

[
−2(q+1)J(u0)+

2(q+1−p)
p

(∥∇u(t)∥22 − |Ω|)−2(q+1)β

]
≥ F (t)

[
−2(q+1)J(u0)+

2(q+1−p)
pCn

U(t)− 2(q+1−p)|Ω|
p

−2(q+1)β

]
≥ F (t)

[
−2(q+1)J(u0)+

2(q+1−p)
pCn

U0−
2(q+1−p)|Ω|

p
−2(q+1)β

]
= 2(q + 1)F (t)

{
1

K1

(
1

2
U0 −K1J(u0)−K2

)
− β

}
= 2(q + 1)F (t)

(
H(0)

K1
− β

)
≥ 0,

for any t ∈ [0, T ∗] and β ∈ (0, H(0)/K1]. In view of Lemma 2.7, we
can see that

T ∗ ≤ 2F (0)

(q − 1)F ′(0)
=

U0

(q − 1)βσ
T +

σ

q − 1
.
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From the arbitrariness of T ∗ < T , it follows that

(3.12) T ≤ U0

(q − 1)βσ
T +

σ

q − 1
,

for any β ∈ (0,H(0)/K1] and σ > 0.

Fix a β0 ∈ (0,H(0)/K1]. Then, for any σ ∈ ((U0/(q − 1)β0),+∞),
we have 0 < (U0/(q − 1)β0σ) < 1, which, together with (3.12), implies
that

(3.13) T ≤ σ

q − 1

(
1− U0

(q − 1)β0σ

)−1

=
β0σ

2

(q − 1)β0σ − U0
.

Minimizing the right hand side in (3.13) for σ ∈ ((U0/(q − 1)β0),+∞)
yields

(3.14) T ≤ 4U0

(q − 1)2β0
for all β0 ∈ (0,H(0)/K1].

Then, minimizing the right hand side of (3.14) with respect to β0 ∈
(0,H(0)/K1], we finally obtain

T ≤ min
β0∈(0,H(0)/K1]

4U0

(q − 1)2β0
=

4K1U0

(q − 1)2H(0)
.

The proof is complete. �

Corollary 3.1. Let all of the assumptions in Theorem 2.8 hold. Then,
for any M > 0, there exists a u0 such that J(u0) = M , while the
corresponding solution u(x, t) to problem (1.1) with u0 as initial datum
blows up in finite time.

Proof. First, we recall a well-known result that, for any bounded
smooth domain Ω in Rn, n ≥ 3, and q ∈ (p − 1, p∗ − 1), the

functional J(u) defined on W 1,p
0 (Ω) has a sequence of critical points

{wk}∞k=1 ⊂W 1,p
0 (Ω) such that

(3.15) J(wk) =
1

p
∥∇wk∥pp −

1

q + 1
∥wk∥q+1

q+1 −→ +∞, k → +∞.

For any M > 0, set R = 2K1M + 2K2. Let Ω1 and Ω2 be two
disjoint smooth subdomains of Ω. Using the remark above, there exists
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a sequence {wk}∞k=1 ⊂W 1,p
0 (Ω2) such that

(3.16)

J(wk) =
1

p

∫
Ω2

|∇wk|pdx− 1

q + 1

∫
Ω2

|wk|q+1dx −→ +∞, k → +∞.

Let v ∈ W 1,p
0 (Ω1) be an arbitrary nontrivial function. Then, there

exists an r1 > 0 such that

(3.17)

∫
Ω1

∣∣∣∣r1v|x|
∣∣∣∣2dx = r21

∫
Ω1

∣∣∣∣ v|x|
∣∣∣∣2dx > R.

On the other hand, since q + 1 > p, the following holds:

(3.18) M− rp

p

∫
Ω1

|∇v|pdx+ rq+1

q + 1

∫
Ω1

|v|q+1dx −→ +∞, r → +∞.

From (3.16) and (3.18), it follows that there exist k0 ∈ N and r > r1,
both sufficiently large such that

(3.19) M − rp

p

∫
Ω1

|∇v|pdx+
rq+1

q + 1

∫
Ω1

|v|q+1dx

=
1

p

∫
Ω2

|∇wk0 |pdx− 1

q + 1

∫
Ω2

|wk0 |q+1dx.

Denote w = wk0 . Extend v and w to be 0 in Ω \ Ω1 and Ω \ Ω2,
respectively, and still denote them, respectively, by v and w. Then,
v, w ∈ W 1,p

0 (Ω). Set u0 = rv + w. It can be directly verified that
J(u0) = J(rv) + J(w) =M , and

(3.20)

∥∥∥∥ u0|x|
∥∥∥∥2
2

≥
∥∥∥∥ rv|x|

∥∥∥∥2
2

> R = 2K1M + 2K2 = 2K1J(u0) + 2K2.

According to Theorem 2.8, the solutions to problem (1.1) with initial
data u0 blow up in finite time, and the proof is complete. �

Proof of Theorem 2.9. From the proof of Theorem 2.8, we know that
I(u(t)) < 0 for all t ∈ [0, T ), which then implies

(3.21) ∥∇u(t)∥pp < ∥u(t)∥q+1
q+1, t ∈ [0, T ).
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Combining (3.21) with Lemma 2.6, we obtain

∥u(t)∥q+1
q+1 ≤ CG∥∇u(t)∥α(q+1)

p ∥u(t)∥(1−α)(q+1)
2

< CG(∥u(t)∥q+1
q+1)

α(q+1)/p(∥u(t)∥22)(1−α)(q+1)/2

≤ CG(∥u(t)∥q+1
q+1)

α(q+1)/p[(diam(Ω))2U(t)](1−α)(q+1)/2

, C∗(∥u(t)∥q+1
q+1)

α(q+1)/p[U(t)](1−α)(q+1)/2,

which implies

(3.22) (∥u(t)∥q+1
q+1)

1−α(q+1)/p < C∗[U(t)](1−α)(q+1)/2,

where C∗ = CG(diam(Ω))(1−α)(q+1),

α =

(
1

2
− 1

q + 1

)(
1

2
+

1

n
− 1

p

)−1

,

and diam(Ω) > 0 is the diameter of Ω. Since q + 1 < p(1 + (2/n)), it
can be directly checked that 1− α(q + 1)/p > 0 and

γ , (1− α)(q + 1)/2

1− α(q + 1)/p
> 1.

Therefore,

d

dt
U(t) = −2I(u(t)) < 2∥u(t)∥q+1

q+1(3.23)

< 2C
1/[1−α(q+1)/p]
∗ Uγ(t) , C∗Uγ(t), t ∈ [0, T ),

where C∗ = 2C
1/[1−α(q+1)/p]
∗ . In view of the negativity of I(u(t)) on

[0, T ), we know that U(t) > 0 for t ∈ [0, T ). Thus, dividing both sides
of (3.23) by Uγ(t) and integrating the resulting inequality over [0, t),
we obtain

1

1− γ
{U1−γ(t)− U1−γ(0)} ≤ C∗t.

From Theorem 2.8, we know that limt→T U(t) = +∞. Therefore,
letting t → T in the above inequality and recalling that γ > 1, we
obtain

T ≥ U1−γ
0

C∗(γ − 1)
.

The proof is complete. �
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