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SOME VARIATIONS OF MULTIPLE ZETA VALUES

CHAN-LIANG CHUNG AND MINKING EIE

ABSTRACT. In this paper, we build some variations of
multiple zeta values and investigate their relations. Among
other things, we prove that

D0 kTR ko (ke —p)
|a|=m—+r
1<k <ko <<k

can be evaluated as a linear combination of {(r),{(r — 1),
., ¢(r—p+1) for r > p+ 1. In particular, for r > 2

Z 4

Do Rk (ke = 1) = (),
|a|=m+r
1<k <ko<---<ky

which may be compared to the well-known sum formula. A
similar discussion leads to the twisted sum formula.

1. Introduction. A multiple zeta value or r-fold Fuler sum is de-
fined [3, 6, 7] by

C(CYl,OéQ,...,O{T): Z k;alk;ag"'kr_QT,

1<k1<ko< <k,

with positive integers ai,as9,...,q,, and a, > 2 for the sake of
convergence. The number r and weight |a| = a1 + a2 + -+ +
are the depth and the weight of {(ay,as, ..., «,), respectively.

Due to Kontsevich [5], multiple zeta values can be represented
by iterated integrals or Drinfel’d integrals over simplices of weight
dimension:

C(Oq,()é2,...7ar): QlQQQ\a\
Ela
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with Ejq : 0 <t <ty <- - <{iq <1and

N {ﬁ_t;j ifj=1l,a1+1a1+as+1,....,014 +ap_1+1;
j:

dt; .
- otherwise.
J

Now, if we replace some of dt; /(1 —t;), respectively, dt;/t; by dt;/(1—
t;)PitL, respectively, dt;/ tgj“, the resulting iterated integral may still
converge but represents something else. For example,

dty  dto dts dts dt, dty dty dty
T e o 8= —
g (L—t) b t3 by pl—til—tal—t; 13

and

/ dty, dty ditsdty
E

nih 7 =)

On the other hand, both integrals

/ dty  dty / dty  dty
T and v
g, (1—11)2 1 g, 1—t1 13

are divergent, and they fail to represent any multiple zeta value.

The zeta value ((2) can be represented by the double integral

/ dtydts
B, (1—t1)ts’

However, there is another integral representation of ((2), represented

as
/ dty  dity dts
B, (1—1t1)2 to t3

In general, for positive integers p and r with » > p 4 1, the integral

r+1

/ p' dtl dtj
By (L= )P j=2 t
can be evaluated as

Z(k4+1)(k+2)---(k+p—1
Z( )( k;2+1( p—1)

k=1

Thus, it is a linear combination of single zeta values.
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In order to state our conclusion more precisely, we need some
notation. For a positive integer n, we write A F n to denote that
A = (A, A2,..., ) is a partition of n, i.e., 1 < Ap < Ag < --- < )y
and [A| = A+ X2+ - -+ = n. Also, we let {a}™ be the m repetitions
of a. When A = ({1}, {2}™=, ... {k}™*), we let

MU = 1m m1'2m2m2 km’“mk'

Main Theorem A. For a pair of positive integers p,r with r > p+ 1
and nonnegative integers m,n, we have

Pl kMR ko (ke = p) Ty gy by,

|a|=m—+r AFn
1<k1<ka<---<k,

n+r—1 > 1 ( ) ()
(" X SR
k=1 c+d=m
0<c<p—1
( > uxtHy Hy - Hy, )
Ahd
where the summation ranges over all partitions X = (A1, A2,...,Ag)

of n and all partitions X = (N[, N, ..., Ayr) of d, and

kr—p 1 D 1
hj = Z Ik J Z 1Zi
0=k =

and

When p =1, fr1(a) =1, we have the following.
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Corollary 1.1. For nonnegative integers m,n,r with r > 2, we have

Z ky®hy @2k (kb — 1)1 Z px hog o, e b,

|la|=m+r AFn

1<k1 <ka<--<ky
n+r—1
= ( n )C(n+r),

where the summation ranges over all partitions X = (A1, A,...,Ag)
of n and h; = 2,7 N (1/89).

