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COMPUTING QUADRATIC FUNCTION FIELDS WITH
HIGH 3-RANK VIA CUBIC FIELD TABULATION

P. ROZENHART, M.J. JACOBSON, JR. AND R. SCHEIDLER

ABSTRACT. In this paper, we present extensive numer-
ical data on quadratic function fields with non-zero 3-rank.
We use a function field adaptation of a method due to Be-
labas for finding quadratic number fields of high 3-rank. Our
algorithm relies on previous work for tabulating cubic func-
tion fields of bounded discriminant [28] but includes a sig-
nificant novel improvement when the discriminants are imag-
inary. We provide numerical data for discriminant degree up
to 11 over the finite fields F5,F7,F11 and F13. In addition
to presenting new examples of fields of minimal discriminant
degree with a given 3-rank, we compare our data with a va-
riety of heuristics on the density of such fields with a given
3-rank, which in most cases supports their validity.

1. Introduction. Let D be a square-free non-constant polynomial
in Fq[t] and Cl (D) the ideal class group of the quadratic function field

Fq(t,
√
D). For any prime ℓ, the number rℓ(D), which denotes the

number of cyclic factors in the ℓ-Sylow subgroup of Cl (D), is called
the ℓ-rank of the group Cl (D). In short, we say that the quadratic

function field Fq(t,
√
D) has ℓ-rank r if Cl (D) has ℓ-rank equal to r.

In this paper, we present extensive numerical data on quadratic func-
tion fields of discriminant D with bounded degree (where −3D is imag-
inary or unusual) and non-zero 3-rank. Our algorithm is an adaptation
of our previous work [28] for tabulating cubic function fields of bounded
discriminant degree and is inspired by Belabas’ algorithm [5] for tab-
ulating quadratic number fields of bounded discriminant with 3-rank
greater than zero. The rapid tabulation of all cubic function fields with
bounded discriminant degree is key to this approach; alternative meth-
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ods such as those of [19, 26, 33] that find all non-isomorphic cubic
function fields of a single given discriminant are less efficient for this
purpose (because they require the computation of the ideal class group
of the associated quadratic function field) and are thus not suitable.

While the basic ideas of this paper stem from the first author’s
doctoral dissertation [27, Chapter 7], written under the supervision
of the last two authors, a large portion of the material herein is new
and represents a significant improvement to [27]. Our contributions
are as follows. First, our basic algorithm (Algorithm 3.1) functions in
much the same way as the tabulation algorithm from [27] (appearing in
[28]), essentially looping over the four possible coefficients of associated
binary cubic forms. In the imaginary case, we improve on this method
by making use of the Fq(t)-automorphisms that send t to t + α with
α ∈ F∗

q ; this new improvement is unique to the function field setting,
and our analysis shows that it results in a speed up by a factor of
approximately q in most cases over the basic version of our algorithm.
These improvements allowed us to push our computations beyond those
in [27] and also explain why the number of fields with a given positive
3-rank have certain divisibility properties observed in [27].

Our 3-rank algorithm, like Belabas’s [5], is exhaustive in the sense
that all quadratic discriminants of any fixed degree that define qua-
dratic function fields with positive 3-rank are produced by the method.
As a consequence, the resulting algorithm also produces minimum dis-
criminant sizes for any given positive 3-rank value. This is in contrast
to [4, 6], which present methods for finding quadratic function fields
with high 3-rank whose discriminants are small, but not necessarily
minimal. Our second contribution is the identification of these mini-
mal discriminant sizes for a given positive 3-rank value r, rather than
record 3-rank values.

Our third contribution is that, since our method is exhaustive, we
can generate data on the distribution of 3-rank values up to a fixed
bound B on deg(D). Cohen and Lenstra [8, 9] gave heuristics on the
behavior of class groups of quadratic number fields. For example, they
provided heuristic estimates for the probability that the ℓ-rank of a
given class group is equal to r for a given prime ℓ and non-negative
integer r. None of these heuristics are proved, but there is a large
amount of numerical evidence supporting their validity, as seen, for
example, in [20, 31]. These heuristics imply that the ideal class group
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of a quadratic number field is expected to have low ℓ-rank for any
prime ℓ. Consequently, there is a large body of literature devoted to
the construction of families of quadratic number fields of large ℓ-rank,
with 3-ranks of particular interest.

The function field analogue of the Cohen-Lenstra heuristics, the
Friedman-Washington heuristics [14], attempt to explain statistical
observations about divisor class groups of quadratic function fields.
Some progress has been made in trying to prove these heuristics, most
notably by Achter [1, 2], Ellenberg, Venkatesh andWesterland [12, 32]
and Garton [16]. These results are somewhat weaker than the original
heuristics, as they rely on the size q of the underlying finite field tending
to infinity in addition to the genus of the function field. Previous results
attempting to numerically verify the Friedman-Washington heuristics
include computations of class groups for small genus over small base
fields by Feng and Sun [13] and computations of class groups of real
quadratic function fields of genus 1 over large base fields by Friesen [15].
To the knowledge of the authors the computational data contained
herein is the most extensive since the work of Feng and Sun [13] and
Friesen [15].

We generated examples of minimal genus and 3-rank values as large
as four for quadratic function fields over Fq for q = 5, 7, 11, 13. As
expected, we did not find fields with higher 3-rank than any known
examples, but we did find numerous examples of fields with 3-rank as
high as four and smaller genus than any others known. In addition,
the data we generated yields evidence for the validity of the Friedman-
Washington heuristic for q = 5, 11. Due to the presence of cube
roots of unity, the data for q = 7, 13 does not agree closely with
Friedman-Washington and Ellenberg, et al., but instead with some
recent conjectures of Malle [24, 25] for number fields, and a new
distribution result for function fields of Garton [16, 17]. Our data
suggests that all the doubly-asymptotic results of Ellenberg, et al., and
Garton, where q → ∞ as well as g → ∞, may also hold for fixed q.

This paper is organized as follows. After a brief review of some
preliminaries from the theory of algebraic function fields and cubic
function field tabulation in Section 2, we proceed with a short discussion
of the basic algorithm in Section 3 and the improved algorithm for
imaginary discriminants in Section 4. The algorithm’s complexity is
analyzed in Section 5. We discuss the Friedman-Washington heuristics
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and related results in Section 6. The 3-rank data generated is presented
in Section 7, and a comparison to the Friedman-Washington heuristics,
the Achter and Ellenberg, et al., distribution, Malle’s conjectured
formula and Garton’s distribution are presented in Section 8. Finally,
we make some concluding remarks and suggest open problems in
Section 9.

2. Preliminaries. In this section, we briefly summarize the main
theoretical results underlying our algorithm. None of this material is
new (original presentation and proofs can all be found in [27, 28]), but
we nevertheless include this summary in order to make our presentation
more self-contained.

