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ON A PROBLEM OF BHARANEDHAR AND
PONNUSAMY INVOLVING PLANAR

HARMONIC MAPPINGS

ZHI-GANG WANG, ZHI-HONG LIU,
ANTTI RASILA AND YONG SUN

ABSTRACT. In this paper, we give a negative answer
to a problem presented by Bharanedhar and Ponnusamy
[1] concerning univalency of a class of harmonic mappings.
More precisely, we show that for all values of the involved
parameter, this class contains a non-univalent function.
Moreover, several results on a new subclass of close-to-
convex harmonic mappings, motivated by the work of
Ponnusamy and Sairam Kaliraj [16], are obtained.

1. Introduction. In this paper, we consider univalency criteria for
complex-valued harmonic functions f in the open unit disk D. It is
well known that such functions can be written as f = h + g, where h
and g are analytic functions in D. We call h the analytic part and g
the co-analytic part of f , respectively. Let H be the class of harmonic
functions normalized by the conditions f(0) = fz(0) − 1 = 0, which
have the form

(1.1) f(z) = z +
∞∑
k=2

akz
k +

∞∑
k=1

bkzk, z ∈ D.

Since the Jacobian of f is given by |h′|2 − |g′|2, by Lewy’s theorem
(see [10]), it is locally univalent and sense-preserving if and only if
|g′| < |h′|, or equivalently, the dilatation ω = g′/h′ with h′(z) ̸= 0 has
the property |ω| < 1 in D. The subclass of H that is univalent and
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sense-preserving in D is denoted by SH. Univalent harmonic functions
are also called harmonic mappings.

The classical family S of analytic univalent and normalized functions
in D is a subclass of SH with g(z) ≡ 0. The family of all functions
f ∈ SH with the additional property that fz(0) = 0 is denoted by
S0
H. There exist reciprocal transformations between the classes SH

and S0
H (see [5, 6]). Observe that the family S0

H is compact and
normal; however, the family SH is not compact. For recent results
involving univalent harmonic mappings, the interested reader is referred
to [1, 2, 3, 4, 7, 8, 11, 12], [14]–[21], and the references therein.

A domain Ω is said to be close-to-convex if C\Ω can be represented
as a union of non intersecting half-lines. Following Kaplan’s results
[9], an analytic function F is called close-to-convex if there exists a
univalent convex analytic function ϕ defined in D such that

Re

(
F ′(z)

ϕ′(z)

)
> 0, z ∈ D.

Furthermore, a planar harmonic mapping f : D → C is close-to-convex
if it is injective and f(D) is a close-to-convex domain. We denote by
C0
H the class of close-to-convex harmonic mappings.

This paper is organized as follows. In Section 2, we give a negative
answer to a problem posed by Bharanedhar and Ponnusamy in [1]. In
Section 3, we study a subclass of close-to-convex harmonic mappings,
which is motivated by work of Ponnusamy and Sairam Kaliraj [16].
Coefficient estimates, a growth theorem, a covering theorem and an
area theorem, for mappings of this class, are obtained.

2. A problem of Bharanedhar and Ponnusamy. Recently, Mo-
canu [11] proposed the following conjecture involving the univalency
of planar harmonic mappings.

Conjecture 2.1. Let

M =

{
f = h+g ∈ H : g′ = zh′ and Re

(
1+

zh′′(z)

h′(z)

)
> −1

2
, z ∈ D

}
.

Then, M ⊂ S0
H.
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By applying the close-to-convexity criterion for analytic functions
due to Kaplan [9], Bshouty and Lyzzaik [3] solved the above conjecture
by establishing the following, stronger result:

Theorem A. M ⊂ C0
H.

Later, Ponnusamy and Sairam Kaliraj [16, Theorem 4.1] generalized
Theorem A under the assumption that the analytic dilatation ω satisfies
the condition

Re

(
λzω′(z)

1− λω(z)

)
> −1

2

for all λ such that |λ| = 1. In particular, for ω(z) = λkzn,(
|λ| = 1; 0 < k ≤ 1

2n− 1
; n ∈ N := {1, 2, 3, . . .}

)
,

they gave the following result.

