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LOWER SEMI-CONTINUITY OF
ENTROPY IN A FAMILY OF

K3 SURFACE AUTOMORPHISMS

PAUL RESCHKE AND BAR ROYTMAN

ABSTRACT. We compute topological entropies for a
large family of automorphisms of K3 surfaces in P1 ×P1 ×P1.
Similarly to a result by Xie [17], we find that the entropies
vary in a lower semi-continuous manner as the Picard ranks
of the K3 surfaces vary.

1. Introduction. We compute entropies in a family of automor-
phisms of complex K3 surfaces in

P1 × P1 × P1 = {(x = [x0 : x1], y = [y0 : y1], z = [z0 : z1])}.

The set of all effective divisors on P1 × P1 × P1 of tri-degree (2, 2, 2) is
parametrized by P26, and every non-singular prime divisor in this set is
a K3 surface; therefore, a general effective divisor of tri-degree (2, 2, 2)
is a K3 surface. Throughout this paper, Q = Q(x0, x1, y0, y1, z0, z1) is a
tri-homogeneous polynomial of tri-degree (2, 2, 2), and S is a K3 surface
in P1 × P1 × P1 of the form {Q = 0}.

We write

Q(x0, x1, y0, y1, z0, z1) =
∑

j∈{0,1,2}

xj0x
2−j
1 Qx,j(y0, y1, z0, z1)

(such that each non-trivial Qx,j = Qx,j(y0, y1, z0, z1) is bi-homogeneous
of bi-degree (2, 2)), and for irreducible Q, we define a birational invo-

2010 AMS Mathematics subject classification. Primary 14J28, 14J50, 37A35,
37F45.

Keywords and phrases. K3 surfaces, positive-entropy automorphisms, projective
embeddings.

The first author was partially supported by NSF grant Nos. DMS-0943832 and
DMS-1045119. The second author was partially supported by the NSF, grant
No. DMS-1266207.

Received by the editors on August 19, 2015, and in revised form on April 7,
2016.
DOI:10.1216/RMJ-2017-47-7-2323 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

2323



2324 PAUL RESCHKE AND BAR ROYTMAN

lution τx on P1 × P1 × P1 by

τx(x, y, z) = ([x0Qx,2 + x1Qx,1 : −x1Qx,2], y, z).

For (x, y, z) ∈ S in the domain of τx,

τx(x, y, z) = ([x1Qx,0 : x0Qx,2], y, z) ∈ S;

since S is its own unique minimal model, it follows that τx defines
an automorphism of S. We define τy and τz similarly; thus, Aut(S)
contains the subgroup generated by {τx, τy, τz}.

Silverman and Mazur [12] first suggested compositions of the invo-
lutions just described as interesting examples of infinite-order automor-
phisms of K3 surfaces. Wang [16] and Baragar [1] used automorphisms
in this subgroup to study rational points on S (when S is defined over a
number field). Cantat [6] and McMullen [13] highlighted f := τz◦τy◦τx
on various choices of S as examples of K3 surface automorphisms with
positive topological entropy. Cantat observed that results by Gromov
[9], Yomdin [18] and Friedland [8] imply that the entropy of f is the
logarithm of the spectral radius λ(f) of

f∗ : Pic(S) −→ Pic(S).

Wang, Cantat and McMullen showed how to compute f∗ in the very
general case where S has Picard rank ρ(S) = 3. Baragar [2] showed
how to compute f∗ in a special family where ρ(S) = 4, and thereby
showed that λ(f) is not constant among all K3 surfaces in P1×P1×P1.
Here, we compute f∗ for a much larger set of choices of S, with ρ(S)
ranging from 3–11.

For all p ∈ P1, we let Ex=p, respectively, Ey=p and Ez=p, denote the
restriction to S of the prime divisor {x = p}, respectively, {y = p} and
{z = p}, on P1 × P1 × P1; we call each Ex=p, respectively, Ey=p and
Ez=p, a fiber of S over the x-axis, respectively, y- and z-axes. Each
fiber is an effective divisor of bi-degree (2, 2) in P1 × P1, and hence, is
an elliptic curve if it is a non-singular prime divisor; thus, a general
fiber is an elliptic curve.

For all p = (p1, p2) ∈ P1 × P1, we define, in P1 × P1 × P1,

Cx,p := {y = p1} ∩ {z = p2}
Cy,p := {x = p2} ∩ {z = p1}
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and

Cz,p := {x = p1} ∩ {y = p2};

we call each Cx,p, respectively, Cy,p and Cz,p, a curve parallel to the x-
axis, respectively, y- and z-axes. It may occur that S contains a curve
parallel to an axis. If, for example, Cx,p ⊆ S, then neither Ey=p1 nor
Ez=p2 is a prime divisor.

For a divisor D on S, we let [D] denote the class of D in Pic(S).
We let ( · ) denote the intersection form on both Pic(S) and Div(S).
In light of the fact that the fibers of S over a fixed axis are all linearly
equivalent, we let Ex, Ey and Ez in Pic(S) denote the classes of the
fibers over, respectively, the x-, y- and z-axes. We let Bx(S), By(S) and
Bz(S) denote the sets of all classes of curves parallel to, respectively,
the x-, y- and z-axes which are contained in S, and we set

B(S) := {Ex, Ey, Ez} ∪ Bx(S) ∪ By(S) ∪ Bz(S).

Since KS is trivial, the adjunction formula gives (Eω ·Eω) = 0 for each
Eω and (C ·C) = −2 for each curve C ⊆ S parallel to an axis; it follows
that the number of distinct classes in B(S) is three plus the number of
distinct curves parallel to axes in S.

Definition 1.1. For an ordered triple (k, l,m) of non-negative integers,
we say that S is pure of type (k, l,m) if the following conditions hold:

(a) |Bx(S)| = k, |By(S)| = l and |Bz(S)| = m;
(b) B(S) is a basis for Pic(S); and
(c) (L · L′) = 0 whenever L and L′ are distinct classes in

Bx(S) ∪ By(S) ∪ Bz(S).

We let Uk,l,m ⊆ P26 denote the set of all K3 surfaces which are
pure of type (k, l,m). If (k′, l′,m′) is a reordering of (k, l,m), then
Uk′,l′,m′ ∼= Uk,l,m. If S ∈ Uk,l,m, then the conditions in Definition 1.1
provide sufficient information for the computation of f∗. However, it
is a significant step to show actual existence of pure K3 surfaces of
various types. For distinct ordered triples (k, l,m) and (k′, l′,m′), we
write

(k, l,m) < (k′, l′,m′)
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if k ≤ k′, l ≤ l′ and m ≤ m′. We set

N ′′ := {(6, 0, 0), (5, 1, 1), (4, 2, 2), (3, 3, 3)},

let N ′ denote the set of all permutations of ordered triples in N ′′,
and let N denote the set of all ordered triples (k, l,m) of non-negative
integers satisfying (k, l,m) ≤ ν for some ν ∈ N ′.