The special case n = 0 gives an analogue of the sum formula

(1.1) D kR ko (ke — 1) = ().
P

On the other hand, the case p = 2, n = 0, gives the following.

Corollary 1.2. For nonnegative integers m,r with r > 3, we have

(1.2) Do Rk ko (k= 2) 7
|a|=m—+r
1<ki1<ko< <k,

= (1= ot )60 = D+ g0

Remark 1.3. Formulae (1.1) and (1.2) appearing in Corollaries 1.1
and 1.2 may be compared with the well-known sum formula [9, 10]

SRk R = 4 1),

|a|=m~+r
1<k <ko< <k,

However, they are much more complicated. In the case where r = 3
and m = 2, identity (1.1) appears to be

[C(1,4) +¢(2,3) +¢(3,2)] — [C(1,1,3) +¢(1,2,2) +((2,1,2)]
+ [C(la 3) + <(27 2)] - C(l, 17 2

It is equivalent to ¢(1,2) = ¢{(3).

\/
Jr
~
—
“)—‘
B
=
I
~
~—~
w
SN—
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The outline of this paper is as follows. Section 2 introduces multiple
zeta values with parameters. Specifically, as a starting point, we will
give a simple proof of the sum formula of multiple zeta values. Section 3
presents a useful recursive relation between complete homogeneous
symmetry functions and power sum symmetric functions. Section 4
gives a proof of Main Theorem A. In Section 5, we first raise ¢; to a
power g to consider the integral

/ <1 —tr+1>“ ptldt, T di;
By \ 1=t (1 —tq)ptl = tj

Then, a similar discussion leads to a twisted sum formula.

Main Theorem B. Suppose that p,q,r are nonnegative integers with
r > p+ 1. Then the following hold.

(1) Let 0 < g < p—1. Then, for any nonnegative integer n,

q

plgt Yo gy T —p i)

|la|=n+r i=0
1<l <o <<l

i k+q Z ( ) fk,p,q( )
7" |
= (k+q)"T'(k) il c!
0<c<p—g-1
+ ZNKlHMsz o Hy,.
Akd

Here, the summation ranges over all of the partition A = (A1, Ag, ...

>‘g) Of d;

p—1 p
. 1
fepqla) = I | (k+a+j) and H;= E 7
Jj=q+1 (=1

(2) Let ¢ > p— 1. Then, for any nonnegative integer n,

q

plat Y e [ —p+i)

a|=n+r =0
1<0y <l < <Ly
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Z k+q7’+1p1“ Z Zﬂxhxhx'--h/

c+d nAkc

Z YHy, Hy, - Hy,.
A

Here, the summation ranges over all of the partition X' = (N, X}, ...,
X)), respectively, X = (A1, A2, ..., Ag), of ¢, respectively, d, and

g
G| "1
= g G0y respectively, H; = ;:1 ik

2. Multiple zeta values with parameters. Multiple zeta values
with parameters [4] were first introduced in order to simplify the proof
of the sum formula as well as of the restricted sum formula.

The zeta value ¢(2) is the simplest multiple zeta value which can be
represented by the double integral

/ dty  dty
g, (1—t1) to

1—t2 a til b
1—-t to

with @ > —1, b > —1 to the integral, it becomes

/ (1—152)“(151)” dtdts
B, \1—t1 ta ) (1 —t1)ts’

and it can be evaluated as

If we attach the factor

> 1
2 (k+a)(k + b)

k=1
in light of the expansion

oo

1 _ I'(k+a) ~1
A=t kZ:l @y o <t
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Therefore, for a,b > —1, we have the identity

/ <1—t2>a(t1>b dtydts _i 1
B \L=t1) \t2) (1—ti)ta = (k+a)(k+0b)
Now, applying the differential operator
(i) (2
mln! da™ abn

to both sides of the identity and then set a = b = 0, we obtain that

1 1-— tl m t2 " dtldtQ
1 = 1 = _ = 2).
m'n‘ /E2 (Og 1—t2> <Og t1> (1—t1)t2 C(m+n+ )

This is precisely the well-known sum formula [9, 10] since the integral
represents the sum of multiple zeta values [6, 7, 8]

