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GLOBAL STRUCTURE OF POSITIVE SOLUTIONS
FOR PROBLEM WITH MEAN CURVATURE
OPERATOR ON AN ANNULAR DOMAIN

XIAOFEI CAO, GUOWEI DAI AND NING ZHANG

ABSTRACT. We study the global structure of positive
solutions of the following mean curvature equation in the
Minkowski space

−div

(
∇u√

1− |∇u|2

)
= λf(x, u),

on an annular domain with the Robin boundary condition.
According to the behavior of f near 0, we obtain the
existence and multiplicity of positive solutions for this
problem.

1. Introduction and main results. The study of hypersurfaces
in the Minkowski space with coordinates (x, t) ∈ RN+1 and metric
(dx)2 − (dt)2 leads to the following mean curvature equation:

−div

(
∇u√

1− |∇u|2

)
= H(x, u), x ∈ Ω,(1.1)

where Ω is a domain in RN with N ≥ 1 and H : Ω × R → R is the
prescribed mean curvature of the hypersurface.

The hypersurface is maximal if the mean curvature is zero. If H ≡ 0
and Ω = RN , Calabi [4] proved that equation (1.1) has only linear
entire solutions for N ≤ 4. Later, Cheng and Yao [5] proved that the
only entire solution for equation (1.1) with H ≡ 0 and Ω = RN is linear
for all N . When Ω = RN and H ≡ c > 0, some renowned results for
equation (1.1) were obtained by Treibergs [12]. If Ω is a bounded C2,α
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domain with some α > 0, and H = H(x, u) ∈ C0,α(Ω×R) is bounded,
Bartnik and Simon [1] proved that equation (1.1) with u = φ on ∂Ω
has a strictly spacelike solution u ∈ C2,α(Ω), where φ is bounded and
has an extension φ ∈ C2,α(Ω) satisfying |∇φ| ≤ 1 − θ in Ω for some
θ > 0. When Ω = BR = BR(0) := {x ∈ RN : |x| < R} with R > 0,
Bereanu, Jebelean and Torres [2, 3] obtained some existence results for
positive radial solutions of equation (1.1) with u = 0 on ∂Ω. Recently,
the first author [6] studied the nonexistence, existence and multiplicity
of positive radial solutions of equation (1.1) on the unit ball with u = 0
on ∂BR and H = −λf(x, s) via the bifurcation method.

The aim of this paper is to study the existence and multiplicity of
positive radially symmetric solutions for equation (1.1) on an annular
domain with the Robin boundary condition, which is mainly achieved
by the bifurcation method.

Let R1, R2 ∈ R with 0 < R1 < R2 and A = {x ∈ RN : R1 ≤
|x| ≤ R2}. Consider the following problem with the Robin boundary
condition

(1.2)

−div

(
∇u√

1−|∇u|2

)
= λf(x, u) in A,

∂u
∂ν = 0 on ∂BR1 u = 0 on ∂BR2 ,

where λ is a real parameter, f : A× [R1, R2] → R+ with R+ = [0,+∞)
is a continuous function and is radially symmetric with respect to x,
and ∂v/∂ν is the outward normal derivative of v. Passing to polar
coordinates, the problem (1.2) is reduced to the following problem

(1.3)

{
−(rN−1ϕ(v′))′ = λrN−1f(r, v) r ∈ (R1, R2),

v′(R1) = v(R2) = 0,

where r = |x|, v = u(|x|), and ϕ(s) = s/
√
1− s2. The solution of

problem (1.3) may be understood in the classical sense.

Let λ1 be the first eigenvalue of

(1.4)

{
−(rN−1v′)′ = λrN−1v r ∈ (R1, R2),

v′(R1) = v(R2) = 0.

It is well known that λ1 is simple, isolated and the associated eigenfunc-
tions have one sign in [R1, R2), see [9, 13]. Let X = {v ∈ C1[R1, R2] :
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v′(R1) = v(R2) = 0} with the norm ∥v∥ = ∥v′∥∞. From the fact that
∥v∥∞ ≤ ∥v′∥∞R, it is easy to verify that the norm ∥v∥ is equivalent to
the usual norm ∥v∥∞ + ∥v′∥∞.