Theorem 1.2. For (k, l,m) ∈ N − {(3, 3, 3)}, the dimension of the
space of isomorphism classes of K3 surfaces contained in Uk,l,m is
17 − k − l − m. If (k′, l′,m′) ∈ N satisfies (k, l,m) < (k′, l′,m′),
then Uk′,l′,m′ is contained in the closure of Uk,l,m. For (k, l,m) /∈ N ,
Uk,l,m = ∅.

We prove Theorem 1.2 in Section 2. The proof relies on the
surjectivity of the period map for K3 surfaces to show the existence
of S ∈ Uk,l,m, and thus, does not yield any explicit equations defining
pure K3 surfaces in P1 × P1 × P1. Baragar and van Luijk [3] have
given explicit equations for some pure K3 surfaces of type (0, 0, 0), and
Barager [2] has given explicit equations for some pure K3 surfaces of
type (1, 0, 0). Little else in the form of concrete examples has appeared
in the literature, and it is typically quite challenging to show that a
particular polynomial Q defines a pure K3 surface. We do not know
whether P1 × P1 × P1 contains pure K3 surfaces of type (3, 3, 3).

Theorem 1.2 shows that we can compute and compare entropies
among many different types of K3 surface automorphisms as well by
focusing only on automorphisms of pure K3 surface automorphisms.

Theorem 1.3. As S varies among all pure K3 surfaces, λ(f) depends
only upon the type of S. Writing λ(f) = λ(k, l,m) as a function of the
type of S, we have

λ(k, l,m) > λ(k′, l′,m′)

whenever (k, l,m) < (k′, l′,m′).

We prove Theorem 1.3 in Section 3 by computing λ(f) for every
pure K3 surface. We note that λ(f) actually depends only upon the
unordered triple (k, l,m), that is,

λ(k′, l′,m′) = λ(k, l,m),
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if (k′, l′,m′) is a reordering of (k, l,m). However, the computation of f∗

does depend upon the order of (k, l,m). We compute λ(3, 3, 3) = 1,
which suggests that f has some very special behavior on pure K3
surfaces of type (3, 3, 3) if any exist (and, thus, perhaps suggests the
nonexistence of such K3 surfaces).

Theorems 1.2 and 1.3 show that λ(f) is a strictly lower semi-
continuous (lsc) function of the parameters in the union of all of the
spaces Uk,l,m. Thus, the set of all pure K3 surfaces provides an example
that demonstrates the following result of Xie.

Theorem 1.4 ([17, Theorem 4.3]). Suppose that W is a quasi-
projective variety,

S −→W

is a family of projective surfaces and

F : S 99K S

is a birational map that restricts to an automorphism of each fiber over
W . For s ∈ W , let h(s) denote the entropy of the restriction of F to
the fiber over s. Then, h is an lsc function on W .

Remark 1.5. The hypothesis on the restrictions of F to fibers in
Theorem 1.4 should not be taken to imply that F is in fact biregular,
but rather that any such restriction extends biregularly to the whole
fiber; in [17], Theorem 1.4 is stated in terms of first dynamical degrees
rather than entropies, which allows for restrictions of F that are
birational but not biregular.

Theorem 1.4 applies to λ(f) in the following way:

P26 × P1 × P1 × P1

admits a birational self-map that restricts to f on every fiber

P1 × P1 × P1

of the projection to P26, where f is well-defined; this involution pre-
serves the variety in P26 × P1 × P1 × P1, defined by

Q(x0, x1, y0, y1, z0, z1) = 0,
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and hence, realizes most quasi-subvarieties of P26 as parameter spaces
for families of K3 surface automorphisms of the type treated in The-
orem 1.4. In Section 4, we describe the indeterminacy locus of the
birational self-map on P26 × P1 × P1 × P1.

Although pure K3 surfaces are very general among all K3 surfaces
S ⊆ P1×P1×P1, they certainly do not account for all S. The procedure
in this paper could be adapted to the computation of λ(f) among all
S satisfying (a) and (b), but not necessarily (c), in Definition 1.1, since
Pic(S) and f∗ can still be sufficiently well understood for such an S.
The challenge then would be to determine which arrangements of curves
parallel to axes actually occur on such an S. However, as first observed
by Rowe [15], a K3 surface S can fail even to satisfy (b), in which case
it is impossible to compute λ(f) in the manner used here without some

means of determining Pic(S). The K3 surface S̃ ⊆ P1 × P1 × P1 below
is an example which fails to satisfy (b).

2. Finding pure K3 surfaces. Every prime divisor on P1×P1×P1

is the zero locus of an irreducible tri-homogeneous polynomial (and
every such zero locus is a prime divisor). The classes of {x0 = 0},
{y0 = 0} and {z0 = 0} generate Pic(P1 × P1 × P1). It is a well-
known fact, e.g., [12, 13, 16], that every smooth prime divisor S of
tri-degree (2, 2, 2) is a K3 surface; this may be verified by using the
Lefschetz hyperplane theorem (applied to S as a hyperplane section of
P1×P1×P1) to show that h1(S) = 0 and using the adjunction formula
(applied to S as a divisor on P1 ×P1 ×P1) to show that KS is trivial.

Lemma 2.1. Let S′ be a smooth prime divisor on P1 × P1 × P1 of
tri-degree (a, b, c). If abc > 0 and (a, b, c) ̸= (2, 2, 2), then S′ is neither
a K3 surface, nor a copy of P2, nor a Hirzebruch surface. If abc = 0,
then S′ is a product with one of the coordinate copies of P1 as a factor.

Proof. First, suppose that abc > 0 and (a, b, c) ̸= (2, 2, 2). The
effective divisors

D1 := {x0 = 0}|S′ , D2 := {y0 = 0}|S′ and D3 := {z0 = 0}|S′

all satisfy (Dj ·Dj) = 0 and (Dj ·Dj′ ̸=j) > 0. Thus, {[D1], [D2], [D3]}
is a linearly independent set in Pic(S′). By the adjunction formula,

KS′ = (a− 2)[D1] + (b− 2)[D2] + (c− 2)[D3],
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which is not trivial. Therefore, S′ is not a K3 surface. Also, ρ(S′) ≥ 3
implies that S′ is neither a copy of P2 nor a Hirzebruch surface.

If abc = 0, the claim is evident from the form of the polynomial
defining S′. �

A lattice of rank r ∈ N is a group L ∼= Zr equipped with a bilinear
form ( · )L, which is integral, symmetric and non-degenerate. Given
a basis for L, there is a unique integer matrix M such that

(g⃗1 · g⃗2)L = g⃗ t
1 Mg⃗2 for all g⃗1, g⃗2 ∈ L.

SinceM is symmetric with det(M) ̸= 0, its eigenvalues are all non-zero
real numbers. The signature of L is (p, q), where p and q denote the
number (counting multiplicity) of, respectively, positive and negative
eigenvalues of M . If T is a projective K3 surface, it is a well-known
consequence of the Hodge index theorem, e.g., [4], that the intersection
form changes Pic(T ) ∼= NS(T ) into a lattice of signature (1, ρ(T )− 1).