Z C(ala~'~vam7am+l+]—)~

|a|=m+n+1
For a multiple zeta value (a1, aq,...,q,) with iterated integral
representation
/9192--'9\047
Elal

we can add the factors

1 1 —#)q b t1 \° d
— t
(1 _ t])a’ ( 1 _ tl ) t|a| or ( ‘CX‘)

with a,b, c,d > —1 to the iterated integral to form multiple zeta values
with various parameters. All of these iterated integrals with parameters
may be evaluated like the standard multiple zeta values. Here, we eval-
uate the integral

a r4+1
Goa b):/ (1—tr+1> (tl )b pldt, Yy dt;
PR B \ 1 =1 trp1) (L=t)PHt 25 1
and its dual

&Vl b)_/ (1—u,«+1>b< Uy )(H du >p!du,+1
P I Er+1 ]_—ul ur+1 ].—uj Ufi% ~.

j=1




2114 CHAN-LIANG CHUNG AND MINKING EIE

Proposition 2.1. With the notation fized as above, we then have

> 1 Tk+p+a)l(a+1T(p+1)
=3
= (k+b F'k+1+a)l'(p+a+1)

Proof. As a first step, expand 1/(1 —t1)PTet! as

o0

I'(k+p+a) 1

ool <1
L(k)L(p+a+1)* 1]

k=1
so that
k+b
t diy figi ii Ph+pta) G
(1—typratt Lty TR +atl) (k+b)r
0<t1<to<:<tr<tri1 j=2 k=1

In the next step, which is integration with respect to ¢,41, the
integral is

1
/ (1= teg1) dt g,
0

which is a S-integral with the value
L(k)I'a+1)
F'k+1+a)

Thus, our assertion follows. O
In the same manner, we have the following.

Proposition 2.2. With the notation as above, we then have

, B 1
Gad= >, G T Tak D

1<k <ko< <k,
pT'(ky + 0) (k. —p+ 1)
C(k)C(k, —p+b+1)

Combining the above propositions yields the following.

Proposition 2.3. For a pair of positive integers p,r with r > p + 1,
we have, for real numbers a,b with a,b > —1,
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i 1 T(k+pt+al(atl)
— (k+br T

— (k+14+a)l(p+a+1)

1
= Z (k1 +a)(ks +a) - (k- + a)(k, — p)

1<ki<ko< <k,
Dl +0)T(k, —p +1)
T(k))T(k, —p+b+1)

3. The digamma function and preliminaries. The digamma
function [1] is defined as
d IV(x)

U(a) = - logT(x) =

for £ > 0. The functional equation of the gamma function
Iz +1) =2al(x)
then implies that
Y +1) = 1+ ),
and hence, for any positive integer n,

1
j+z

Y(r+n)= i + ¢(z).
7=0

On the other hand, v (z) comes from the Kronecker limit formula
for the Hurwitz zeta function ((s;x):

1
s—1

Jlim [C(S;m) - } = —1(x).

It follows that

Z(M_g‘+x) = ¥(@) = (1) = ¥(@) +7,

Jj=0

with ~ the Euler constant defined by

. 1 1
vy=lim (1+-+---4+— —logn .
2 n

n— oo
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Therefore,

Ly +4] = (2:),

and, for any positive integer n,
dn

T V@) 9] = (1) nll(n + ).

Now, we shall evaluate the differentiation

(=)™ d» [F(kl +x)F(k2)}

0, = _—
" n!  dam |T(k)T(ke + x)

z=0

for positive integers k1 and ko with k; < ko.

Proposition 3.1. For positive integers k1 and ko with k1 < ko, we

then have )
nbn =Y 0;hn_j,
=0
with
ko—1 1
hpm = —.
m Z gm
1=k,
Proof. Let
I'(k I'(k
F(kl)r(kig + l‘)
Then,

log g(x) = logT'(k1 + x) + logT'(ks) — logI'(k1) — log T'(ko + ),
and hence,
g'(z) = —g(@)[h(kz + 2) — ¥(kr + 2)] = —g(2) 1 (2),

with
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Therefore, for n > 1,

(n) dn—l
n —
9 (@) = L) (2)]
n—1)!
= Y e,
prq=n-1 DT
n—1)!
= Y B De) . (gt o),
pq:
pF+q=n—1
and hence,
n—1
n9n = Z ephq+1 = Z Hjhn,j. O
p+q=n—1 j=0
Let ® = (z1,22,...,2,) be a set of indeterminates. The complete

homogeneous symmetric functions T, are defined by

Ty =1, T, = g TiyTip T, 1 <7 <M
1<i; <62 < <ir<n

On the other hand, the power sum symmetric functions S, are
defined by

n

So=1; ST:fo, r>1;
i=1
Sx =950, -8, M A=(A1, A2, 2).