The following theorem comprises our main results.

Theorem 1.1. Assume that f(r, s) > 0 for any (r, s) ∈ [R1, R2] ×
(0, R2 −R1], and that there exists an f0 ∈ [0,+∞] such that

lim
s→0+

f(r, s)

s
= f0

uniformly for r ∈ (R1, R2). Then,

(a) if f0 = 1, there is an unbounded component C of the set of
positive solutions of problem (1.3), bifurcating from (λ1, 0) such that

C ⊆ ((R+ ×X) ∪ {(λ1, 0)})

is infinite in the direction of λ and limλ→+∞ ∥vλ∥ = 1 for (λ, vλ) ∈
C \ {(λ1, 0)};

(b) if f0 = +∞, there is an unbounded component C of the set of
positive solutions of problem (1.3), emanating from (0, 0) such that

C ⊆ ((R+ ×X) ∪ {(0, 0)}),

which joins to (+∞, 1);

(c) if f0 = 0, there is an unbounded component C of the set of
positive solutions of problem (1.3) in R+ × X which joins (+∞, 1) to
(+∞, 0).

From now on, we add the point ∞ to our space R × X so that
(+∞, 1) and (+∞, 0) are elements of C . Figure 1 illustrates the global
bifurcation branches of Theorem 1.1. It follows from Theorem 1.1
that problem (1.3) possesses at least one positive solution for any
λ ∈ (λ1,+∞) if f0 = 1 and has at least one positive solution for
any λ ∈ (0,+∞) if f0 = +∞, see Figure 1 (A) and (B). When f0 = 0,
there exists a λ∗ > 0 such that problem (1.3) has at least two positive
solutions for any λ ∈ (λ∗,+∞), see Figure 1 (C). Clearly, Theorem 1.1
improves the corresponding ones of [10, Theorems 1.1–1.3].
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The remainder of this paper is arranged as follows. In Section 2, we
show some necessary preliminary results. The proof of Theorem 1.1 is
given in the last section.

2. Preliminaries. In order to study the bifurcation phenomenon of
problem (1.3), we consider the following auxiliary problem

(2.1)

{
−(rN−1ϕ(v′))′ = rN−1g(r) r ∈ (R1, R2),

v′(R1) = v(R2) = 0,

for any given g ∈ Y , where Y denotes the Banach space of continuous
functions on [R1, R2] endowed with the uniform norm ∥ · ∥∞. Define
the continuous linear operator

H : Y −→ C1[R1, R2]

(a) f0 = 1 (b) f0 = +∞

(c) f0 = 0

Figure 1. Bifurcation diagrams of Theorem 1.1.
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by

Hu(r) = r1−N

∫ r

R1

sN−1u(s) ds

for any r ∈ [R1, R2].

Lemma 2.1. For each g ∈ Y , problem (2.1) has a unique solution
given by

v =

∫ R2

r

ϕ−1 ◦H(g) ds := Ψ(g)

for any r ∈ [R1, R2]. Moreover, the operator Ψ : Y → X is continuous
and sends bounded sets in Y into relatively compact sets in X.

Proof. Integrating the first equation of problem (2.1) from R1 to
r ∈ [R1, R2], we have that

−ϕ(v′) = H(g).

Note that ϕ : (−1, 1) → R is an increasing diffeomorphism satisfying
ϕ(0) = 0. It follows that

v′ = −ϕ−1 ◦H(g).

Integrating the last equation from R2 to r, in view of v(R2) = 0, we
arrive at

v =

∫ R2

r

ϕ−1 ◦H(g) ds := Ψ(g),

which shows the existence.

Clearly, we have that

|ϕ(v′)| =
∣∣∣∣r1−N

∫ r

R1

sN−1g(s) ds

∣∣∣∣ ≤ (R2 −R1)∥g∥∞ := M

for any r ∈ [R1, R2]. It follows that

|v′| ≤ ϕ−1(M) < 1,

where ϕ−1 denotes the inverse function of ϕ. Thus, Ψ maps Y into X.