For every K3 surface

S ⊆ P1 × P1 × P1,

the intersection form on ⟨Ex, Ey, Ez⟩ ≤ Pic(S) is given by

M0,0,0 :=

0 2 2
2 0 2
2 2 0

 .

For every ordered triple (k, l,m) of non-negative integers, the conditions
in Definition 1.1 indicate how to write a matrix Mk,l,m that gives the
intersection form on Pic(S) in the basis B(S) whenever S is pure of
type (k, l,m), for example,

M2,0,1 =


0 2 2 1 1 0
2 0 2 0 0 0
2 2 0 0 0 1
1 0 0 −2 0 0
1 0 0 0 −2 0
0 0 1 0 0 −2

 .

Lemma 2.2. For any ordered triple (k, l,m) of non-negative integers,

det(Mk,l,m) = −(−2)k+l+m−3(128− 16(k + l +m) + klm).
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Proof. The formula given follows by computation from the general
formula

det((ai,j)1≤i,j≤n) =
∑

sgn(ξ)
n∏

i=1

ai,ξ(i),

where the sum is taken over all permutations ξ of {1, . . . , n}. �

For (k, l,m) such that det(Mk,l,m) ̸= 0, which includes all (k, l,m)
∈ N , let Lk,l,m denote the lattice given by Mk,l,m. If (k′, l′,m′) is a
reordering of (k, l,m), then Lk′,l′,m′ is isometric to Lk,l,m.

For any K3 surface T , the Riemann-Roch theorem and the adjunc-
tion formula imply the following useful facts about the intersection form
on Pic(T ), e.g., [4, 11, 7]:

• if L ∈ Pic(T ) satisfies (L · L) ≥ −2, then either L or −L is
effective;

• if L ∈ Pic(T ) is effective, then h0(L) ≥ 2 + (L · L)/2;
• if D ∈ Div(T ) is reduced, effective and connected, then
h0([D]) = 2 + (D ·D)/2;

• if D is a prime divisor on T , then h0([D]) ≥ −2.

2.1. Global sections in pure Picard lattices. Fix an ordered triple
(k, l,m) of non-negative integers, and suppose that T is a K3 surface
such that Pic(T ) is isometric to Lk,l,m. (It is then implicit here that
det(Mk,l,m ̸= 0).) Since Lk,l,m contains elements with positive self-
intersection, it follows from Grauert’s criterion, e.g., [4], that T is
projective. Let

B = {B1, B2, B3, Bx,1, . . . , Bx,k, By,1, . . . , By,l, Bz,1, . . . , Bz,m}

be a basis for Pic(T ) in which Mk,l,m gives the intersection form, and
suppose further that each Bj is nef. For (k, l,m) ∈ N , we will show
that there is an embedding T ⊆ P1 × P1 × P1 as a pure K3 surface of
type (k, l,m).

If, for some Bj , there were L ∈ ⟨Bj⟩⊥ ≤ Pic(T ) satisfying (L·L) = 0
and L /∈ ⟨Bj⟩, then ⟨Bj ,L⟩ would be a totally isotropic sublattice of
Pic(T ) of rank 2; however, it is a well-known fact, e.g., [13], that
the signature of Pic(T ) implies that Pic(T ) cannot contain a totally
isotropic sublattice of rank r > 1. It follows that each ⟨Bj⟩⊥ is neg-
ative definite away from ⟨Bj⟩. It may be verified that every L ∈
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⟨B1, B2, B3, ⟩⊥ satisfies (L · L) ≡ 0 mod 4, thus that, in particular,
⟨B1, B2, B3⟩⊥ cannot contain the class of any prime divisor on T .

Lemma 2.3. Every element of B is the class of a prime divisor on T .

Proof. Since (Bx,1 ·Bx,1) = −2 and (B1 ·Bx,1) = 1, assuming k > 0,
Bx,1 must be effective. Write

Bx,1 = [D1] + · · ·+ [Dn],

where each Dj is a prime divisor (however, the prime divisors may not
be pairwise a priori distinct). Since Bx,1 ∈ ⟨B2, B3⟩⊥, (Bx,1 · B1) = 1
and no Dj can have its class in ⟨B1, B2, B3⟩⊥, the only possibility is
n = 1 so that Bx,1 is the class of a prime divisor. It similarly follows
that each Bω,j is the class of a prime divisor Dω,j .

We now show that B1 is the class of a prime divisor. It similarly
follows that B2 and B3 are classes of prime divisors. Each Bj is effective
with h0(Bj) ≥ 2 since it is nef and satisfies (Bj ·Bj) = 0.

First, suppose l = m = 0. In this case, (L · L) ≡ 0 mod 4 whenever
L ∈ ⟨B1⟩⊥. Also, (B2 · L) and (B3 · L) are even for every L ∈ Pic(T ).
It then follows from the intersection numbers given by M0,0,0 that B1

cannot be written as a sum of more than one class of a prime divisor.

Now, suppose l > 0; the case m > 0 similarly follows. Since B′
1 :=

B1 − By,1 satisfies (B′
1 · B′

1) = −2 and (B′
1 · B2) = 1, it is effective.

Write
B′

1 = [D1] + · · ·+ [Dn],

where each Dj is a prime divisor (but the prime divisors may not be
pairwise a priori distinct). The intersection numbers of B′

1 with B1, B2

and B3 force n ≤ 3 and (Dj ·Dj) = −2 for each Dj . Moreover, there is
a unique Dj satisfying ([Dj ] ·B2) > 0. Take D1 to be this divisor such
that ([D1] ·B2) = 1 and ([Dj ] ·B3) > 0 for j > 1.

If n = 1, then (D1 ·Dy,1) = 2. If n = 2, then (B′
1 ·B′

1) = −2 implies
(D1 ·D2) = 1. If D1 ∈ B, then

([D1] ·B′
1) ∈ {0, 2}

gives a contradiction. Thus, since By,1 + [D1] and By,1 + [D2] are both
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in ⟨B1⟩⊥, (By,1 ·B′
1) = 2 implies

(D1 ·Dy,1) = (D2 ·Dy,1) = 1.

If n = 3, then
([D2] ·B3) = ([D3] ·B3) = 1

and
([D1] ·B3) = 0.

If D1 = Dy,1, then (B′
1 ·By,1) = 2 and (B′

1 ·B′
1) = −2 force D3 = D2.

If, conversely, D3 = D2, then (B′
1 · B′

1) = −2 implies (D1 · D2) = 2
such that ⟨B1, [D1 +D2]⟩ is totally isotropic. Since (B1 · B2) = 2 and
([D1 +D2] ·B2) = 1, it follows that

B1 = 2[D1] + 2[D2]

and D1 = Dy,1.