The next proposition will be used to evaluate 6,,.

Proposition 3.2 ([11, 12]). For a positive integer m, the complete
homogeneous symmetric and the power sum symmetric functions satisfy
the recursive relation:

me = i Tm_ij.
j=1

Moreover, we can solve the recursive relation as

Tm == Z ,u,;ls)\.

AFm
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Corollary 3.3. For positive integers k1 and ko with k1 < ks, let

(1)"d"{F(k1+:c)F(k2)}
n!  dzn [ T(k)D (ke + )

n =

1:0'
Then,

On = px hahin, -,
Abn

with

ko—1 1
h =Y R
l=ky

4. Proof of Main Theorem A. Now, we are ready to prove our
main theorem.

Proof of Main Theorem A. We begin with the iterated integral

+1
/ pldty T dty
B (1= t)PF j=2 2

1—t,1 \“( & ’
1—-# try1

with a,b > —1 to the iterated integral to form the following integral:

Q ( b) / (]. — tr+1>a( tl )b p' dtl s dtj
a,b) = —.
v Eria L=t try1 (1 - t1>p+1 j= tj

2

Attach the factor

From Proposition 2.1, we have

1 I'k+p+a)l(a+1)'(p+1)

Gp(a,b)ZI;(k+b)r' P(k+1+a)l(p+a+1)

oo

Under the change of variables
ulzl_t’r+17 u2:1_t’r7"'7u7‘+1:1_t17
the integral is transformed into the following integral:

GV( ) / (1—ur+1>b< >a<ﬁ du )p!dur+1
a,b) = - U Upy 1 )
p Eyin 1— Ul 1— Uj uf,]:

Jj=1




SOME VARIATIONS OF MULTIPLE ZETA VALUES 2119

From Proposition 2.2, we have

v _ 1
Gad= >, G Tak D

1<ki<ko<---<k,
o pT'(ky + 0) (k. —p+ 1)
C(k)C(k, —p+b+1)

Of course, we have Gp(a,b) = Gy (a,b) for a,b > —1. Therefore, for
nonnegative integers m and n,

(_1)m+n am 8771

mint \aam )\ g ) @0|
_ =™ om0 v
= it \gam )\ ggn ) Cr(@:t)

In the expression of G,(a,b), the quotient

a=b=0

T(k+p+a) , B
Thrita) _E(k+j+a) = fep(a)

is a polynomial in a of degree p — 1. This yields

o () (2 ) e

n4r—1Y) — 1
_< n )]Cz_:l(k+b)7l+r

(=™ o™ L@+ l(p+1)
% [f’“”’(a) C(a+p+1)

m!  da™

)

and, in light of Corollary 3.3,

(_1)m+n am ﬁ
mint \aam )\ g )G @|

-1 0 1 —1)¢ R
(S e X Sho

ct+d=m
0<c<p—-1

x ( D> iyt Hy H, "'Hqu)’

A'Hd
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with

On the other hand,

St () (g )G e
- | |Z (ky +a) = (kg + )2 - (ky + @)~ (ky — p)
al=m+r

1<ki<ko< <k,

X

(=)™ o {p!l“(kl + 0k, —p+1)
n! obr | T(k))T(k, —p+b+1) |’

and hence, when restricted to a = b = 0, the quotient is

Pl R Rk (ke =)Dy ok, e,
|a|=m—+r AFn
1<ky<kp<---<k,

with
This proves our assertion.
Here, we consider another example with (({1}771,2) expressed as
dtydty, (Y dt; \dt
m [ ()T
Ero (L= 11)%02 \ g 1 =15/ g

instead of the usual iterated integral representation

/ (H dt; )dtr+1
ET+1 _]:1 1 - tj tT+1 .
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Proposition 4.1. For nonnegative integers n and r with r > 2, we
have