The continuity of Ψ is obvious. It suffices to prove that, if {gn} is a
bounded subsequence in Y with ∥gn∥∞ ≤ M for some positive constant
M and any n ∈ N, then vn = Ψ(gn) contains a convergent subsequence
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in X. Clearly, we have that {H(gn)} is uniformly bounded. For any
r ∈ [R1, R2], with calculations, we can show that

|(H(gn))
′(r)| =

∣∣∣∣∣gn(r)− (N − 1)

∫ r

R1
sN−1gn(s) ds

rN

∣∣∣∣∣
≤ M

(
1 + (N − 1)

∫ r

R1
sN−1 ds

rN

)

= M

(
1 +

(N − 1)

N

rN −RN
1

rN

)
≤ M(2N − 1)

N
.

For any r, r′ ∈ [R1, R2], it follows from the Lagrange mean theorem
that

|(H(gn))
′(r)− (H(gn))

′(r′)| ≤ M(2N − 1)

N
|r − r′|.

Thus, the sequence {H(gn)} is also equicontinuous. From the Arzelà-
Ascoli theorem, up to a subsequence, H(gn) is convergent in Y . Since
ϕ−1 : Y → Y is continuous, it follows that v′n = −ϕ−1(H(gn))
converges to −ϕ−1(g0) := v0 in Y , where g0 is the limit of H(gn).
Reasoning as in the above paragraph, we have that ∥v0∥∞ < 1.
Therefore, we have that vn converges to∫ r

0

v0(s) ds := v in X. �

We also must consider the following auxiliary problem

(2.2)

{
−(rN−1u′)′ = rN−1h(r) in (R1, R2),

u′(R1) = u(R2) = 0,

for a given h ∈ Y . Analogously to that of Lemma 2.1, we can show
that problem (2.2) has a unique solution, which is denoted by Φ(h),
and

Φ : Y −→ X

is continuous, compact and linear. Further, we consider the following
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problem with a parameter

(2.3)

−
(
rN−1 v′

√
1−t2v′2

)′
= rN−1g(r), r ∈ (R1, R2),

v′(R1) = v(R2) = 0,

for any t ∈ (0, 1] and any given g ∈ Y . Letting w = tv, problem (2.3)
is equivalent to

(2.4)

{
−(rN−1ϕ(w′))′ = trN−1g(r), r ∈ (R1, R2),

w′(R1) = w(R2) = 0.

By Lemma 2.1, problem (2.4) has a unique solution w = Ψ(tg). Thus,
v = Ψ(tg)/t is the unique solution of problem (2.3). For any g ∈ Y ,
define

(2.5) G(t, g) =

{
Ψ(tg)

t if t ∈ (0, 1],

Φ(g) if t = 0.

Then, we can show that:

Lemma 2.2. G : [0, 1]× Y → X is completely continuous.

Proof. We first prove the continuity of G. For any gn, g ∈ Y and
tn, t ∈ [0, 1] with gn → g in Y and tn → t in [0, 1] as n → +∞, it is
sufficient to show that G(tn, gn) := vn → G(t, g) := v in X. If t > 0,
without loss of generality, we can assume that tn > 0 for any n ∈ N. It
follows from Lemma 2.1 that vn → v in X as n → +∞. If t = 0 and
there exists a subsequence {tni} of {tn} such that tni = 0, then

vni = G(tni , gni) = Φ(gni) −→ Φ(g) = v

in X as i → +∞. Thus, next, we assume that t = 0 and tn > 0 for
any n ∈ N. From Lemma 2.1, we know that problem (2.4) has only a
trivial solution when t = 0. In addition, by Lemma 2.1, we have that
wn → 0 in X as n → +∞.

Note that vn satisfies{
− v′′

(1−w′2
n )3/2

− (N − 1) v′

r
√

1−w′2
n

= gn(r), r ∈ (R1, R2),

v′(R1) = v(R2) = 0.
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It follows that there exists an N0 > 0 such that ∥vn∥C2[0,R] ≤ C for
any n ≥ N0 and some positive constant C, which depends only upon g
and R1. Hence, there exists a v ∈ X and a subsequence {vnk

} of {vn}
such that vnk

→ v in X as k → +∞. Note that

v′′nk
= −(N − 1)

v′nk
(1− w′2

nk
)

r
− (1− w′2

nk
)3/2gnk

(r), r ∈ (R1, R2).