Therefore, D1 = Dy,1 if and only if D2 = D3; however, then (1/2)B1 ∈
Pic(T ) is a contradiction in this case. Thus, [D2 + D3] ∈ ⟨B1, B2⟩⊥
and [D2 − D3] ∈ ⟨B1, B2, B3⟩⊥ imply (D2 · D3) = 0. Also, by
similar reasoning, (D1 · Dy,1) = 0. Since (1/2)B1 /∈ Pic(T ) and
Pic(T ) cannot contain a totally isotropic sublattice of rank 2, none of
(D1 ·D2), (D1 ·D3), (Dy,1 ·D2) nor (Dy,1 ·D3) can equal 2. Therefore,
([D1] ·B′

1) = 0 and (By,1 ·B′
1) = 2 imply

(D1 ·D2) = (D1 ·D3) = (Dy,1 ·D2) = (Dy,1 ·D3) = 1.

In all three cases for n, B1 is realized as the class of a reduced,
effective and connected divisor E with the property that every effective
divisor E′ satisfying E′ < E has h0(E′) = 1. Fix {s, s′} ⊆ H0(B1) such
that s vanishes on all of E and s′ does not. If s′ vanishes on some non-
trivial effective divisor E′ satisfying E′ < E, then h0(E − E′) = 1
contradicts the fact that s′/s is not constant. Thus, B1 has no fixed
component, and [11, Proposition 1] shows that B1 is the class of an
elliptic curve. �
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Proposition 2.4. There is an embedding

T ⊆ P1 × P1 × P1.

If (k, l,m) ∈ N , then T is pure of type (k, l,m).

Proof. By Lemma 2.3, each Bj satisfies both h0(Bj) = 2 and
(Bj · Bj) = 0, and furthermore, has no fixed component. Thus, each
Bj induces a morphism

ψj : T −→ P1.

Set
ψ := ψ1 × ψ2 × ψ3 : T −→ P1 × P1 × P1

and
A := B1 +B2 +B3,

and let ϕ denote the Segre embedding of P1 × P1 × P1 into P7. Then,
A = (ϕ ◦ ψ)∗O(1). Since each Bj is nef and no prime divisor on T
can have its class in ⟨B1, B2, B3⟩⊥, Nakai’s criterion, e.g., [4], implies
that A is ample; in addition, A has no fixed component since neither
does Bj . Therefore, (ϕ ◦ψ) does not collapse any curve on T , and [11,
Proposition 2] shows that (ϕ ◦ ψ) is either an embedding or a ramified
double covering. Thus, ψ(T ) is a prime divisor on P1 × P1 × P1. Since
each Bj +Bj′ ̸=j is nef, big and effective with no fixed component, [11,
Proposition 2] also shows that each ψj × ψj′ is surjective. Thus, in
particular, ψ(T ) is not a product with one of the coordinate copies of
P1 as a factor. If (ϕ ◦ ψ) is a ramified double covering, then the main
result in [14] shows that ψ(T ) is either a copy of P2 or a Hirzebruch
surface, which contradicts Lemma 2.1. Therefore, ψ is an embedding.

For each Bω,j′ and Bj with (Bj · Bω,j′) = 0, h0(Bj) must contain
a section whose zero locus is disjoint from Dω,j′ , which means that
ψj(Dω,j′) is a point. Thus, each ψ(Dω,j′) is a curve parallel to an
axis (specifically, the axis corresponding to the Bj which satisfies
(Bj · Bω,j′) = 1), and ψ(T ) is of pure type (k, l,m) if it has no curves
parallel to axes beyond those whose classes are contained in B.

Now, consider the case (k, l,m) ∈ N . Suppose that ψ(T ) contains
some Cx,p with [Cx,p] /∈ B. By the construction of ψ, ([Cx,p] · B1) = 1
and [Cx,p] must have a zero intersection with B2, B3 and every Bx,j .
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If [Cx,p] has a zero intersection with every By,j and Bz,j , then the
intersection form on ⟨B ∪ {[Cx,p]}⟩ is given by Mk+1,l,m; however, then
Lemma 2.2 shows that

B ∪ {[Cx,p]}

is linearly independent, a contradiction. Writing p = (p1, p2) and p
′ =

(p′1, p
′
2), every curve Cy,p′ satisfies

Cy,p′ ∩ Cx,p = ∅

if p′1 ̸= p2 and

|Cy,p′ ∩ Cx,p| = 1

with multiplicity 1 if p′1 = p2. Since Ez=p2
has bi-degree (2, 2), there are

at most two Dy,j on T such that (Cx,p ·Dy,j) = 1. If (Cx,p ·Dy,j′) = 1
for some Dy,j′ , then (Cx,p ·Dy,j) is odd, and hence, equal to 1, for every
Dy,j ; thus, l ≤ 2 in this case. Similarly, m ≤ 2 and (Cx,p · Dz,j) = 1
for every Dz,j if there is some Dz,j′ such that (Cx,p ·Dz,j′) = 1. Now,
we may compute det(M) ̸= 0 for each matrix M that gives a possible
intersection form on ⟨B ∪ {[Cx,p]}⟩, a contradiction. It would similarly
be a contradiction if T contained some curve Cy,p or Cz,p whose class
was not in B. �

Remark 2.5. Proposition 2.4 shows that n = 1 is the only case that
can actually occur in the latter part of the proof of Lemma 2.3 when
(k, l,m) ∈ N ; otherwise, ψ(D2) would be a curve parallel to the z-axis
such that [D2] /∈ B (since (D2 ·Dy,1) = 1).

2.2. Nef classes in pure Picard lattices. Fix (k, l,m) ∈ N , set

Γ := {γ ∈ Lk,l,m | (γ · γ)Lk,l,m
= −2}

and write Γ = Γ+ ∪ Γ− such that

Γ+ ∩ Γ− = ∅, Γ− = {γ| − γ ∈ Γ+}

and
Γ ∩ {γ + γ′ | {γ, γ′} ⊂ Γ+} ⊆ Γ+;

we will call a choice of Γ+ satisfying these conditions “allowable.” Let B
as above be a basis for Lk,l,m in which Mk,l,m gives the intersection
form. We will show that Γ+ can be chosen so that each Bj satisfies
(Bj · γ) ≥ 0 for every γ ∈ Γ+. Thus, any effective isometry between



LOWER SEMI-CONTINUITY OF ENTROPY 2335

Lk,l,m and the Picard lattice of a K3 surface, that is, any isometry
which sends each γ ∈ Γ+ to an effective class, will send each Bj to an
nef class.

Set

Q̃(x0, x1, y0, y1, z0, z1)

:= (x20 + x11)(y
2
0 + y21)(z

2
0 + z21) + 3x0x1y0y1z0z1 − 2x21y0y1z0z1,

and set S̃ := {Q̃ = 0} ⊆ P1 × P1 × P1. It may be verified by directly
testing possible factors that

Q̃(0, 1, y0, y1, z0, z1) = y20z
2
0 + y20z

2
1 + y21z

2
0 − 2y0y1z0z1 + y21z

2
1

is irreducible over C. Therefore, since it has no factor of tri-degree

(1, 0, 0), Q̃ is irreducible over C. It also follows from Lemma 2.6 that Q̃
is irreducible since the existence of non-constants Q1 and Q2 satisfying

Q1 ·Q2 = Q̃ would imply {Q1 = Q2 = 0} ≠ ∅.