Let Fq be a finite field of characteristic at least 5, and set F∗
q =

Fq\{0}. Denote by Fq[t] and Fq(t) the ring of polynomials and the
field of rational functions in the variable t over Fq, respectively. For

any non-zeroH ∈ Fq[t] of degree n = deg(H), we let |H| = qn = qdeg(H)

and denote by sgn(H) the leading coefficient of H. For H = 0, we set
|H| = 0. This absolute value extends in the obvious way to Fq(t). Note
that, in contrast to the absolute value on the rational numbers Q, the
absolute value on Fq(t), is non-Archimedean.

A binary quadratic form over Fq[t] is a homogeneous quadratic
polynomial in two variables with coefficients in Fq[t]. We denote the
binary quadratic form H(x, y) = Px2 +Qxy + Ry2 by H = (P,Q,R).
The discriminant of H is the polynomial

D(H) = Q2 − 4PR ∈ Fq[t].

A polynomial F ∈ Fq[t] is said to be imaginary if deg(F ) is odd, unusual
if deg(F ) is even and sgn(F ) is a non-square in F∗

q , and real if deg(F ) is
even and sgn(F ) is a square in F∗

q . Correspondingly, a binary quadratic
form is said to be imaginary, unusual or real according to whether its
discriminant is imaginary, unusual or real.

A binary cubic form over Fq[t] is a homogeneous cubic polynomial in
two variables with coefficients in Fq[t]. We denote the binary cubic form
f(x, y) = ax3 + bx2y + cxy2 + dy3 by f = (a, b, c, d). The discriminant
of f = (a, b, c, d) is the polynomial

D(f) = 18abcd+ b2c2 − 4ac3 − 4b3d− 27a2d2 ∈ Fq[t].
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We assume throughout that binary cubic forms f = (a, b, c, d) are
primitive, i.e., gcd(a, b, c, d) = 1, and irreducible (as a polynomial in x
and y).

Let F be a binary quadratic or cubic form over Fq[t]. If M =
(

α β
γ δ

)
is a 2 × 2 matrix with entries in Fq[t], then the action of M on F is
defined by

(F ◦M)(x, y) = F (αx+ βy, γx+ δy).

We obtain an equivalence relation from this action by restricting to
matrices M ∈ GL2(Fq[t]), the group of 2× 2 matrices over Fq[t] whose
determinant lies in F∗

q . That is, two binary quadratic or cubic forms F
and G over Fq[t] are said to be equivalent if

F (αx+ βy, γx+ δy) = G(x, y)

αδ − βγ ∈ F∗
q . Up to some even power of det(M), equivalent binary

forms have the same discriminant. Furthermore, the action of the
group GL2(Fq[t]) on binary forms over Fq[t] preserves irreducibility
and primitivity over Fq(t).

As in the case of integral binary cubic forms, any binary cubic form
f = (a, b, c, d) over Fq[t] is closely associated with its Hessian

Hf (x, y) = −1

4

∣∣∣∣∣∣∣∣
∂2f

∂x∂x

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y∂y

∣∣∣∣∣∣∣∣ = (P,Q,R),

where P = b2−3ac, Q = bc−9ad and R = c2−3bd. Note that Hf is a
binary quadratic form over Fq[t]. The Hessian has a number of useful
properties, which are easily verified by direct computation:

Hf◦M = (detM)2(Hf ◦M) for any M ∈ GL2(Fq[t]), and

D(Hf ) = −3D(f).

We now briefly summarize the reduction theory for binary quadratic
and cubic forms. Fix a primitive root h of F∗

q . As in Artin [3], we only
consider quadratic discriminants D endowed with the normalization
sgn(D) = 1 or sgn(D) = h, where 1 or h is chosen depending on whether
or not sgn(D) is a square in F∗

q . We can impose this restriction since
the discriminant of a function field is only unique up to square factors
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in F∗
q . Define the set

S = {hi : 0 ≤ i ≤ (q − 3)/2}.

Then a ∈ S if and only if −a /∈ S.

Definition 2.1. (Summary of Definitions 3.1, 3.5, and 4.1 of [28]).

(1) Let H = (P,Q,R) be an imaginary or unusual binary quadratic
form of discriminant D. Then H is reduced if
(a) |Q| < |P |, and either Q = 0 or sgn(Q) ∈ S;
(b) Either |P | < |R| and sgn(P ) ∈ {1, h}, or |P | = |R| and

sgn(P ) = 1;
(c) When |P | = |R| and sgn(P ) = 1, then f is lexicographically

smallest among the q + 1 partially reduced binary quadratic
forms in its equivalence class satisfying conditions (a) and (b)
above.

(2) Let f = (a, b, c, d) be a binary cubic form with imaginary or unusual
Hessian Hf = (P,Q,R) of discriminant −3D. Then f is reduced if
(a) sgn(a) ∈ S, and, if Q = 0, then sgn(d) ∈ S.
(b) Hf is reduced, and, in addition, if |P | = |R|, then f is

lexicographically smallest among all binary cubic forms in its
equivalence class with Hessian Hf .

The proof of the following theorem can be found in [28, Theo-
rems 3.6, 4.2].

Theorem 2.2.

(i) Every equivalence class of imaginary or unusual binary quadratic
forms contains a unique reduced representative, and there are
only finitely many reduced imaginary or unusual binary quadratic
forms of any given discriminant.

(ii) Every equivalence class of binary cubic forms with imaginary or
unusual Hessian contains a unique reduced representative, and
there are only finitely many reduced binary cubic forms of any
given discriminant with imaginary or unusual Hessian.
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Recall from [28, Theorem 5.3] that, if f = (a, b, c, d) is a reduced
binary cubic form of discriminant D, then

deg(a), deg(b) ≤ deg(D)/4,(2.1)

deg(ac), deg(bc), deg(ad) ≤ deg(D)/2.

The tabulation of Fq(t)-isomorphism classes of cubic function fields
as performed in [27, 28, 29] used the Davenport-Heilbronn bijection
between Fq(t)-isomorphism classes of cubic function fields and a certain
collection U of GL2(Fq[t])-isomorphism classes of binary cubic forms.
This set U includes all classes of primitive, irreducible binary cubic
forms with square-free discriminant, which is all that is required in our
context. The Davenport Heilbronn correspondence simply assigns each
form f(x, y) in U the irreducible cubic polynomial f(x, 1).

In analogy to the number field terminology, a polynomial in Fq[t]
is said to be a fundamental discriminant if it is square-free, of degree
at least 3, and has leading coefficient 1 or h. In order to compute
the 3-rank of a quadratic function field of square-free discriminant
D, we need only count the number of Fq(t)-isomorphism classes of
cubic function fields of that same discriminant and with at least two
infinite places, see Theorem 2.3 below. In turn, to list all Fq(t)-
isomorphism classes of cubic function fields of discriminantD, it suffices
to enumerate the corresponding unique reduced irreducible binary cubic
forms. To generate all the desired quadratic function fields up to a given
discriminant degree bound B, we employ the degree bounds (2.1) (with
deg(D) replaced by B) in nested loops over the coefficients of a binary
cubic form. For each such form, we check whether it is reduced and has
a discriminant D so that −3D is a fundamental imaginary or unusual
discriminant of degree at most B. A more precise description of the
algorithm is given in Section 3.