Integrating the above equation from R1 to r ∈ (R1, R2), we obtain that

v′nk
(r) =

∫ r

R1

(
− (N − 1)

v′nk
(1− w′2

nk
)

s
− (1− w′2

nk
)3/2gnk

(s)

)
ds.

By the Lebesgue dominated convergence theorem, we have that

v′(r) =

∫ r

R1

(
− (N − 1)

v′

s
− g(s)

)
ds.

It follows that{
−(rN−1v′)′ = rN−1g(r), r ∈ (R1, R2),

v′(R1) = v(R2) = 0.

Hence, we have that v = Φ(g) = G(0, g). We claim that vn → v in X.
Otherwise, there would exist a subsequence {vmj} of {vn} in X and
ϵ0 > 0 such that, for any j ∈ N, we have ∥vmj − v∥ ≥ ϵ0. However,
reasoning as above, {vmj} would contain an additional subsequence
vmjl

→ v in X as l → +∞, which contradicts ∥vmjl
− v∥ ≥ ϵ0.

Therefore, vn → v in X.

Next, we show the compactness of G. Clearly, G(t, ·) is compact for
any fixed t ∈ [0, 1]. We claim that the continuity of G with respect to t
at any t0 ∈ [0, 1] is uniform for g ∈ Y , that is to say, for any ϵ > 0 and
g ∈ Y , there exists a δ = δ(ϵ, t0) > 0 such that ∥G(t, g)−G(t0, g)∥ < ϵ
when |t− t0| < δ with t ∈ [0, 1]. Suppose, by contradiction, that there
exist ϵ0 > 0, g0 ∈ Y , such that, for any n ∈ N, existing tn ∈ [0, 1] with
|tn − t0| < 1/n such that

(2.6) ∥G(tn, g0)−G(t0, g0)∥ ≥ ϵ0.

Up to a subsequence, we have tn → t0 ∈ [0, 1] as n → +∞. Letting
n → +∞ in (2.6), we have that

0 = lim
n→+∞

∥G(tn, g0)−G(t0, g0)∥ ≥ ϵ0,

which is a contradiction.
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For any (tn, gn) ∈ [0, 1]× Y with {gn} bounded in Y for any n ∈ N,
it suffices to show that {G(tn, gn)} possesses a convergent subsequence.
Without loss of generality, we assume that tn → t0 ∈ [0, 1]. We know
that {G(t1, gn)} has a convergent subsequence. Thus, there exists a

subsequence {g(1)n } of {gn} such that the diameter of {G(t1, g
(1)
n )} is

less than 1. Similarly, there exists a {g(2)n } ⊆ {g(1)n } such that the

diameter of {G(t2, g
(2)
n )} is less than 1/2. In general, there exists a

{g(k)n } ⊆ {g(k−1)
n } such that the diameter of {G(tk, g

(k)
n )} is less than

1/k, k ≥ 3. We claim that {G(tn, g
(n)
n )} is convergent. We have shown

that, for any ϵ > 0 and g ∈ Y , there exists a δ = δ(ϵ, t0) > 0 such
that ∥G(t, g) − G(t0, g)∥ < ϵ/3 when |t − t0| < δ with t ∈ [0, 1]. Take
N1 > 3/ϵ such that |tn − t0| < δ for any n > N1. Consequently, when
m > n > N1, we have that

∥G(tm, g(m)
m )−G(tn, g

(n)
n )∥ < ∥G(tm, g(m)

m )−G(t0, g
(m)
m )∥

+ ∥G(t0, g
(m)
m )−G(tn, g

(m)
m )∥

+ ∥G(tn, g
(m)
m )−G(tn, g

(n)
n )∥

<
ϵ

3
+

ϵ

3
+

1

n
< ϵ.

It follows that {G(tn, g
(n)
n )} is the Cauchy sequence. Thus, we have

that G(tn, g
(n)
n ) → v0 for some v0 ∈ X.