Lemma 2.6. The set

Sing(Q̃) :=

{
Q̃=

∂Q̃

∂x0
=
∂Q̃

∂x1
=
∂Q̃

∂y0
=
∂Q̃

∂y1
=
∂Q̃

∂z0
=
∂Q̃

∂z1
=0

}
⊆P1×P1×P1

is empty.

Proof. Suppose that ([x0 : x1], [y0 : y1], [z0 : z1]) ∈ Sing(Q̃). If
y0y1z0z1 = 0, then

(x20 + x21)(y
2
0 + y21) = (x20 + x21)(z

2
0 + z21) = (y20 + y21)(z

2
0 + z21) = 0

implies that exactly one of y0y1 = 0 or z0z1 = 0 is true such that, in
addition, x20 + x21 = 0 and x0x1 ̸= 0; however, then 3x0 − 2x1 = 0 gives
a contradiction.

From y0y1z0z1 ̸= 0, it follows that (y20+y
2
1)(z

2
0+z

2
1) ̸= 0. In addition,

if x20 + x21 = 0, then 3x0 − 2x1 = 0 again gives a contradiction. Thus,

y20 − y21 = z20 − z21 = 0

implies
8x0 ± 3x1 = 3x0 + (8∓ 4)x1 = 0,

a contradiction which leaves open no further possibilities. �
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Lemma 2.6 shows that S̃ is a K3 surface; it is a variant of a K3 surface

studied in [13, 15]. The set of all curves parallel to axes contained in S̃
is

{C1, . . . , C24} := {Cz,(i,0), Cz,(i,∞), Cy,(0,i), Cy,(∞,i), Cz,(2/3,i),

Cz,(∞,i), Cx,(i,0), Cx,(i,∞), Cy,(i,2/3), Cy,(i,∞),

Cx,(0,i), Cx,(∞,i), Cz,(−i,0), Cz,(−i,∞), Cy,(0,−i),

Cy,(∞,−i), Cz,(2/3,−i), Cz,(∞,−i), Cx,(−i,0), Cx,(−i,∞),

Cy,(−i,2/3), Cy,(−i,∞), Cx,(0,−i), Cx,(∞,−i)}.

Clearly, S̃ is not pure. For example,

[C24] = 2Ey+2Ez−2Ex−[C7]−[C8]−[C11]−[C12]−[C19]−[C20]−[C23]

and

[C22] = [C11]+[C12]−[C21]+2Ex−2Ey−Ez+[C7]+[C8]+[C19]+[C20]

= −[C21]+2Ex−2Ey−[C9]−[C10]+[C7]+[C8]+[C19]+[C20].

Set

Γ+(S̃) := {L ∈ Pic(S̃) | (L · L) = −2 and L is effective}.

Thus,

Γ+(S̃) ∩ {L+ L′ | {L,L′} ⊆ Γ+(S̃)} ⊆ Γ+(S̃),

and every L ∈ Pic(S̃) satisfying (L · L) = −2 also satisfies |{L,−L} ∩
Γ+(S̃)| = 1.

Proposition 2.7. There is a lattice embedding Lk,l,m ≤ Pic(S̃) such
that

{B1, B2, B3} = {Ex, Ey, Ez}.

Thus, setting
Γ+ := Γ ∩ Γ+(S)

is an allowable choice that yields (Bj · γ) ≥ 0 for each Bj and every
γ ∈ Γ+.

Proof. Since (k, l,m) ∈ N , at least one of the lattice embeddings
Lk,l,m ≤ L6,0,0, Lk,l,m ≤ L5,1,1, Lk,l,m ≤ L4,2,2 or Lk,l,m ≤ L3,3,3
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exists; L6,0,0 is isometric to

⟨Ex, Ey, Ez, [C7], [C8], [C11], [C12], [C19], [C20]⟩,

L5,1,1 is isometric to

⟨Ex, Ey, Ez, [C2], [C7], [C8], [C11], [C19], [C20], [C21]⟩,

L4,2,2 is isometric to

⟨Ex, Ey, Ez, [C1], [C2], [C7], [C8], [C9], [C10], [C19], [C20]⟩,

and L3,3,3 is isometric to

⟨Ex, Ey, Ez, [C1], [C2], [C7], [C8], [C9], [C10], [C13], [C19], [C21]⟩.

Since Ex, Ey and Ez are all nef, each Bj satisfies (Bj · γ) ≥ 0 for every
γ ∈ Γ+. �

2.3. Primitive embeddings of pure Picard lattices. Let L2 be
the lattice of rank 2 given by the matrix

M2 :=

(
0 1
1 0

)
,

let L8 be the lattice of rank 8 given by the matrix

M8 :=



−2 0 0 1 0 0 0 0
0 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
1 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


,

and set
LK3 := (L2)

⊕3 ⊕ (L8)
⊕2;

thus, LK3 has rank 22, is even in the sense that every element of LK3

has even self-intersection and is unimodular in the sense that

MK3 := (M2)
⊕3 ⊕ (M8)

⊕2

is invertible over Z. For any complex K3 surface T , it is a well-known
fact, e.g., [4, 11, 13], that the cup product changes H2(T,Z) into a
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lattice isometric to LK3. A lattice embedding L ≤ L′ is said to be
primitive if (L⊥)⊥ = L (where the orthogonal lattices are taken in L′)
or, equivalently, if (L ⊗ Q) ∩ L′ = L. For example, by the Lefschetz
theorem on (1,1) classes, e.g., [4],

Pic(T ) ≤ H2(T,Z)

is a primitive lattice embedding for every complex K3 surface T .

For (k, l,m) ∈ N , we have established that Lk,l,m can be assigned an
nef cone which contains every Bj , and furthermore, that any effective
isometry between Lk,l,m and the Picard lattice of a K3 surface then
forces the K3 surface to be pure of type (k, l,m). In order to prove the
existence of pure K3 surfaces of type (k, l,m), it remains only to show
that Lk,l,m embeds primitively in LK3.

Proposition 2.8. If (k, l,m) ̸= (3, 3, 3), then there is a primitive
lattice embedding Lk,l,m ≤ LK3.

Proof. Since the natural embedding of Lk,l,m into one of L6,0,0,
L5,1,1, L4,2,2 or L3,3,2 has a basis which is a subset of a basis for the
larger lattice, it must be primitive. Therefore, Lk,l,m has a primitive
embedding in LK3 if L6,0,0, L5,1,1, L4,2,2 and L3,3,2 do.

Let {β1, . . . , β22} be a basis for LK3 in which MK3 gives ( · )LK3
.