Our algorithm for generating quadratic function fields of positive 3-
rank relies on key connections between quadratic and cubic fields of the
same discriminant. A modified version of a theorem of Hasse [18] for
the function field setting appears in [19] and gives a precise formula for
the number of isomorphism classes of cubic function fields for a fixed
square-free discriminant D in terms of the 3-rank of the quadratic field
of discriminant D. Specifically, if D is a square-free polynomial in Fq[t]

and K = Fq(t,
√
D), then the number of Fq(t)-isomorphism classes of

cubic function fields of discriminant D with at least two infinite places
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is
(3r3(D) − 1)/2,

where r3(D) is the 3-rank of the ideal class group of the quadratic
function field K.

Note that the Hasse count omits the classes of cubic function fields
with just one infinite place. To include these classes, we require a more
refined count. Let n be any non-square in Fq, and suppose that D is
unusual. Then the real discriminant D′ = nD is said to be the dual
of D, and the real quadratic function field K ′ = Fq(t,

√
D′) is the dual

of the unusual quadratic function field K = Fq(t,
√
D). Let ℓ be an

odd prime dividing q+1. If r and r′ denote the ℓ-rank of K/Fq(t) and
K ′/Fq(t), respectively, then r = r′ or r = r′ + 1. In the latter case,
the regulator of K ′/Fq(t) is a multiple of ℓ (see Lee [23]). The cases
r = r′ + 1 and r = r′ are referred to as escalatory and non-escalatory,
respectively.

Denote by (e1, f1; . . . ; er, fr) the signature of the place at infinity of
Fq(t) in a finite extension L of Fq(t), so ei is the ramification index and
fi the residue degree of the ith infinite place of L for 1 ≤ i ≤ r.
In the cases of interest, i.e., −3D imaginary or unusual, we have
an exact count of the number of Fq(t)-isomorphism classes of cubic
function fields of discriminantD and any given signature. The complete
statement and proof appear in [19].

Theorem 2.3. Let D in Fq[t] be square-free so that −3D is imaginary
or unusual. Then the number of Fq(t)-isomorphism classes of cubic

function fields of discriminant D is (3r3(−3D)−1)/2. Setting r = r3(D),
the possible signatures for these fields and their respective frequencies
are as follows:

• If −3D is imaginary, then all (3r − 1)/2 classes of fields have
signature (1, 1; 2, 1).

• If −3D is unusual and q ≡ 1 (mod 3), then all (3r − 1)/2
classes of fields have signature (1, 1; 1, 2).

• If −3D is unusual and q ≡ −1 (mod 3), then D is the dual
discriminant of −3D, and there are two possibilities:

– In the non-escalatory case, all (3r − 1)/2 classes of fields
have signature (1, 1; 1, 1; 1, 1).
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– In the escalatory case, (3r − 1)/2 classes of fields have
signature (1, 1; 1, 1; 1, 1) and the remaining 3r such classes
have signature (1, 3).

3. Tabulating quadratic function fields with non-zero 3-
rank. We now briefly describe our method for tabulating quadratic
function fields of imaginary or unusual fundamental discriminant −3D
with positive 3-rank up to a given bound B on deg(D). The basic
version of our algorithm is a straightforward application of the cubic
function field tabulation algorithm of [28]. The main difference is
that, instead of outputting minimal polynomials for all fields, we
simply increment a counter for each square-free discriminant found.
The counter and corresponding discriminant values are then output.
Discriminants and the number of cubic fields with that discriminant
are stored in a hash table, and output to a file once the main for loops
are exited. Specifically, we loop over each coefficient of a binary cubic
form satisfying the bounds given in (2.1). For each binary cubic form
f encountered in the loop, we test whether or not f is reduced, is
squarefree, −3D is imaginary or unusual and deg(D) ≤ B. If this is
the case, the number of binary cubic forms found with discriminant
D is incremented by one in our hash table. Once the hash table is
complete, the value of the counter for each discriminant can then be
converted to its proper 3-rank value using Theorem 2.3, depending on
which case is appropriate. A modified version of the algorithm, with
various improvements including shortening the loop on d as described
previously in [28], appears in Algorithm 3.1.

Algorithm 3.1. 3-rank algorithm for computation of quadratic fields
where −3D is imaginary (respectively, unusual).

Input: A prime power q not divisible by 2 or 3, a primitive root h of
Fq, the set S = {1, h, h2, . . . h(q−3)/2}, and a positive integer B.

Output: A table where each entry is a square-free discriminant D and
a number of the form (3r −1)/2 with −3D imaginary (respectively,
unusual), sgn(−3D) ∈ {1, h} (respectively, sgn(−3D) = h), and
deg(D) ≤ B. The positive integer r is the 3-rank of the quadratic

function field Fq(t,
√
D).

1: for deg(a) ≤ B/4 AND sgn(a) ∈ S do
2: for deg(b) ≤ B/4 do
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3: for deg(c) ≤ B/2−max{deg(a),deg(b)} do
4: m1 := 2(deg(b) + deg(c))
5: m2 := deg(a) + 3 deg(b)
6: for i = 0 to B/2− deg(a) do
7: m3 := deg(a) + deg(b) + deg(c) + i
8: m4 := 3 deg(b) + i
9: m5 := 2(deg(a) + i)

10: m := max{m1,m2,m3,m4,m5}
11: if (m is not taken on by a unique term among the mi) OR

(m is taken on by a unique term AND m is odd (resp.
even) AND m ≤ B) then

12: Compute P := b2 − 3ac
13: Compute t1 := bc
14: Compute t2 := c2

15: for deg(d) = i do
16: Set f := (a, b, c, d)
17: Compute Q := t1 − 9ad
18: Compute R := t2 − 3bd
19: Compute −3D = −3D(f) = Q2 − 4PR
20: if deg(D) ≤ B AND −3D is imaginary (resp.

unusual) AND −3D is fundamental AND f is re-
duced then

21: Increment counter for discriminant D by one in
the hash table

22: return hash table

The asymptotic complexity of the algorithm for generating fields
with positive 3-rank is the same as for the tabulation algorithm for
cubic function fields, namely, O(B4qB) field operations as B → ∞
[28], with the O-constant cubic in q when B is odd and quartic in
q when B is even. The main difference between the two algorithms
is that, instead of testing if an equivalence class of binary cubic forms
belongs to the Davenport-Heilbronn set, we just need to test whether it
has square-free discriminant. This requires only one gcd computation.
The 3-rank program then stores the discriminant and the 3-rank data
in a hash table, which is output at the end of the algorithm.