Finally, we show that G(t
(n)
n , g

(n)
n ) → v0 as n → +∞. Clearly,

there exists an N2 > 0 such that |tn − t0| < δ, |t(n)n − t0| < δ and

∥G(tn, g
(n)
n )− v0∥ < ϵ/3 any n > N2. Hence, when n > N2, we obtain

that

∥G(t(n)n , g(n)n )− v0∥ < ∥G(t(n)n , g(n)n )−G(t0, g
(n)
n )∥

+ ∥G(t0, g
(n)
n )−G(tn, g

(n)
n )∥

+ ∥G(tn, g
(n)
n )− v0∥

<
ϵ

3
+

ϵ

3
+

ϵ

3
< ϵ.

Therefore, we obtain that G(t
(n)
n , g

(n)
n ) → v0 in X as n → +∞. �
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Consider the following problem

(2.7)

{
−(rN−1ϕ(v′))′ = λrN−1v, r ∈ (R1, R2),

v′(R1) = v(R2) = 0.

Obviously, problem (2.7) is equivalent to the operator equation v =
Ψ(λv) := Ψλ(v). By Lemma 2.1, we see that Ψλ : X → X is complete
and continuous. Furthermore, we have the following topological degree
jumping result.

Lemma 2.3. For any r ∈ (0, 1), we have that

(2.8) deg(I −Ψλ,Br(0), 0) =

{
1 if λ ∈ (0, λ1),

−1 if λ ∈ (λ1, λ1 + δ)

for some δ > 0, where Br(0) = {u ∈ X : ∥u∥ < r}.

Proof. Since λ1 is isolated, we can choose δ > 0 such that problem
(1.4) has no eigenvalue in (λ1, λ1 + δ). We claim that the Leray-
Schauder degree

deg(I −G(t, λ·),Br(0), 0)

is well defined for any λ ∈ (0, λ1 + δ) \ {λ1} and t ∈ [0, 1]. The claim is
obvious for t = 0. Thus, in view of Lemma 2.2, it is sufficient to show
that v = G(t, λv) has no solution with ∥v∥ = r for r sufficiently small
and any t ∈ (0, 1]. Otherwise, there exists a sequence {vn} such that
vn = Ψλ(tvn)/t and ∥vn∥ → 0 as n → +∞. Letting w̃n = vn/∥vn∥, we
have that w̃n satisfies− w̃′′

n

(1−w′2
n )3/2

− (N − 1)
w̃′

n

r
√

1−w′2
n

= λw̃n, r ∈ (R1, R2),

w̃′
n(R1) = w̃n(R2) = 0.

Similar to the reasoning of Lemma 2.2, we can show that, for some
convenient subsequence, w̃n → w̃ as n → +∞ and w̃ verify problem
(1.4) with ∥w̃∥ = 1. This implies that λ is an eigenvalue of problem
(1.4), a contradiction.

From the invariance of the degree under homotopies, we obtain that

deg(I−Ψλ,Br(0), 0)=deg(I−G(1, λ·),Br(0), 0)

=deg(I−G(0, λ·),Br(0), 0)=deg(I−λΦ,Br(0), 0).
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By [8, Theorem 8.10], we obtain that

deg(I − λΦ,Br(0), 0) =

{
1 if λ ∈ (0, λ1),

−1 if λ ∈ (λ1, λ1 + δ).

Therefore, we have that

deg(I −Ψλ,Br(0), 0) =

{
1 if λ ∈ (0, λ1),

−1 if λ ∈ (λ1, λ1 + δ),

which is the desired conclusion. �

Graphs which are solutions to problem (1.3) are strictly space-like in
A. The following lemma ensures a priori that each possible solution v
of problem (1.3) is strictly space-like on the boundary of A, as well.

Lemma 2.4. Let v be any solution to problem (1.3) with any fixed λ.
Then, |v′| < 1 on [R1, R2].

Proof. It suffices to show that |v′(R2)| < 1. Suppose, by way of
contradiction, that there exists a sequence {rk} ⊂ (R1, R2) such that

lim
k→+∞

rk = R2,

lim
k→+∞

|v′(rk)| = |v′(R2)| = 1

and

lim
k→+∞

|ϕ(v′)(rk)| = +∞.