Theorem B. Suppose that h and g are analytic in D such that

Re

(
1 +

zh′′(z)

h′(z)

)
> −1

2
,

and
g′(z) = λkznh′(z)(

n ∈ N; |λ| = 1; 0 < k ≤ 1

2n− 1

)
.

Then, f = h+ g is univalent and close-to-convex in D.

Motivated by Theorem B, we introduce the following natural class of
close-to-convex harmonic mappings, which will be studied in Section 3.
Note that, for n = 1, we have the class M(α, ζ), which was studied in
[18].

Definition 2.2. A harmonic mapping f = h + g ∈ H is said to be in
the class M(α, ζ, n) if h and g satisfy the conditions

(2.1) Re

(
1 +

zh′′(z)

h′(z)

)
> α, −1

2
≤ α < 1,
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and

(2.2) g′(z) = ζznh′(z)(
ζ ∈ C with |ζ| ≤ 1

2n− 1
; n ∈ N

)
.

In 1995, Ponnusamy and Rajasekaran [13] derived the following
starlikeness criterion for analytic functions.

Theorem C. Suppose that F is a normalized analytic function in D.
If F satisfies the condition

Re

(
1 +

zF ′′(z)

F ′(z)

)
< β, 1 < β ≤ 3

2
,

then F is univalent and starlike in D, i.e., F (D) is a domain, starlike
with respect to the origin.

Essentially motivated by Theorems A and C, Bharanedhar and
Ponnusamy [1, page 763, Problem 1] posed the following problem,
presented here in a slightly modified form.

Problem 2.3. For β ∈ (1, 3/2), define

P(β) =

{
f = h+g ∈ H : g′ = zh′ and Re

(
1+

zh′′(z)

h′(z)

)
< β, z ∈ D

}
.

Determine inf{β ∈ (1, 3/2) : P(β) ⊂ S0
H}.

We recall the following result of Bshouty and Lyzzaik [3]:

Theorem D. Suppose that 0 ≤ λ < 1/2. Let f = h+g be the harmonic
polynomial mapping with

h(z) = z − λz2 and g(z) =
z2

2
− 2λz3

3
.

If 0 ≤ λ ≤ 3/10, then f is univalent in D. However, for 3/10 < λ <
1/2, f is not univalent in D.

Remark 2.4. In view of Theorem D, we see that β can be restricted
to the value on the interval (1, 11/8] since
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sup
z∈D

{
Re

(
1 +

zh′′(z)

h′(z)

)}
=

11

8

for

h(z) = z − 3

10
z2.

Now, we are ready to give a counterexample which shows that, for
all β ∈ (1, 11/8], the class P(β) of Problem 2.3 contains a non-univalent
function.

Consider the harmonic function given by fγ = h+ g ∈ H, where

h(z) =
1

γ
[1− (1− z)γ ], 1 < γ ≤ 7

4
,

and

g(z) =
1

γ(1 + γ)
[1− (1 + γz)(1− z)γ ], 1 < γ ≤ 7

4
.

Clearly, we have g′ = zh′. It follows that

1 +
zh′′(z)

h′(z)
=

1− γz

1− z
,

and therefore,

Re

(
1 +

zh′′(z)

h′(z)

)
<

1 + γ

2
, 1 <

1 + γ

2
≤ 11

8
,

that is,
fγ = h+ g ∈ P((1 + γ)/2) ⊂ P(β).