In Belabas [5], a number of modifications to the basic algorithm for
computing the 3-rank of a quadratic number field were suggested and
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implemented. We give a brief summary of these modifications here and
explain why we refrained from making similar changes to our program,
since the cost of this is negligible compared to the rest of the algorithm.

First, we did not use Belabas’s “cluster” approach. This approach,
where one loosens the conditions for a form to be reduced and looks for
a large number of forms in a given interval, finally proceeding with class
group computations on the clusters found, was not used as we sought
to avoid a large number of direct class group computations, except for
verification of a small sample of examples. This does, however, warrant
further investigation.

The other main variants of Belabas’s 3-rank program are dedicated
to speeding up the square-free test for integers. As square-free testing
for polynomials is straightforward and efficient, this aspect of Belabas’s
work was not explored.

4. An improved algorithm for −3D imaginary. In this section,
we use certain Fq(t)-automorphisms to speed up our algorithm by a
factor of q in most cases when −3D is imaginary. This requires some
additional notation. Henceforth, let p denote the characteristic of Fq.
For any non-constant polynomial F (t) ∈ Fq[t], let sgn2(F ) denote the

coefficient of tdeg(F )−1 in F (this is allowed to be zero). We also require
a preliminary lemma, which is easily proved by induction on the degree.

Lemma 4.1. Let F (t) ∈ Fq[t] be a non-zero polynomial. Then
F (t + β) = F (t) for all β ∈ Fq if and only if F (t) is a polynomial
in tq − t.

Proof. “Freshmen exponentiation” easily shows that every polyno-
mial in tq− t is invariant under translation by elements in Fq. The con-
verse certainly holds for constant polynomials. So, let F (t) ∈ Fq[t] be
non-constant and assume inductively that the converse statement holds
for all polynomials of degree less than deg(F ). The constant coefficient
of F (t) is F (0), so obviously t divides F (t)−F (0). Replacing t by t+β
for any β ∈ Fq, we see that t+β divides F (t+β)−F (0) = F (t)−F (0)
for all β ∈ Fq. It follows that

tq − t =
∏
β∈Fq

(t− β)
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divides F (t) − F (0). Thus, F (t) = (tq − t)G(t) + F (0) for some
polynomial G(t) ∈ Fq[t] of degree deg(F )− q < deg(F ). Now, again by
“freshmen exponentiation,”

(tq − t)G(t) + F (0) = F (t) = F (t+ β)

= ((t+ β)q − (t+ β))G(t+ β)− F (0)

= (tq − t)G(t+ β)− F (0),

so G(t+ β) = G(t) for all β ∈ Fq. By the induction hypothesis, G(t) is
a polynomial in tq − t, and hence so is F (t). �

The key to our improvements is the following:

Proposition 4.2. For every polynomial F (t) ∈ Fq[t] whose degree is
coprime to p, there exists a unique β ∈ Fq such that sgn2(F (t+β)) = 0.

Proof. If d = deg(F ), then sgn2(F (t + β)) = sgn2(F ) + dβ sgn(F ),
which vanishes if and only if β = −sgn2(F )/(d sgn(F )). �

Corollary 4.3. For every imaginary reduced binary cubic form f =
(a, b, c, d) over Fq[t] with imaginary Hessian and p - deg(a), there
exists a unique β ∈ Fq such that sgn2(a(t + β)) = 0 and the form
fβ = (a(t+ β), b(t+ β), c(t+ β), d(t+ β)) is imaginary and reduced.

Proof. The proof follows immediately from Proposition 4.2, since
translation does not change the conditions on an imaginary reduced
form as specified in Definition 2.1. �

Note that, if f has discriminant D(t), then fβ has discriminant
D(t+β) which is generally distinct from D(t). If f is a reduced binary
cubic form with unusual Hessian, then translating the coefficients by
any β in Fq produces a partially reduced form, but not necessarily a
reduced one. We were unable to find an efficient way to address this
problem. We will revisit this issue in Section 9.

The idea for speeding up the 3-rank algorithm is to loop only over
polynomials a with sgn2(a) = 0 when deg(a) is not divisible by p. Each
such a yields q distinct forms

(a(t+ β), b(t+ β), c(t+ β), d(t+ β))
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for each non-zero β ∈ Fq of respective discriminants D(t+β), for which
the count is appropriately adjusted afterwards. This can be further
improved by using the same idea on the polynomials d. That is, the
algorithm loops only over pairs (a, d) with

p - deg(a) and sgn2(a) = 0,

or
p | deg(a), p - deg(d) and sgn2(d) ̸= 0,

or
p | deg(a) and p | deg(d).

For the former two, the computational effort decreases by a factor of q
if we disregard the computation of all the translates. Only for the last
of these three types of pairs is the computational effort the same as in
Algorithm 3.1. The exact proportion of pairs (a, d) with p | deg(a) and
p | deg(d) depends on the residue class of ⌊deg(D)/2⌋ (mod p). Note
that both a and d are non-zero since we only consider irreducible forms.

For brevity, we introduce the following terminology for cubic forms
f = (a, b, c, d). We call the form f a

• type 1 form if p - deg(a) and sgn2(a) = 0, or p | deg(a),
p - deg(d) and sgn2(d) = 0;

• type 2 form if p | deg(a) and p | deg(d);
• type 3 form otherwise, i.e., p - deg(a) and sgn2(a) ̸= 0, or
p | deg(a), p - deg(d), and sgn2(d) ̸= 0.

Note that, by Proposition 4.2, if f = (a, b, c, d) is a type 1 form,
then for all β ∈ F∗

q , fβ = (a(t + β), b(t + β), c(t + β), d(t + β)) is a
type 3 form. Moreover, all the fβ for β ∈ F∗

q are pairwise distinct.
Conversely, if f = (a, b, c, d) is a type 3 form, then the forms fβ for
β ∈ Fq are pairwise distinct by Lemma 4.1 (a(t) and d(t) cannot both
be polynomials in tq − t because p does not divide both deg(a) and
deg(d) in this case), and by Proposition 4.2, exactly one of the fβ is a
type 1 form and the others are type 3 forms.

The revised algorithm, given as Algorithm 4.4 below, only loops over
forms of type 1 and 2 in steps 1–8 and incorporates the discriminant
count arising from the type 3 forms via translates in step 11, whereas
Algorithm 3.1 looped over forms of all three types.
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Each discriminant D is endowed with two counters. One is the
counter keeping track of the number of forms for each discriminant as
in step 21 of Algorithm 3.1. The other one is a translate counter that
counts how often D is encountered as the discriminant of a type 1 form
f = (a, b, c, d). If D(t) has translate counter CD, then each D(t + β)
with β ∈ F∗

q occurs exactly CD times as the discriminant of the type 3
form fβ = (a(t+ β), b(t+ β), c(t+ β), d(t+ β)).