Set

B6,0,0 = {β1 + 2β2 + β4 + β6 + β10 + β18, β3 + β2 + β6,

β5 + β2 + β4, β7, β9, β11, β15, β17, β19},
B5,1,1 = {β1 + 2β2 + β4 + β6 + β10 + β18, β3 + β4 + β2 + β6 + β13,

β5 + β6 + β2 + β4 + β21, β7, β9, β11, β14, β15, β17, β22},
B4,2,2 = {β1 + 2β2 + β4 + β6 + β10 + β18, β3 + β4 + β2 + β6 + β13,

β5+β6+β2+β4+β21, β7, β9, β12, β14, β15, β17, β20, β22},

and

B3,3,2 = {β1 + β2 + β4 + β6 + β10, β3 + β4 + β2 + β6 + β18,

β5 + 2β6 + β2 + β4 + β13 + β21,

β7, β9, β11, β14, β15, β17, β19, β22}.
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Since the matrices which send {β1, β3, β5} to the first three entries of
B6,0,0, B5,1,1, B4,2,2 and B3,3,2 and fix the remaining βj are all invertible
over Z, B6,0,0, B5,1,1, B4,2,2 and B3,3,2 are all subsets of bases for LK3;
thus, they generate primitive embeddings of L6,0,0, L5,1,1, L4,2,2 and
L3,3,2 in LK3. �

2.4. Contradictions in pure Picard lattices of high rank. Fix an
ordered triple (k, l,m) of non-negative integers such that (k, l,m) /∈ N .
Up to reordering, one of (k, l,m) ≥ (7, 0, 0), (k, l,m) ≥ (6, 1, 0), (k, l,m)

≥ (5, 2, 0) or (k, l,m) ≥ (4, 3, 0) is true. Taking S̃ ⊆ P1 × P1 × P1 as

above, we use the arrangement of the curves parallel to axes in S̃ to
show that there is no pure K3 surface whose Picard lattice is isometric
to Lk,l,m.

Proposition 2.9. There is no pure K3 surface of type (k, l,m) in
P1 × P1 × P1.

Proof. Since L7,0,0 is isometric to

⟨Ex, Ey, Ez, [C7], [C8], [C11], [C12], [C19], [C20], [C23]⟩,

which contains [C24], L6,1,0 is isometric to

⟨Ex, Ey, Ez, [C7], [C8], [C11], [C12], [C19], [C20], [C21]⟩,

which contains [C22], L5,2,0 is isometric to

⟨Ex, Ey, Ez, [C7], [C8], [C11], [C19], [C20], [C21], [C22]⟩,

which contains [C12] and L4,3,0 is isometric to

⟨Ex, Ey, Ez, [C7], [C8], [C9], [C10], [C19], [C20], [C21]⟩,

which contains [C22], each of these lattices contains an element γ0 which
satisfies

(γ0 · γ0) = −2, (γ0 · Eω′) = 1

for some Eω′ , (γ0 · Eω ̸=ω′) = 0 and (γ0 · [Cj ]) ≥ 0 for all [Cj ] in the
given basis.

Suppose that S ⊆ P1×P1×P1 is pure of type (k, l,m); thus, in light
of the natural embedding of one of the lattices listed above in Lk,l,m,
there must be a γ0 ∈ Pic(S) with the properties described above and,
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moreover, the property that γ0 /∈ B(S). Since γ0 is effective and is in
⟨Eω1

, Eω2
⟩⊥ for some distinct Eω1

and Eω2
, it is a sum

γ0 = [D1] + · · ·+ [Dn]

of (a priori, not necessarily distinct) classes of prime divisors all
satisfying (Dj · Dj) = −2 and Dj ∈ ⟨Eω1 , Eω2⟩⊥. Then, as in the
proof of Proposition 2.4, each Dj must be a curve parallel to an axis,
which leads to a contradiction. �

2.5. Proof of Theorem 1.2. Suppose that

(k, l,m) ∈ N − {(3, 3, 3)}.

By Proposition 2.8, there is a primitive lattice embedding Lk,l,m ≤
LK3. Since L

⊥
k,l,m has signature

(2, 17− k − l −m),

L⊥
k,l,m⊗R contains a positive definite two-dimensional subspace V such

that
V ⊥ ∩ LK3 = Lk,l,m.

Thus, the surjectivity of the period map for K3 surfaces, e.g., [4, 7],
implies, with an application of the Leschetz theorem on (1,1) classes,
that there is a K3 surface S with Pic(S) isometric to Lk,l,m. Moreover,
the isometry between Pic(S) and Lk,l,m may be taken to be effective
for any allowable choice of Γ+. Therefore, by Propositions 2.4 and 2.7,
there is a pure K3 surface of type (k, l,m). In fact, since it has been
established that at least one exists, the moduli space M(Lk,l,m) of
ample Lk,l,m-polarized K3 surfaces (with Γ+ fixed), e.g., [4, 7], is
a quasi-projective variety of dimension 17 − k − l − m. For every
T ∈ M(Lk,l,m), there is an effective primitive lattice embedding
Lk,l,m ≤ Pic(T ); thus, either T is pure of type (k, l,m) or ρ(T ) >
3+k+ l+m and T ∈ M(Pic(T )). Since there are only countably many
possible such Pic(T ) which are not effectively isometric to Lk,l,m and
the dimension of M(Pic(T )) for each of these is less than 17−k− l−m,
the space M0(Lk,l,m) of K3 surfaces S with Pic(S) effectively isometric
to Lk,l,m is very general in M(Lk,l,m). By Propositions 2.4 and 2.7,
M0(Lk,l,m) is the space of isomorphism classes of K3 surfaces contained
in Uk,l,m.
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Let Vk,l,m ⊆ P26 denote the space of all effective divisors of tri-degree
(2, 2, 2) whose supports contain some union of curves

Cx,1 ∪ · · · ∪ Cx,k ∪ Cy,1 ∪ · · · ∪ Cy,l ∪ Cz,1 ∪ · · · ∪ Cz,m

so that each Cω,j is a curve parallel to the ω-axis and any two distinct
Cω,j and Cω′,j′ are disjoint, and let Ik,l,m denote the incidence variety
in

P26 × (P1 × P1)k+l+m

= {(Q, [αx,1 : βx,1], [δx,1 : ϵx,1], . . . , [αz,m : βz,m], [δz,m : ϵz,m])},

defined by

Qω,0(αω,j , βω,j , δω,j , ϵω,j) = Qω,1(αω,j , βω,j , δω,j , ϵω,j)

= Qω,2(αω,j , βω,j , δω,j , ϵω,j)

= 0

for all ω and j. Since Vk,l,m is the image under the projection to P26

of a complement
V ′
k,l,m ⊆ Ik,l,m

of finitely many sections from linear subspaces of (P1 × P1)k+l+m, it is
a quasi-projective variety. For a fixed point

ζ ∈ (P1 × P1)k+l+m,

the equations defining Ik,l,m show that the fiber over ζ of the projection
of Ik,l,m to (P1×P1)k+l+m is a linear subspace of P26 of codimension at
most 3(k+l+m) ≤ 24. Since the projection of V ′

k,l,m to (P1×P1)k+l+m

is Zariski dense, it follows that Vk,l,m is irreducible. By the construction
of Vk,l,m, Uk,l,m is very general in Vk,l,m. Thus, the closure of Uk,l,m

contains Vk′,l′,m′ for all (k′, l′,m′) ∈ N satisfying (k, l,m) < (k′, l′,m′).