In what follows, we shall prove that the function fγ is not univalent
in D. It is easy to verify that both the analytic and co-analytic parts
of fγ have real coefficients, and thus, fγ(z) = fγ(z) for all z ∈ D. In
particular,

Re(fγ(re
iθ)) = Re(fγ(re

−iθ))

for some r ∈ (0, 1) and θ ∈ (−π, 0) ∪ (0, π). It suffices to show that
there exist r0 ∈ (0, 1) and θ0 ∈ (−π, 0) ∪ (0, π) such that

Im(fγ(r0e
iθ0)) = Im(fγ(r0e

−iθ0)) = 0.
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In view of the relation

Im(fγ(z)) = Im(h(z)− g(z)) = Im

(
1− (1− z)γ+1

γ + 1

)
= −Im

(
e(γ+1) log(1−z)

γ + 1

)
,

we see that

Im(fγ(re
iθ)) = −Im

(
e(γ+1) log(1−reiθ)

γ + 1

)
= −e(γ+1) log |1−reiθ|

γ + 1
sin[(γ + 1) arg(1− reiθ)],

and

−Im(fγ(re
−iθ)) =

e(γ+1) log |1−re−iθ|

γ + 1
sin[(γ + 1) arg(1− re−iθ)]

= Im(fγ(re
iθ)).

By noting that

arg(1− reiθ) ∈
(
− π

2
, 0

)
∪
(
0,

π

2

)
,

we deduce that, for each 1 < γ ≤ 7/4, there exist r0 ∈ (0, 1) and
θ0 ∈ (−π, 0) ∪ (0, π) such that

sin[(γ + 1) arg(1− r0e
iθ0)] = 0.

It follows that

Im(fγ(r0e
iθ0)) = Im(fγ(r0e

−iθ0)) = 0.

Therefore, there exist two distinct points z1 = r0e
iθ0 and z2 = r0e

−iθ0

in D such that fγ(z1) = fγ(z2), which shows that the function fγ(z)
is not univalent in D. Thus, we conclude that the conditions given in
Problem 2.3 are not satisfied for any β ∈ (1, 11/8].

The image domain of fγ for γ = 5/4 is given in Figures 1 and 2 to
illustrate our counterexample.
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Figure 1. The image of the mapping f5/4.

3. The subclass M(α, ζ, n) of close-to-convex harmonic map-
pings. Recall the following lemma, due to Suffridge [17], which will
be required in the proof of Theorem 3.2.

Lemma 3.1. If h(z) = z +
∑∞

k=2 akz
k satisfies condition (2.1), then

(3.1) |ak| ≤
1

k!

k∏
j=2

(j − 2α), k ∈ N \ {1},

with the extremal function given by

h(z) =

∫ z

0

dt

(1− δt)2−2α
, |δ| = 1; z ∈ D.

We now derive the coefficient estimates for the class M(α, ζ, n).
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Figure 2. An enlarged view of the right cusp of the image of f5/4.

Theorem 3.2. Let f = h + g ∈ M(α, ζ, n) be of the form (1.1).
Then, the coefficients ak, k ∈ N \ {1}, of h satisfy (3.1). Moreover, the
coefficients bk, k = n+ 1, n+ 2, . . . ; n ∈ N, of g satisfy :

|bn+1| ≤
|ζ|

n+ 1

and

|bk+n| ≤
|ζ|

(k + n)(k − 1)!

k∏
j=2

(j − 2α), k ∈ N \ {1}.

The bounds are sharp for the extremal function given by

f(z) =

∫ z

0

dt

(1− δt)2−2α
+

∫ z

0

ζtn

(1− δt)2−2α
dt, |δ| = 1; z ∈ D.

Proof. By equating the coefficients of zk+n−1 on both sides of (2.2),
we see that

(3.2) (k + n)bk+n = ζkak, k, n ∈ N; a1 = 1.

In view of Lemma 3.1 and (3.2), we obtain the desired result of Theorem
3.2. �
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Theorem 3.3. Let f ∈ M(α, ζ, n) with 0 ≤ α < 1 and 0 ≤ ζ <
1/(2n− 1), n ∈ N. Then:

(3.3) Φ(r;α, ζ, n) ≤ |f(z)| ≤ Ψ(r;α, ζ, n), r = |z| < 1,

where

Φ(r;α, ζ, n) =

log(1 + r)− ζ rn+1
2F1(1, n+1;n+2;−r)

n+1 α=1/2,

(1+r)2α−1−1
2α−1 − ζ rn+1

2F1(n+1, 2−2α;n+2;−r)
n+1 α ̸=1/2,

and

Ψ(r;α, ζ, n) =

− log(1− r) + ζ rn+1
2F1(1, n+1;n+2; r)

n+1 α=1/2,

1−(1−r)2α−1

2α−1 + ζ rn+1
2F1(n+1, 2−2α;n+2; r)

n+1 α ̸=1/2.