Z alC(ala"'aar—l7ar+1)

|a|=n+r
1 -1
= Z Tiz:m\ ha by, -+ by,
1<01 <l tila(l2 — 1) AFn ’
where
L1y
P = D o
=0,

Proof. Attach the factor

()

tr+2

to the integral representation of ¢({1}"~!,2) as given in (4.1). This
leads to the identity

a r+1
/ ( t ) dtydts <1i[ dt; )dtﬂrg
Bops \trp2) (1 —t1)2t 1—t; ) trio

Jj=3

_ kl
n Z (k1 +a)2(ky+a) - (k. +a)k,

1<ki <ko<---<ky
With the change of variables
Uy =1—1tr49, Ug =1 —tri1,. ., Upp1 = 1 — 19, Upgpo = 1 — 11,
the integral is transformed into the integral

/ (1_UT+2>G duq (ﬁduj> dup1duy 4o
JoR 1—wu 1—uy -5 U (1- 117«_~_1)1L%_~_27

J

which can be evaluated as

1 F(fl + a)F(Ez)
1§221;zg (ils(l = 1) T()0 (6 +a)’
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Therefore, we conclude that

k1
1§k1<§<--~<k7- (k1 +a)?(ka+a)- - (k. +a)k,
3 1 (61 + a)T(4s)

Cila(ly — 1) T()T(ly +a)

1< <l

Applying the differential operator

(-1 "
n! da"

to both sides of the above identity and then setting a = 0, we obtain

our assertion. O

Example 4.2. In the case r = 3, n = 2, the corresponding identity
from Proposition 4.1 is

€(3,1,2) +¢(2,1,3) +¢(2,2,2) = ((4,2) +((3,3),
which can be numerically verified.

We use a general theorem concerning weighted sums of multiple
zeta values. The simplest multiple zeta value of height 2 is of the form
C({1}P=1 2, {1}971 2) with p,q¢ > 1, and the usual Drinfel’d integral
representation is given by

C{1yrt 2, {13 2)
+q+1
:/ <ﬁdtj>dtp+1(pﬁ dtk>dtp+q+2
Byprare \jo1 170/ et \y 20y Lt/ tpgr

We attach the factor (t1/tp+q+2)® with @ > —1 to consider the
integral

+q+1
o, (o[l e )t
o Epirqgt2 tp+Q+2 ]le_t] tp""l k= 1_tk tp+Q+2 7

p+2

which can be evaluated as
q

Y. Ik +a [k +a)7 kL

1§k}1<k2<"'<kp+q Jj=1 1=0
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Applying the differential operator ((—1)"/n!) (d™/da™) and then setting
a = 0, we have

g apC(o, g, ..oy Qprg1, Qprq + 1).
|e|=p+g+n+1

Letting » = p + q¢ > 2, the above can be rewritten as

Z Opr(Oéla 02y Op—1, Oy + 1)
|a|=n+r+1

forp=1,2,...,r—1.
On the other hand, the dual of the integral I (p, g; a) is

L —tpyge2)”
R = [ (20
Epta+2 U1

L _du ’ﬁ@ dugs2 Hﬁﬂdﬂ
1—u LU up )’

1-wu
i= T2 N =g+3

which can be evaluated as

1 D(¢; +a)(fs + 1
3 ( ) )

1<t <Ly ot T()T(ly +a+1)

Hence, applying the differential operator ((—1)™/n!) (d™/da™) and then
setting a = 0, we get

1 oy =
> g 2 g ol

1<y <ty 1 AFn
or

S S ik

gt Lptl IONRLSTO PRRR DV

1<t <ty 1 2 Arn

with
¢
=S
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We conclude for 1 < p < r —1 that

Z apClon, g, ... aro, ar + 1)
|a|=n+r+1

1 ~
= D e 2 P,

1<81 <l AFn

In addition, we have the following theorem.