Algorithm 4.4. Improved 3-rank algorithm for computation of qua-
dratic function fields where −3D is imaginary using Horner’s rule for
translates.

Input: A prime power q not divisible by 2 or 3, a primitive root h of
Fq, the set S = {1, h, h2, . . . h(q−3)/2}, and a positive integer B.

Output: A table where each entry is a square-free discriminant D and
a number of the form (3r−1)/2 with −3D imaginary, sgn(−3D) ∈
{1, h}, and deg(D) ≤ B. The positive integer r is the 3-rank of the

quadratic function field Fq(t,
√
D).

1: for deg(a) ≤ B/4 AND sgn(a) ∈ S AND (sgn2(a) = 0 if
p - deg(a) OR p | deg(a)) do

2: Execute Steps 2–14 of Algorithm 3.1
3: for deg(d) = i AND (sgn2(d) = 0 if p - deg(d) OR p | deg(d))

do
4: Execute Steps 14–19 of Algorithm 3.1
5: if deg(D) ≤ B AND −3D is imaginary (resp. unusual)

AND −3D is fundamental AND f is reduced then
6: Increment the 3-rank counter for discriminant D by one in

the hash table;
7: if p - deg(a) OR p - deg(d) then
8: Increment the translate counter of D(t) by 1
9: for all D(t) in the hash table with positive translate counter do

10: Compute D(t+ β) for β ∈ Fq using Horner’s Rule
11: Increase the counter for D(t + β) by the value of the translate

counter of D(t)
12: return hash table

Theorem 4.5. Algorithm 4.4 is correct.

Proof. We show that Algorithms 3.1 and 4.4 have exactly the same
output. Steps 1–8 of Algorithm 4.4 loop exactly over all the type 1
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and 2 forms of degree up to B, and no type 3 form. Each type 1 form
f = (a, b, c, d) of discriminant D(t) gives rise to q − 1 type 3 forms
fβ = (a(t + β), b(t + β), c(t + β), d(t + β)) of respective discriminants
D(t + β) for β ∈ F∗

q that all generate the same cubic field as f . Steps
9–11 generate all these discriminants, and, if D(t) has translate counter
CD , i.e., is the discriminant of CD forms f of type 1, then each D(t+β)
is (in addition to the current value of the counter of D(t + β)) the
discriminant of the CD forms fβ of type 3. So, every discriminant
output by Algorithm 4.4 is also output by Algorithm 3.1, and with the
same 3-rank count.

Conversely, let D be a discriminant together with a count that is
produced by step 21 of Algorithm 3.1. Let D(t) be the discriminant of
Cj type j forms for j = 1, 2, 3. Since steps 1–8 of Algorithm 4.4 only
loop over all type 1 and 2 forms, and no type 3 forms, it produces D
with counter C1 + C2. Now, each of the C3 occurrences of D(t) as the
discriminant of a type 3 form fi = (ai, bi, ci, di) corresponds to exactly
one occurrence of some translate of D(t) that is the discriminant of
a type 1 form as follows. If p - deg(ai) and sgn2(ai) ̸= 0, then there
exists a unique βi ∈ F∗

q such that sgn2(ai(t−βi)) = 0 by Proposition 4.2.
Then

f ′
i = (ai(t− βi), bi(t− βi), ci(t− βi), di(t− βi))

is a type 1 form of discriminant D′
i(t) = D(t − βi). If p | deg(ai), p -

deg(di), and sgn2(di) ̸= 0, then there again exists a unique βi ∈ F∗
q

such that sgn2(di(t− βi)) = 0. Then f ′
i = (ai(t− βi), bi(t− βi), ci(t−

βi), di(t−βi)) is again a type 1 form of discriminant D′
i(t) = D(t−βi).

Note that these two possibilities are mutually exclusive. For either
case, D(t) = D′

i(t+ βi) is encountered in steps 9–11 of Algorithm 4.4.
Now each D′

i(t) occurred exactly CD′
i
times as the discriminant of a

type 1 form, and these type 1 forms are exactly the forms f ′
i . So

D(t) = D′
i(t + βi) occurs exactly CD′

i
times as the discriminant of

the corresponding type 3 form, and these forms are exactly the forms
fi. �

5. Complexity of the improved algorithm. We now analyze the
complexity of Algorithm 4.4. As before, let p denote the characteristic
of Fq. As in [28], denote by Fs the set of binary cubic forms f =
(a, b, c, d) over Fq[t] such that deg(D(f)) = s, deg(a) ≤ s/4, deg(b) ≤
s/4, deg(ad) ≤ s/2, deg(bc) ≤ s/2, and sgn(a) ∈ S. Using the fact that
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there are (q − 1)/2 choices for sgn(a), q − 1 choices for sgn(d), and q
choices each for the highest permissable coefficient of b and c, we recall
from [28, Lemma 7.1] that

#Fs =
q4−δs

32
s2qs +O(qs)

as s → ∞, where δs is the parity of s. Using this result, [28, Corollary
7.2] established a run time, using the bound B on discriminant degrees,
for the cubic function field tabulation algorithm ([28, Algorithm 2]),
and hence also for Algorithm 3.1, of O(B4qB) operations in Fq as
B → ∞. Disregarding constants arising from polynomial arithmetic,
the dominant term of the O constant when viewed as a polynomial in q
was q3/16 when B is odd and q4/32 when B is even. Our modifications
herein improve this constant by a factor of q most of the time; only
when B ≡ 0, 1 (mod 2p) is the speed up smaller, but still significant.
We begin with an auxiliary lemma.

Lemma 5.1. Let m,n, r ∈ N with m ≤ n, and set

N(m,n, r) =
∑
i≤m

∑
i+j≤n

ri+j .

Then
N(m,n, r) =

r

r − 1
mrn +O(rn) as m → ∞.

Proof.

N(m,n, r) =
m∑
i=0

ri
n−i∑
j=0

rj =
m∑
i=0

rn+1 − ri

r − 1
=

r

r − 1
mrn +O(rn),

as claimed. �

Corollary 5.2. For s ≥ 0, let P (s) denote the number of pairs
of polynomials (G,H) where G,H ∈ Fq[t], G and H are monic,
deg(G) ≤ s/4 and deg(GH) ≤ s/2. Then

P (s) =
q

4(q − 1)
sq⌊s/2⌋ +O(qs/2)

as s → ∞.
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Proof. The number of monic polynomials in Fq[t] of degree at most
i is qi. Hence,

P (s) =
∑
i≤s/4

∑
i+j≤s/2

qi+j = N(s/4, ⌊s/2⌋, q).

The result now follows from Lemma 5.1. �

Corollary 5.3. For s ≥ 0, let Q(s) denote the number of pairs
of polynomials (G,H) where G,H ∈ Fq[t], G and H are monic,
p | deg(G), p | deg(H), deg(G) ≤ s/4 and deg(GH) ≤ s/2. Then

Q(s) =
qp

4p(qp − 1)
sq⌊s/2⌋−rs +O(qs/2)

as s → ∞, where ⌊s/2⌋ ≡ rs (mod p) with 0 ≤ rs ≤ p− 1.