All of these bounds are sharp. The extremal function is fα,ζ,n = hα

+ gα,ζ,n, or its rotations, where

(3.4)

fα,ζ,n(z) =

− log(1− z) + ζ zn+1
2F1(1, n+1;n+2; z)

n+1 α = 1/2,

1−(1−z)2α−1

2α−1 + ζ zn+1
2F1(n+1, 2−2α;n+2; z)

n+1 α ̸= 1/2.

Proof. Assume that f = h+ g ∈ M(α, ζ, n). Also, let Γ be the line
segment joining 0 and z. Then

|f(z)| =
∣∣∣∣∫

Γ

∂f

∂ξ
dξ +

∂f

∂ξ
dξ

∣∣∣∣ ≤ ∫
Γ

(|h′(ξ)|+ |g′(ξ)|) |dξ|(3.5)

=

∫
Γ

(1 + |ζ||ξ|n)|h′(ξ)||dξ|.

Moreover, let Γ̃ be the preimage under f of the line segment joining 0
and f(z). Then, we obtain

|f(z)| =
∫
Γ̃

∣∣∣∣∂f∂ξ dξ +
∂f

∂ξ
dξ

∣∣∣∣ ≥ ∫
Γ̃

(|h′(ξ)| − |g′(ξ)|) |dξ|(3.6)

=

∫
Γ̃

(1− |ζ||ξ|n)|h′(ξ)||dξ|.
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By observing that h is a convex analytic function of order α, 0 ≤ α < 1,
it follows that

(3.7)
1

(1 + r)2(1−α)
≤ |h′(z)| ≤ 1

(1− r)2(1−α)
, |z| = r < 1.

By virtue of (3.5)–(3.7), we see that

Φ(r;α, ζ, n) :=

∫ r

0

(1− |ζ|ρn) dρ
(1 + ρ)2(1−α)

≤ |f(z)| ≤
∫ r

0

(1 + |ζ|ρn) dρ
(1− ρ)2(1−α)

=: Ψ(r;α, ζ, n),

which yields the desired inequalities (3.3).

Now, we shall prove the sharpness of the result. We only need show
that fα,ζ,n, defined by (3.4), belongs to the class M(α, ζ, n) for each
α ∈ [0, 1). Suppose that

hα(z) =

− log(1− z) α = 1/2,

1−(1−z)2α−1

2α−1 α ̸= 1/2.

Then, we find that hα(z) satisfies inequality (2.1) and the relation
g′α,ζ,n(z) = ζznh′

α(z) for each α ∈ [0, 1). Moreover, for 0 ≤ α < 1,

0 < ζ < 1/(2n− 1) with n ∈ N, 0 < r < 1, it is easy to see that

fα,ζ,n(−r) = −Φ(r;α, ζ, n) and fα,ζ,n(r) = Ψ(r;α, ζ, n),

and therefore,∣∣fα,ζ,n(−r)
∣∣ = Φ(r;α, ζ, n) and

∣∣fα,ζ,n(r)∣∣ = Ψ(r;α, ζ, n).

This shows that the bounds are sharp. �

Next, we consider a covering theorem for functions in the class
M(α, ζ, n).

Theorem 3.4. Let f ∈ M(α, ζ, n) with 0 ≤ α < 1 and 0 ≤ ζ <
1/(2n− 1), n ∈ N. Then, the range f(D) contains the disk

|ω| < r(α, ζ, n) =

log 2− ζ 2F1(1, n+1;n+2;−1)
n+1 α = 1/2,

22α−1−1
2α−1 − ζ 2F1(n+1, 2−2α;n+2;−1)

n+1 α ̸= 1/2.
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The bounds are sharp for the function fα,ζ,n = hα + gα,ζ,n, given by
(3.4) or its rotations.