Theorem 4.3. For a pair of nonnegative integers n,r with r > 2, we
have

Z OKTC(Oél,...7aT,1,OéT+1)

|la|=n+r
=C(n+r+1)+ Z Zu (hay - ha, = hay -+ ha,),
1§£1<42 2 Akn
where
_ ZQ 1 fg 1
=Y e b= 3
2251 P zl

Proof. For the positive integer p with 1 < p < r and real number
a > —1, we consider the integral

i\ 1 odt; \ dtppidtygo
Iz(p,r;a):/ (t ) =, <H1 jt) tr+tr+ :
E, 42 r+2 - - r+1br42

which can be evaluated as

Z kp — kp—1
1<k1 <ks<--- <k, (k1 +a)- - (kr—1 +a)(kr + a)?ky

with kg = 0. Also, its dual is given by

a r4+2
L (p,r;a) = / (1 — ur+2> L. durduy H %,
E,io 1-— Ul Ur—p+3 (1 — ul)(l — ’U,g) = U

3
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which can be evaluated as
1 T+ )T ()
OOP (= 1) T()T (b +a)

1<l <2

Summing over all p with 1 < p < r, we obtain

T 1
172::1]2(17,7‘;0/) = Z (kl+a')"'(k7‘—1+a)(k7-—|—a)2

1<k <ko <<k,
and

= Y (pura) = ! L]0 + )l (£s)
I;Iz(p,r,a)* Z {W&%}WW.

1<t1<ls

This leads to the identity

1
2 (k1 +a)--- (kr—1 + a)(ky + a)?

1<k <ko<---<kr
¥ { 11 ]r(41+a)r(zz)
[1(62—1)T 6165 I‘(El)l"(fg—&-a)

1<t <l

Applying the differential operator ((—1)"/n!) (d"/da™) to both sides of
the above identity and then setting a = 0 such that corresponding to
the left hand side is the weighted sum

Z a’l‘C(ala"'?a’l‘flaa’r‘—i_l)'
|a|=n-+r
Corresponding to the right hand side is the difference

1 1 1 1
61(6271)3&”/@\ PRV g NG Koy exg exg g

1<01 <0 1<0,<ls ~ 2 AFn

According to /1 = ¥5 — 1 or {1 < £5 — 1, the first sum is rewritten as

1 =
e 30 e S T,
1<0; <l AFn

Lo

~ 1
where h,,, = Z o O
=0,
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5. Twisted sum formulae. For nonnegative integers p,q and r
with 7 > p+ 1 and real number ¢ > —1, consider the integral with
parameter a given by

/ (1 - t,H)“ pitddt, T dy
By \ 1=t (1 —tq)ptl = tj
It can be evaluated as

= T(k+q) [ I'(k+p+a) ]F(p-l—l)I‘(a-i—l)
(k+q)T(k) | T(k+q+a+1)] T(p+a+1l) °

k=1

In addition, its dual is given by

/ < Uy >a ( ﬁ du; >p!(1 — Upy1)duy 1
Erg1 \Ur+l ok 1—uy ufﬁ

and can be evaluated as

q

plg! Z (61 +a)(lo+a)--- (L +a)] ! H(ﬁr —p+i)™t

1<ty <lp <o <Ly =0

The above consideration then leads to the following conclusion.

Proposition 5.1. For nonnegative integers p,q and r with r > p+1
and real number a > —1, we have

o0

Z I'(k+q) [ I'(k+p+a) ]F(p+1)F(a+1)
(k+qrT(k) [T'(k+qg+a+1)] Tp+a+1)

=plgt Y ((h+a)lata) G +a] [ —p+i)

1<0, <ly << by i=0

=1

Next, we differentiate both sides of the formula in Proposition 5.1
with respect to the parameter a and give a proof of our Main Theo-
rem B.

Proof of Main Theorem B. When 0 < ¢ < p — 1, the quotient

p—1

H (k+j+a):= fepgqla)

Jj=q+1

I'k+p+a) _
Tk+q+a+1)
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is a polynomial function in a of degree p — g — 1 so that the identity is
rewritten as
= I'(k+9) L(p+1Dl(a+1)
Z ) fkm q(a)
(k4+q)rT'(k 'p+a+1)

1
q

=plg Y [+ a)lata)-(beta) [ —p+i)!