Clearly, we have that

(rN−1ϕ(v′))′

rN−1ϕ(v′)
= −λf(r, v)

ϕ(v′)
.

Obviously, there exists an r ∈ (R1, R2) such that |v′| > 1/2 for all
r ∈ (r,R2). Integrating the above equality from r to rk, we obtain that

log |(rk+ε)N−1ϕ(v′(rk))|−log |(r+ε)N−1ϕ(v′(r))| = −λ

∫ rk

r

f(r, v)

ϕ(v′)
dr.

Letting k → +∞, we see that the left member tends to infinity while
the right one is bounded, which is a contradiction. �
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3. Proof of Theorem 1.1. Now, we give the proof of our main
result.

Proof of Theorem 1.1.

(a) Let ξ(r, s) = f(r, s)− f0s. Then, we have that

lim
s→0+

ξ(r, s)

s
= 0

uniformly for r ∈ (R1, R2). Consider{
−(rN−1ϕ(v′))′ = λrN−1(f0v + ξ(r, v)),

v′(R1) = v(R2) = 0

as a bifurcation problem from the trivial solution axis.

Define Fλ(s, v) : [0, 1]×X → Y

Fλ(s, v) = λ(f0v + sξ(r, v)).

Then, it is easy to see that Fλ is continuous and takes bounded sets
into bounded sets. Consider the following problem

(3.1)

{
−(rN−1ϕ(v′))′ = rN−1Fλ(s, v),

v′(R1) = v(R2) = 0.

Then, problem (3.1) can be equivalently rewritten as

(3.2) v = Ψ(Fλ(s, v)) := Tλ(s, v).

By Lemma 2.1, Tλ : [0, 1] × X → X is completely continuous. In
particular, Hλ := Tλ(1, ·) : X → X is completely continuous. Similarly
to that of [6, Theorem 1.1], we have that

(3.3)

∣∣∣∣ξ(r, v)∥v∥

∣∣∣∣ −→ 0 as ∥v∥ → 0,

uniformly in r ∈ (R1, R2).

We claim that the Leray-Schauder degree deg(I − Tλ(s, ·),Br(0), 0)
is well defined for λ ∈ (0, λ1 + δ) \ {λ1} and r small enough. Suppose,
by contradiction, that there exists a sequence {vn} such that vn =
Tλ(s, vn) and ∥vn∥ → 0 as n → +∞. Letting ŵn = vn/∥vn∥, we have
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that ŵn satisfies− ŵ′′
n

(1−v′2
n )3/2

− (N − 1)
ŵ′

n

r
√

1−v′2
n

= λ(s ξ(r,vn)
∥vn∥ + f0ŵn),

ŵ′
n(R1) = ŵn(R2) = 0.

Then, by (3.3) and an argument similar to that of Lemma 2.2, we can
show that ŵn → ŵ in X as n → +∞ and{

−(rN−1ŵ′)′ = λrN−1ŵ, r ∈ (R1, R2),

ŵ′(R1) = ŵ(R2) = 0.

Clearly, we have ∥ŵ∥ = 1. Therefore, λ is an eigenvalue of problem
(1.4), which is absurd.

By the invariance of the degree under homotopy, we obtain that

deg(I −Hλ,Br(0), 0) = deg(I − Tλ(1, ·),Br(0), 0)

= deg(I − Tλ(0, ·),Br(0), 0)

= deg(I −Ψλ,Br(0), 0).

By Lemma 2.3, we have that

deg(I −Hλ,Br(0), 0) =

{
1 if λ ∈ (0, λ1),

−1 if λ ∈ (λ1, λ1 + δ).

By the Global bifurcation theorem [11], there exists a continuum C of
a nontrivial solution of problem (1.3), bifurcating from (λ1, 0), which
is either unbounded or

C ∩ (R \ {λ1} × {0}) ̸= ∅.

Since (0, 0) is the only solution of problem (1.3) for λ = 0 and 0 is not
an eigenvalue of problem (1.4), so C ∩ ({0} ×X) = ∅. Analogously to
that of [2, Lemma 1], we can show that v is nonnegative on [R1, R2)
and decreasing for any (λ, v) ∈ C .