Proof. We have

Q(s) =
∑

pi≤s/4

∑
pi+pj≤s/2

qpi+pj = N(s/4p, ⌊s/2p⌋, qp)

=
qp

4p(qp − 1)
sqp⌊s/2p⌋ +O(qs/2).

It remains to show that p⌊s/2p⌋ = ⌊s/2⌋ − rs to deduce the claim
from Lemma 5.1. Let δs denote the parity of s, so ⌊s/2⌋ = (s− δs)/2.
Since

s

2p
− s− δs

2p
=

δs
2p

, 0 ≤ δs
2p

< 1,

we see that ⌊s/2p⌋ = ⌊(s− δs)/2p⌋, and hence, by the definition of rs,⌊s
2

⌋
− rs = p

⌊
⌊s/2⌋
p

⌋
= p

⌊
(s− δs)/2

p

⌋
= p

⌊
s− δs
2p

⌋
= p

⌊
s

2p

⌋
,

as desired. �

Lemma 5.4. For any s, the number of type 1 forms in Fs is

N1(s) =
(q − 1)2q

2
P (s) (P (s)−Q(s)) ,
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where P (s) and Q(s) are defined as in Corollaries 5.2 and 5.3, respec-
tively.

Proof. The number of pairs of polynomials (G,H) defined in Corol-
lary 5.2 with p - deg(G) or p - deg(H) is P (s) −Q(s). For those pairs
with p - deg(G), a proportion of 1/q has sgn2(G) = 0, and for those
with p | deg(G) and p - deg(H), a proportion of 1/q has sgn2(H) = 0.
It follows that the number of pairs (a, d) for which f = (a, b, c, d) is a
type 1 form in Fs is

(q − 1)2

2q

(
P (s)−Q(s)

)
,

and the number of (b, c) pairs for such a form is q2P (s). Multiplying
these two counts yields the desired result. �

Lemma 5.5. For any s, the number of type 2 forms in Fs is

N2(s) =
(q − 1)2q2

2
P (s)Q(s),

where P (s) and Q(s) are defined as in Corollaries 5.2 and 5.3, respec-
tively.

Proof. The number of (a, d) pairs for which f = (a, b, c, d) is a type 2
form in Fs is (q − 1)2Q(s)/2, and the number of (b, c) pairs for such a
form is again q2P (s). �

Corollary 5.6. The combined number of type 1 and 2 forms in Fs is

N1(s) +N2(s) =
q3−δs

32

(
(q − 1)2

pq1+rs

qp

qp − 1
+ 1

)
s2qs

+O(sqs).

Proof. By Lemmas 5.4 and 5.5, the combined number of type 1 and
2 forms Fs is

N1(s) +N2(s) =
(q − 1)2q

2
P (s)

(
P (s)−Q(s) + qQ(s)

)
=

(q − 1)2q

2

(
P (s)2 + (q − 1)P (s)Q(s)

)
.
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We evaluate each term separately. As before, let δs be the parity of s,
so that 2⌊s/2⌋ = s− δs. Then

(q − 1)2q

2
P (s)2 =

(q − 1)2q

2

q2

16(q − 1)2
s2qs−δs +O(sqs)

=
q3−δs

32
s2qs +O(sqs).

Setting (s− δs)/2 ≡ rs (mod p) with 0 ≤ rs ≤ p− 1 as before, we also
obtain

(q − 1)3q

2
P (s)Q(s) =

(q − 1)3q

2

q

16(q − 1)

qp

4p(qp − 1)
s2qs−δs−rs

+O(sqs)

=
(q − 1)2q2−δs−rs

32p

qp

qp − 1
s2qs +O(sqs).

Altogether,

N1(s) +N2(s) =
q3−δs

32

(
1 +

(q − 1)2

pq1+rs

qp

qp − 1

)
s2qs +O(sqs).

�

Note that the factor qp/(qp − 1) is extremely close to 1, even for
small values of p and q. For the smallest permissible parameters, when
p = q = 5, this quantity is approximately 1.0003; for q = p = 7, it is
roughly 1.000001.

Theorem 5.7. Assuming standard polynomial arithmetic in Fq[t],
Algorithm 4.4 requires O(B4qB) = O(qB+ϵ) operations in Fq as B →
∞. Here, the O-constant is a rational function of q whose dominant
term is of order q4−δB/p if B ≡ 0, 1 (mod 2p) and of order q3−δB

otherwise, where δB is the parity of B.

Proof. The analysis of steps 1–8 of the algorithm proceeds analo-
gously to [28, Corollary 7.3]. These steps run over all the type 1 and
type 2 forms in Fs for 3 ≤ s ≤ B. For each such form, the entire
collection of polynomial computations requires at most Ks2 field oper-
ations for some constant K that is independent of B and q. This holds
because all polynomials under consideration have degree bounded by
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s. So the asymptotic run time of steps 1–8 is

T1(B) =

B∑
s=3

(
(N1(s) +N2(s)) ·Ks2

)
= K

B∑
s=3

(
Css

4qs +O(s3qs)
)

= KB4
B∑

s=3

Csq
s +O(B3qB),

where N1(s) and N2(s) are given by Lemmas 5.4 and 5.5, respectively,
and

Cs =
q3−δs

32

(
(q − 1)2

pq1+rs

qp

qp − 1
+ 1

)
by Corollary 5.6. Since δs ≥ 0, rs ≥ 0 and q − 1 < q, we see that
Cs < C(q) where

C(q) =
q4

32p

qp

qp − 1
.

It follows that

B∑
s=3

Csq
s < C(q)

B−2∑
s=0

qs + CB−1q
B−1 + CBq

B

<

(
C(q)

q(q − 1)
+

CB−1

q
+ CB

)
qB.

The dominant term in C(q)/(q(q − 1)) is q2/32p.

If B is even, then rB−1 ̸= 0, so

CB−1

q
+ CB <

q

32
+

q3

32

(
q1−rB

p

qp

qp − 1
+ 1

)
.

The dominant term in this constant is q3(q1−rB/p + 1)/32. This is of
order q4/p if rB = 0, i.e., B ≡ 0 (mod 2p), and q3 otherwise.

If B is odd, then rB ̸= 0, and hence rB−1 = rB − 1. Hence,

CB−1

q
+ CB <

q2

32

(
q2−rB

p

qp

qp − 1
+ 1

)
+

q2

32
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=
q2

32

(
q2−rB

p

qp

qp − 1
+ 2

)
.

The dominant term in this constant is q2(q2−rB/p + 2)/32. This is of
order q3/p if rB = 1, i.e., B ≡ 1 (mod 2p), and q2 otherwise.