1<l <la <o <Ly =0

After both sides are differentiated n times with respect to a and setting
a = 0, we obtain the first part of the conclusion.
When ¢ > p — 1, the quotient
I'(k+p+a)
T(k+q+a+l)

is no longer a polynomial function. Instead, it is a rational function
in a. The identity is rewritten as

= TI'(k+p) L(k+p+a)l(k+q+1)]T(p+ 1) (a+1)
> @ oot | |

— (k+ )" L(k) [P(E+p)T(k+q+a+1)] Tlp+atl)

q

=plgd > (it a)lata)(b+a) [ —p+i)"

1< <l <+ <Ey 1=0

After both sides are differentiated n times with respect to a and setting
a = 0, we obtain the second part of the conclusion. O

Some particular cases are of special interest and are worth mention-
ing here. When ¢ = p — 1, the polynomial function fj ,,(a) = 1, we
then have the following.

Corollary 5.2. For positive integers p and r with r > p+ 1, we have

p
plp—1! > g [ -7

|la|=n+r j=1
1<l <lop<---<ly
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P
1
where H; = Z Zh In particular, when p = 1,2,3, the corresponding
(=1
identities are:
1) D g (L = 1) T = () forr > 2.

|a|=n+r
1<l <l <<l

(2)

Z E;C“E;OQ .. KT_OCT[(ZT - 1)(£7‘ - 2)]_1
|a|=n+r
1<l <l <<l

— 1= 1= ¢ (1 - g ) for 23

(3)

Z El—alfz—a’z .. gr—%[(ér — 1)(&« - 2)(&" - 3)]_1
1§£‘1Q<‘ZZJ~FT<ZT

1

— 4l = 2) =366 = 1)+ 2601 -

1

1
2n+3n+1> forr > 4.

When p = ¢, we have

F'k+p+a) 1
Fk+p+a+1) k+p+a’
such that )
-1
> g ooy, =

A'Fe

This leads to the next corollary.

Corollary 5.3. For a pair of nonnegative integers p,r withr > p+1,
we have, for any nonnegative integer n,

N2 D Gl [ (Ll — 1) (4 — p)] T
|a|=n—+r
1< <l <<y
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> T'(k+p) 1 1
’; (k+p) T (k) Z (k+p)° Z“A At A2 Ag

ct+d=n Akd
Here,
N
=1
In particular, when p = 0,1,2, the corresponding identities are as
follows.

(1) (The sum formula)

Z 0 T = C(n+r+ 1) forr > 1.

|a|=n+r
1<t <l < <l

(2)
Z L e R e [ (A 1)]_1
<e\a\é:n+7“ ’
1<0 <o <<l =) =Cn+r+1) forr=>2.
(3)
Z [1—a1€2—’12 o K’r_ar [ET(KT — 1)(€r - 2)]_1
|la|=n+r

1<l <Up <<y

1 1
= 5C(r— 1)(1 — 2"“)1

—|—C(r)<—1+2n+2>+;g(n+r+l) forr > 3.

Special case p = 0 of Main Theorem B provides the evaluation of
the sum:

> (L + 1) (b + )]

|a|=n+r
1<l <o <<l
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Corollary 5.4. For a pair of nonnegative integers q,r with v > 1, we
have, for any nonnegative integer n,

q! Z el—alggaz ...g;ar[ér(gT_Fl)...(£r+q)]71

|a|=n+r
1<l <l <<y

= 1
E —_ E Lhy,h -h
)l [ONEONY OV Ags
k=1 k+q AbFn

where

Lo
:Z(kwﬂ

£=0

Example 5.5. Applying ¢ = 1,2 to Corollary 5.4, the corresponding
identities are as follows:

(1)
P e e e R
|a|=n+r
1<l <l <<l oo 1
= ]_ —_ T .
((n+r+1) C(n+r)+k§::1kn(k+1)r
(2)
S o (b 1) (G +2)) 7
|a|=n+r

1<l <lo<---<ly

:i[{(n—f—r—l)—3((n+r)+2§(n+r+1)

oo o0

k+1 k
) Y L —
Zk"k+2 ;(/Hl)n(kﬂ)r
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