Proof. By putting r → 1− in the lower bound for |f(z)| in Theo-
rem 3.3, we obtain the desired result. The sharpness is similar to that
of Theorem 3.2; thus, we omit the details. �

Now, we consider the area theorem of the mappings belonging to
the class M(α, ζ, n). We denote A(f(Dr)) by the area of f(Dr), where
Dr := rD for 0 < r < 1.

Theorem 3.5. Let f ∈ M(α, ζ, n) with 0 ≤ α < 1. Then, for 0 < r
< 1, A(f(Dr)) satisfies the inequalities
(3.8)

2π

∫ r

0

ρ(1− |ζ|2ρ2n)
(1 + ρ)4(1−α)

dρ ≤ A(f(Dr)) ≤ 2π

∫ r

0

ρ(1− |ζ|2ρ2n)
(1− ρ)4(1−α)

dρ.

Proof. Let f = h+ g ∈ M(α, ζ, n). Then, for 0 < r < 1, we see that

A(f(Dr)) =

∫∫
Dr

(|h′(z)|2 − |g′(z)|2) dx dy(3.9)

=

∫∫
Dr

(1− |ζ|2|z|2n)|h′(z)|2 dx dy.

By observing that h is a convex analytic function of order α, 0 ≤ α < 1,
in view of (3.7) and (3.9), we obtain the desired inequalities (3.8) of
Theorem 3.5. �

Remark 3.6. By setting n = 1 in Theorems 3.2, 3.3, 3.4 and 3.5,
respectively, we get the corresponding results obtained in [18].

Finally, we discuss the radius of close-to-convexity of a certain class
of harmonic mappings related to the class M(α, ζ, n). The next lemma,
due to Clunie and Sheil-Small [5], will be required in the proof of Theo-
rem 3.8.

Lemma 3.7. If h and g are analytic in D with |h′(0)| > |g′(0)|, and
h+λg is close-to-convex for each λ (|λ| = 1), then f = h+g is harmonic
close-to-convex in D.
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Theorem 3.8. Suppose that f = h + g satisfies inequality (2.1) with
−1/2 < α < 0. If g′(z) = znh′(z) with n ∈ N \ {1}, then f is close-to-
convex in the disk

|z| < n

√
1 + 2α

1 + 2n+ 2α
, n ∈ N \ {1}.

Proof. Suppose that Fλ(z) = h(z) − λg(z) with |λ| = 1. It follows
that

Re

(
1 +

zF ′′
λ (z)

F ′
λ(z)

)
= Re

(
1 +

zh′′(z)

h′(z)

)
+ nRe

(
λzn

λzn − 1

)
= Re

(
1 +

zh′′(z)

h′(z)

)
+

n

2

(
1− 1− |λzn|2

(1− λzn)(1− λzn)

)
.

For z = reiθ (0 < r < 1), we see that

n

2

(
1− 1− |λzn|2

(1− λzn)(1− λzn)

)
=

n

2

(
1− 1− r2n

1 + r2n − 2Re(λzn)

)
≥ − nrn

1− rn
.

Thus, ∫ θ2

θ1

Re

(
1 +

zF ′′
λ (z)

F ′
λ(z)

)
dθ >

∫ θ2

θ1

(
α− nrn

1− rn

)
dθ

=

(
α− nrn

1− rn

)
(θ2 − θ1)

> −π, θ1 < θ2 < θ1 + 2π

for

|z| = r < n

√
1 + 2α

1 + 2n+ 2α
=: r(α, n).

From Lemma 3.7 and Kaplan’s close-to-convexity criterion for analytic
functions (see [9]), we deduce that f is close-to-convex in the disk
|z| < r(α, n). �
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