We claim that C ∩ (R \ {λ1} × {0}) = ∅. Otherwise, there exists a
nontrivial, nonnegative solution sequence (λn, vn) ∈ C \ {(λ1, 0)} such
that λn → µ and vn → 0 as n → +∞. Let wn = vn/∥vn∥. By (3.3)
and an argument like that of Lemma 2.2, we can show that wn → w
as n → +∞ and w verifies problem (1.4) with ∥w∥ = 1. It follows that
µ = λ1, a contradiction.
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Therefore, C is unbounded in (0,+∞) × X, and v is nontrivially
nonnegative for any (λ, v) ∈ C \ {(λ1, 0)}. Furthermore, as in [2,
Lemma 1], we can show that v is positive and strictly decreasing for
any (λ, v) ∈ C \ {(λ1, 0)}. By Lemma 2.4, we see that the projection
of C on R+ is unbounded.

Finally, we investigate the asymptotic behavior of vλ as λ → +∞
for (λ, vλ) ∈ C \{(λ1, 0)}. Suppose, by contradiction, that there exist a
constant δ > 0 and (λn, vn) ∈ C \{(λ1, 0)} with λn → +∞ as n → +∞
such that ∥vn∥2 ≤ 1− δ2 for any n ∈ N. Note that (λn, vn) satisfies the
following problem

(3.4)

{
−(rN−1ϕ(v′))′ = λrN−1a(r)v, r ∈ (R1, R2),

v′(R1) = v(R2) = 0,

where

a(r) =
f(r, v)

v(r)
.

The assumptions of f0 = 1 and f(r, s) > 0 for any (r, s) ∈ [R1, R2] ×
(0, R2−R1] imply that there exists a positive constant ρ > 0 such that

a(r) ≥ ρ

for any r ∈ [R1, R2].

Let φ1 be a positive eigenfunction associated to λ1. It is easy to
see that φ1 is decreasing in [R1, R2]. Multiplying the first equation of
problem (3.4) by φ1, and obtaining, after integrations by parts, that

λ1

δ

∫ R2

R1

rN−1vnφ1 dr =
1

δ

∫ R2

R1

rN−1v′nφ
′
1 dr

≥
∫ R2

R1

rN−1 v′nφ
′
1√

1− |v′n|2
dr

= λn

∫ R2

R1

rN−1a(r)vnφ1 dr

≥ λnρ

∫ R2

R1

rN−1vnφ1 dr.

It follows that λn ≤ λ1/(δρ), which is a contradiction.
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(b) For any n ∈ N, define

fn(r, s) =


ns s ∈

[
− 1

n ,
1
n

]
,

n
(
f
(
r, 2

n

)
− 1
) (

s− 1
n

)
+ 1 s ∈

(
1
n ,

2
n

)
,

−n
(
f
(
r,− 2

n

)
+ 1
) (

s+ 1
n

)
− 1 s ∈

(
− 2

n ,−
1
n

)
,

f(r, s) s ∈
(
−∞,− 2

n

]
∪
[
2
n ,+∞

)
.

Then, consider the following problem

{
−(rN−1ϕ(v′))′ = λrN−1fn(r, v), r ∈ (R1, R2),

v′(R1) = v(R2) = 0.

By the conclusion of (a) and an argument similar to that of [7, Theorem
1.2], we can obtain the desired conclusion.

(c) For any n ∈ N, define

fn(r, s)

=



1
ns s ∈

[
− 1

n ,
1
n

]
,(

f
(
r, 2

n

)
− 1

n2

)
n
(
s− 1

n

)
+ 1

n2 s ∈
(
1
n ,

2
n

)
,

−
(
f
(
r,− 2

n

)
+ 1

n2

)
n
(
s+ 1

n

)
− 1

n2 s ∈
(
− 2

n ,−
1
n

)
,

f(r, s) s ∈
(
−∞,− 2

n

]
∪
[
2
n ,+∞

)
,

and consider the following problem

{
−(rN−1ϕ(v′))′ = λrN−1fn(r, v), r ∈ (R1, R2),

v′(R1) = v(R2) = 0.

Then, by an argument similar to that of [7, Theorem 1.3] and the aid
of (a), we can derive the desired conclusion. �
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