Next, we analyze steps 9–11 of Algorithm 4.4 and show that their run
time is negligible compared to that of steps 1–8. For any given degree
s the number of discriminants of degree s that steps 9–11 loop over
is certainly bounded above by the number of fundamental imaginary
discriminants of degree s, which is 2(q − 1)qs−1, by our remarks at
the beginning of Section 8. This is a very crude upper bound on the
number of D in the table, but it suffices for our purposes.

The run time of steps 9–11 is dominated by step 10. Each translate
D(t + β) with β ∈ F∗

q can be computed by applying Horner’s rule as
follows: if D(t) = ast

s + · · ·+ a0, then initialize D0 = as and compute
Di = tDi−1+βDi−1+as−i for 1 ≤ i ≤ s. ThenDs = D(t+β). For each
translate D(t+ β), this requires s shifts (whose cost is negligible) and
Ls2 operations in Fq for some constant L that is independent of s and
q. Since there are q choices for β, the total number of field operations
required by steps 9–11 is no more than

T2(B) =
B∑

s=3

2(q − 1)qs−1qLs2 = O(B2qB),

which is asymptotically negligible compared to T1(B). �

If q = p, then it is most efficient to evaluate D(t+ 1) from D(t) via
D0 = as and Di = tDi−1 +Di−1 + as−i for 1 ≤ i ≤ s. Applying this
technique repeatedly p−1 times generates all the polynomials D(t+ j)
for 0 ≤ j ≤ p− 1 using only field additions, no multiplications.

In Tables 1 and 2, we compare the O-constants for the run time of
Algorithm 3.1 as established in [28, Corollary 7.3] with those derived
in the proof of Theorem 5.7. We disregard the constants arising from
polynomial arithmetic (denoted above by K and L).

6. Conjectures and results on class group distributions. In
this section, we recall the Friedman-Washington heuristics and other
results on the distribution of class groups of function fields, in order to
compare the data from our algorithm to these conjectures and provide
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Table 1. Comparison of the O-constants in the run times of Algorithms
3.1 and 4.4, q ̸= p.

Parity of B B (mod 2p) Alg. 3.1 Alg. 4.4 Speed-up factor

B odd B ̸≡ 1 q3/16 q2/16 q
B odd B ≡ 1 q3/16 q3/32p 2p
B even B ̸≡ 0 q4/32 q3/32 q
B even B ≡ 0 q4/32 q4/32p p

Table 2. Comparison of the O-constants in the run times of Algorithms
3.1 and 4.4, q = p.

Parity of B B (mod 2p) Alg. 3.1 Alg. 4.4 Speed-up factor

B odd B ̸≡ 1 q3/16 q2/16 q
B odd B ≡ 1 q3/16 3q2/32 2q/3
B even B ̸≡ 0 q4/32 q3/32 q
B even B ≡ 0 q4/32 q3/16 q/2

some numerical validity supporting them in Section 7. Before we give a
more detailed description of each ℓ-rank heuristic/result, we provide a
brief overview of their respective underlying assumptions (in addition
to requiring that ℓ be odd in all cases):

• Friedman-Washington [14]. q ̸≡ 0 (mod ℓ), imaginary qua-
dratic extensions;

• Ellenberg et al. [12]. q ̸≡ 0, 1 (mod ℓ), imaginary quadratic
extensions;

• Achter [1]. q ≡ 1 (mod ℓ), imaginary or unusual quadratic
extensions;

• Garton [16, 17]. q ≡ 1 (mod ℓ), q ̸≡ 1 (mod ℓ2), imaginary
quadratic extensions.

All the aforementioned results apply to Jacobians (i.e., degree zero
divisor class groups) of hyperelliptic curves. It is well known that
the Jacobian and the ideal class group of an imaginary or unusual
hyperelliptic function field are very closely linked; they are essentially
isomorphic (possibly up to a factor of Z/2Z), so their respective ℓ-ranks
are equal when ℓ is odd. Therefore, we can use the ideal class group
when comparing our data to the heuristics without loss of generality.
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We now give an in-depth description of each result. The Friedman-
Washington heuristics [14] are entirely analogous to the Cohen-Lenstra
heuristics. Loosely speaking, Friedman and Washington predict that,
given a fixed finite field Fq and an abelian ℓ-group A, where ℓ is an odd
prime that does not divide q, A occurs as the ℓ-Sylow part of the divisor
class group of a quadratic function field over Fq with frequency inversely
proportional to |Aut (A)|. The precise statement is given below. For
brevity, define, for any n, r ∈ N the quantities

ηr(n) =
r∏

j=1

(1− n−j) and η∞(n) =
∏
j≥1

(1− n−j).

Conjecture 6.1 (Friedman and Washington [14]). Let ℓ be an odd
prime not dividing q. Then a finite abelian group A of ℓ-power order
appears as the ℓ-Sylow part Clℓ of the class group of an imaginary
quadratic extension K of Fq(t) of genus gK with a frequency inversely
proportional to the number of automorphisms of A. That is,

(6.1) lim
g→∞

( ∑
K

gK≤g
Clℓ∼=A

1
/ ∑

K
gK≤g

1

)
=

η∞(ℓ)

|Aut(A)|
.

A newer, related result, due to Ellenberg, Venkatesh and Westerland
[12, 32], states that the upper and lower densities of imaginary
quadratic extensions of Fq(t) for which the ℓ-part of the class group
is isomorphic to any given finite abelian ℓ-group converges to the right-
hand side of equation (6.1), as q → ∞ with q ̸≡ 0, 1 (mod ℓ).

Theorem 6.2 (Ellenberg, Venkatesh and Westerland [12]). Let ℓ be
an odd prime and A a finite abelian ℓ-group. Write δ+(q) (respectively,
δ−(q)) for the upper density (respectively, lower density) of imaginary
quadratic extensions of Fq(t) for which the ℓ-part of the class group
is isomorphic to A. Then δ+(q) and δ−(q) converge, as q → ∞ with
q ̸≡ 0, 1 (mod ℓ), to η∞(ℓ)/|Aut (A)|.

The result of Theorem 6.2 requires the additional assumption that
q → ∞, but the predicted distribution is what Friedman and Washing-
ton assert for fixed q ̸≡ 0, 1 (mod ℓ). We note that, for fixed values
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of q, the Friedman-Washington heuristic is still a conjecture. Based on
Conjecture 6.1 and Theorem 6.2, the probability that the ℓ-rank of an
ideal class group of an imaginary quadratic function field is equal to r,
as given in Cohen and Lenstra [9] for number fields and in Lee [22] for
function fields, is given by

(6.2)
η∞(ℓ)

ηr(ℓ)2 ℓr
2 .

For ℓ = 3 and the values of r = 0, 1, 2, 3, 4, we obtain the approximate
probabilities 0.56128, 0.42009, 0.019692, 0.00008739 and 4.0964×10−8,
respectively.