The claim for (k, l,m) /∈ N is given by Proposition 2.9. �

3. Computing entropies on pure K3 surfaces. Fix S ∈ Uk,l,m

for some (k, l,m) ∈ N . It is a well-known fact, e.g., [5], that every
birational self-map on S extends to an automorphism of S. Therefore,
in particular, each τω, and hence, also f , defines an automorphism of S.
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3.1. Cohomological actions of involutions. We compute the ac-
tion of τ∗x on Pic(S); the actions of τ∗y and τ∗z are similar. Write

Bx(S) = {Cx,p1 , . . . , Cx,pk
}.

Proposition 3.1. Each [Cx,pj ] is fixed by τ∗x , as are Ey and Ez. For
each [Cy,p] ∈ B(S),

τ∗x [Cy,p] = Ez − [Cy,p].

For each [Cz,p] ∈ B(S),

τ∗x [Cz,p] = Ey − [Cz,p].

Finally,

τ∗xEx = −Ex + 2Ey + 2Ez − [Cx,p1 ]− · · · − [Cx,pk
].

Proof. Since τx = τ−1
x preserves every elliptic curve, which is a fiber

over either the y- or the z-axis, τ∗X must fix Ey and Ez. For Eω=α

containing a curve C parallel to an axis, Eω=α − C is an effective
divisor of bi-degree (1, 2) or (2, 1). It follows from Remark 2.5 that, in
fact, Eω=α −C is a prime divisor which is not parallel to any axis. For
each Cx,pj , write pj = (α, δ); since τx preserves both Ey=α and Ez=δ,
it must fix Cx,pj . For [Cy,p] ∈ B(S), write p = (α, δ); since τx preserves
Ez=α and does not preserve Cy,p, it must take Cy,p to Ez=α −Cy,p. It
follows similarly that τ∗x takes Cz,p to Ey=δ − Cz,p for [Cz,p] ∈ B(S).

With the action of τ∗x established for all elements of B(S) except Ex,
the conditions that τx is an involution and τ∗x preserves the intersection
form given by Mk,l,m force the formula given for τ∗xEx to hold. �

Proposition 3.1 shows that the action of f∗ in the basis B(S) is con-
stant on Uk,l,m and provides the necessary information for computation
of λ(f).

Lemma 3.2. If (k′, l′,m′) is a reordering of (k, l,m), then λ(f) is
constant on

Uk,l,m ∪ Uk′,l′,m′ .
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Proof. Fix S′ ∈ Uk′,l′,m′ . Some

g ∈ G := {τz ◦ τy ◦ τx, τz ◦ τx ◦ τy, τy ◦ τx ◦ τz,
τy ◦ τz ◦ τx, τx ◦ τz ◦ τy, τx ◦ τy ◦ τz}

has the property that the action of g∗ on Pic(S′) is essentially identical
to the action of f∗ on Pic(S). Since every element of G is conjugate,
by some element in ⟨τx, τy, τz⟩, to either f or f−1, the spectral radius
of f∗ on Pic(S′) is the same as that of f∗ on Pic(S). �

3.2. Proof of Theorem 1.3. By Proposition 3.1 and Lemma 3.2,
the action of f∗ on Pic(S) depends only upon the unordered type of S.
Table 1 provides the spectral radius, computed in Mathematica, of f∗

for all types of S, and it may be verified that λ(k, l,m) exhibits the
claimed behavior. �

4. Indeterminacy loci in families of pure K3 surface auto-
morphisms. Letting P26 parametrize all polynomials Q that are tri-
homogeneous of tri-degree (2, 2, 2),

S := {(Q, x, y, z) | Q(x0, x1, y0, y1, z0, z1) = 0}

is a subvariety of P26 × P1 × P1 × P1 whose general fibers over P26 are
K3 surfaces. Define a birational involution Fx on P26×P1×P1×P1 by

Fx : (Q, x, y, z) 7−→ (Q, [x0Qx,2 + x1Qx,1 : −x1Qx,2], y, z),

where each Qx,i is as above; thus, Fx preserves S and restricts to
τx on each fiber of S over P26. We investigate the indeterminacy
of Fx considered as a birational self-map on S. We can define and
understand Fy and Fz similarly, and thus, also study the indeterminacy
of F := Fz ◦ Fy ◦ Fx.

Since the birational self-map on P26 × P1 × P1 × P1, given by

(Q, x, y, z) 7−→ (Q, [−x0Qx,0 : x1Qx,0 + x0Qx,1], y, z)

agrees with Fx everywhere on S where both are defined, the indeter-
minacy of Fx on S is contained in

Q := {(Q, x, y, z) | Qx,2 = Qx,1 = Qx,0 = 0},

which is the union of all of the curves parallel to the x-axis contained
in the fibers of S over P26.
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Table 1. Spectral radius of f∗.

(k, l,m) λ(f) Min. poly. for λ(f)
(0, 0, 0) 17.944 . . . t2 − 18t+ 1
(1, 0, 0) 15.937 . . . t2 − 16t+ 1
(2, 0, 0) 13.928 . . . t2 − 14t+ 1
(3, 0, 0) 11.916 . . . t2 − 12t+ 1
(4, 0, 0) 9.898 . . . t2 − 10t+ 1
(5, 0, 0) 7.872 . . . t2 − 8t+ 1
(6, 0, 0) 5.828 . . . t2 − 6t+ 1
(1, 1, 0) 14.011 . . . t4 − 16t3 + 29t2 − 16t+ 1
(2, 1, 0) 12.113 . . . t4 − 14t3 + 24t2 − 14t+ 1
(3, 1, 0) 10.261 . . . t4 − 12t3 + 19t− 12t+ 1
(4, 1, 0) 8.487 . . . t4 − 10t3 + 14t− 10t+ 1
(5, 1, 0) 6.854 . . . t2 − 7t+ 1
(2, 2, 0) 10.375 . . . t4 − 12t3 + 18t2 − 12t+ 1
(3, 2, 0) 8.758 . . . t4 − 10t3 + 12t2 − 10t3 + 1
(4, 2, 0) 7.327 . . . t4 − 8t3 + 6t2 − 8t+ 1
(3, 3, 0) 7.471 . . . t4 − 8t3 + 5t2 − 8t+ 1
(1, 1, 1) 12.113 . . . t4 − 14t3 + 24t2 − 14t+ 1
(2, 1, 1) 10.261 . . . t4 − 12t3 + 19t− 12t+ 1
(3, 1, 1) 8.487 . . . t4 − 10t3 + 14t− 10t+ 1
(4, 1, 1) 6.854 . . . t2 − 7t+ 1
(5, 1, 1) 5.462 . . . t4 − 6t3 + 4t2 − 6t+ 1
(2, 2, 1) 8.487 . . . t4 − 10t3 + 14t− 10t+ 1
(3, 2, 1) 6.854 . . . t2 − 7t+ 1
(4, 2, 1) 5.462 . . . t4 − 6t3 + 4t2 − 6t+ 1
(3, 3, 1) 5.462 . . . t4 − 6t3 + 4t2 − 6t+ 1
(2, 2, 2) 6.678 . . . t4 − 8t3 + 10t2 − 8t+ 1
(3, 2, 2) 5.037 . . . t4 − 6t3 + 6t2 − 6t+ 1
(4, 2, 2) 3.732 . . . t2 − 4t+ 1
(3, 3, 2) 3.441 . . . t4 − 4t3 + 3t2 − 4t+ 1
(3, 3, 3) 1 t− 1

4.1. Indeterminacy over spaces of pure K3 surfaces. For j ∈
N0, let Uj denote the union of all of the spaces Uk,l,m with k = j.
Let πx denote the projection from

P26 × P1 × P1 × P1
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to
P26 × P1 × P1

along the x-axis, given by

πx : (Q, x, y, z) 7−→ (Q, y, z),

and let π denote the natural projection from P26 × P1 × P1 to P26.

For p ∈ Uk, the fiber of π over p intersects πx(Q) in exactly k points
(since the pure K3 surface in S over p contains exactly k curves parallel
to the x-axis). Therefore, π changes πx(Q) into a k-fold cover over a
subset U ′

k ⊆ Uk which is general in Uk. This cover extends to a k-fold
cover on a general subset of each Uj with j > k, and in fact, gives
part of a j-fold cover on a (possibly further restricted) general subset
of each Uj .

Proposition 4.1. Fix k0 ∈ N0, and consider Fx as a birational self-
map on the intersection of S with the closure of Uk0 × P1 × P1 × P1.
Then:

(a) the indeterminacy locus of Fx misses every fiber of π ◦ πx over
U ′
k0
, and

(b) the indeterminacy locus of Fx intersects a fiber of π ◦ πx along
precisely k − k0 curves parallel to the x-axis whenever the fiber is over
a point in Uk with k > k0 to which the k0-fold cover of U ′

k0
by πx(Q)

extends.

Proof. For any particular K3 surface in S containing some Cx,(y′,z′),
Baragar [2] explicitly showed how to extend the involution τx to the
curve: assuming y′1 ̸= 0 and z′1 ̸= 0 (and otherwise proceeding similarly
with appropriate modifications), set

ζ = [(z0z
′
1 − z1z

′
0)y1y

′
1 : (y0y

′
1 − y1y

′
0)z1z

′
1]

such that

z = [ζ0z
′
1(y0y

′
1 − y1y

′
0) + ζ1y1y

′
1z

′
0 : ζ1y1y

′
1z

′
1].

Each Qx,i(y, z) may be written as a polynomial in y and ζ that vanishes
along {y = y′}, and thus, the coordinate polynomials defining τx in
terms of x, y and ζ can be reduced by the common factor (y0y

′
1−y1y′0);

in these terms, the extension of τx to Cx,(y′,z′) is apparent.
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Now consider a neighborhood

N ⊆ πx(Q)

over ∪
k≥k0

Uk,

on which π is injective. Taking (y′, z′) ∈ N , the procedure involving ζ
shows that Fx extends to all of the curves Cx,(y′,z′) in π−1

x (N). Thus,
Fx extends to every curve parallel to the x-axis whose image under
πx is in the k0-fold cover Uk0 by πx(Q) or its extension to a general
subset V of ∪k>k0Uk.

For
p ∈ Uk ∩ V ,

there are exactly k − k0 curves parallel to the x-axis in

(π ◦ πx)−1({p})

that are not accounted for by the preceding construction; now, let
C = Cx,(y′,z′) denote one such curve. For every

p′ ∈ C \ {([0 : 1], y′, z′), ([1 : 0], y′, z′)},

there is a neighborhood N ⊆ S containing p′ such that {Qx,0} and
{Qx,2} have an empty intersection in N over Uk0 ; it follows that their
intersection has codimension 2 in N over ∪k≥k0Uk, while individually
each set has codimension 1. Thus, there is a path in N meeting p′ along
which Qx,0 = 0 and Qx,2 ̸= 0, and another such path along which
the opposite holds. Then, the earlier observation that Fx restricted
to S may be written in two distinct ways shows that it cannot extend
to C. �

Remark 4.2. The fact that F has some indeterminacy over each point
in Uk with k > k0 in Proposition 4.1 is crucial to the result that the
entropy of f changes at these points. It is well understood that an
automorphism preserving a non-singular fibration by complex surfaces
cannot exhibit a change in entropy on any fiber.

4.2. Indeterminacy over one-parameter families. Now suppose
thatW ⊆ P26 is a smooth, irreducible curve having infinite intersection



LOWER SEMI-CONTINUITY OF ENTROPY 2347

with some Uk0 , and consider Fx as a birational self-map on the three-
dimensional intersection of S with

W × P1 × P1 × P1.

Thus, Fx has no indeterminacy over Uk0 and has indeterminacy pre-
cisely along finitely many pairwise disjoint curves parallel to the x-axis
over any point inW ∩Uk with k > k0. It follows from a result of Kollár,
[10, Theorem 11] that, locally, Fx must be a composition of flops in a
neighborhood of any one of these curves.

Proposition 4.3. Suppose that C is a curve in the indeterminacy locus
of Fx over a point in W ∩Uk with k > k0. Then, Fx is a single flop in
a neighborhood of C.

Proof. From [10, Definitions 2, 3], to prove that a neighborhood
of C admits a single flop to itself, it is sufficient to find line bundles L1

and L2 on a neighborhood of C with the following properties:

(a) L1|C and L2|C are both ample; and
(b) L1 is isomorphic to −L2 after C is removed from the neighbor-

hood.

Assuming that (a) and (b) are satisfied, then there is exactly one flop
from a neighborhood of C to itself. Therefore, Fx locally must be this
flop (composed with an isomorphism).

Let Lx denote the line bundle on S whose restriction to every K3
surface in S is Ex, and let Ly and Lz be similar; then take these line
bundles to be their restrictions to a neighborhood of C over W . Set

L1 = Lx − 2Ly − 2Lz

and
L2 = F ∗

xLx.

Then, L1 clearly restricts to O(1) on C, and it follows from Proposi-
tion 3.1 that L2 does the same. Proposition 3.1 shows, moreover, that
L2 restricts to

−Lx + 2Ly + 2Lz

on a suitable neighborhood of C with C removed. �
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