Achter [1, 2] proved a version of the Friedman-Washington heuristic
where q → ∞ inside limg→∞ with q ≡ 1 (mod ℓ), and the quadratic
extension is assumed to have one infinite place. His result is an explicit
formula in terms of ℓ for the number

(6.3) α(g, r) =
|{x ∈ Sp2g(F) : ker(x− id) ≃ Fr}|

|Sp2g(F)|
,

where Sp2g(F) denotes the group of 2g by 2g symplectic matrices over
a field F or order ℓ. The function α(g, r) expresses similar probabilities
as in the original Friedman-Washington heuristic in the case q ≡ 1
(mod ℓ). Achter’s result [1] proves a weaker version of Friedman and
Washington’s original conjecture since it requires q → ∞ in addition
to g → ∞.

Empirical evidence (see Malle [24, 25]) strongly suggests that the
presence of ℓth roots of unity in the base field skews the distribution
of ℓ-rank values of quadratic number fields. In order to account for
this discrepancy for number fields, Malle [25] proposed alternative
conjectural formulas to cover the case where primitive ℓth roots of
unity lie in the base field, provided primitive ℓ2th roots of unity that
are themselves not also ℓth roots of unity do not lie in the base field.

A different probability distribution, one consistent with Malle’s
conjectures [24, 25] and Achter’s results [1, 2], is obtained for q ≡ 1
(mod ℓ) due to the presence of ℓth roots of unity. The analogous weak
Friedman-Washington result in this case is due to Garton [16, 17].
Garton’s result, again with q → ∞ as well as g → ∞, predicts that the
upper and lower densities of imaginary quadratic extensions of Fq(t)
for which the ℓ-part of the class group is isomorphic to any given
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finite abelian ℓ-group converges to Malle’s formula for number fields,
as q → ∞ with q ≡ 1 (mod ℓ). This is summarized in the following
theorem.

Theorem 6.3 (Garton [16, 17]). Let ℓ be an odd prime and A a finite
abelian ℓ-group. Write δ+(q) (respectively, δ−(q)) for the upper density
(respectively, lower density) of imaginary quadratic extensions of Fq(t)
for which the ℓ-part of the class group is isomorphic to A. Then δ+(q)
and δ−(q) converge, as q → ∞ with q ≡ 1 (mod ℓ) and q ̸≡ 1 (mod ℓ2),
to

η∞(ℓ) ηr(ℓ) ℓ
r(r−1)/2

η∞(ℓ2) |Aut (A)|
.

From the distribution given in Theorem 6.3, the probability that a
quadratic function field has ℓ-rank equal to r in the case q ≡ 1 (mod ℓ)
and q ̸≡ 1 (mod ℓ2), is given by

(6.4)
η∞(ℓ)

η∞(ℓ2) ηr(ℓ) ℓr(r+1)/2
.

For ℓ = 3 and the values of r = 0, 1, 2, 3, 4, we obtain the approximate
probabilities 0.64032, 0.31950, 0.03994, 1.5361×10−3 and 1.9201×10−5,
respectively.

We note that Achter’s function α converges to a formula of Malle
for number fields as g → ∞, giving additional evidence for a stronger
version of Garton’s result, where the dependence on q → ∞ is removed.
This result is Malle [25, Proposition 3.1]. In Section 7, we will use the
numerical data we generated to see how well the data matches the
Friedman and Washington and Ellenberg, Venkatesh and Westerland
results for q ≡ −1 (mod ℓ), and the Garton distribution result for q ≡ 1
(mod ℓ) and q ̸≡ 1 (mod ℓ2) when q is fixed.

7. Numerical results. Tables 3 and 4 present the results of our
computations for the 3-rank counts of quadratic function fields for
q = 5, 7, 11, 13 using Algorithm 4.4 for imaginary discriminants and
Algorithm 3.1 for unusual discriminants −3D with q = 5, 7 (fewer fields
in the unusual case due to the longer running times). For each of these
q-values, h = 2 was chosen as a primitive root of Fq with the exception
of F7, where h = 3 was chosen. This completely determines the set
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S specified in Section 2. These sets were {1, 2}, {1, 2, 3}, {1, 2, 4, 5, 8}
and {1, 2, 3, 4, 6, 8} for F5, F7, F11 and F13, respectively.

We implemented our counting algorithms (both Algorithms 3.1 and
4.4) using the C++ programming language coupled with the number
theory library NTL [30]. The lists of quadratic fields and their (pos-
itive) 3-ranks were computed on a 32 core 2.0 GHz Intel Xeon X7550
machine running Unix with 256 GB of RAM. Each table entry consists
of the base field size q, the degree bound on the discriminant D and the
corresponding genus g, the total number of square-free discriminants
of that degree, the 3-rank of Fq(t,

√
D), the total number of fields with

given deg(D) value found with that 3-rank, and the total elapsed time
to find all quadratic function fields with the given degree and 3-rank
at least 1.

Table 3: 3-ranks of quadratic function fields over Fq with −3D imagi-
nary

q deg(D), g # of D 3-rank Total Time
5 3, 1 200 1 80 0.00 s

5, 2 5000 1 1600 0.18 s
2 10

7, 3 125000 1 46840 5.45 s
2 1180

9, 4 3125000 1 1297120 3 m, 22 s
2 51300
3 40

11, 5 78125000 1 31730080 2 h, 15 m,
2 1167200 26 s
3 1880

13, 6 1953125000 1 806759000 3 d, 23 h,
2 33601470 40 m
3 88680

7 3, 1 588 1 196 0.04 s
2 14

5, 2 28812 1 8400 2.48 s
2 588

7, 3 1411788 1 432348 2 m, 20 s
2 42924

Continued on next page
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Table 3 (continued from previous page).
q deg(D), g # of D 3-rank Total Time

3 840
9, 4 69177612 1 21996478 2 h, 44 m

2 2675302 24 s
3 90874
4 588

11, 5 3389702988 1 1072738086 8 d, 14 h,
2 126751170 48 m, 9 s
3 4078662
4 27174

11 3, 1 2420 1 1100 0.51 s
5, 2 292820 1 110000 1 m, 12 s

2 2970
7, 3 35431220 1 14186480 2 h, 40 m,

2 506220 4 s
3 660

9, 4 4287177620 1 1796730320 24 d, 23 h
2 81402640
3 288200

13 3, 1 4056 1 1352 1.35 s
2 130

5, 2 685464 1 209352 4 m, 25 s
2 20046
3 312

7, 3 115843416 1 36281076 14 h, 38 m,
2 4009330 34 sec
3 108108
4 494

Table 4: 3-ranks of quadratic function fields over Fq with −3D unusual

q deg(D), g # of D 3-rank Total Time
5 4, 1 500 1 200 0.54 s

6, 2 12500 1 4780 12.17 s
2 100

Continued on next page



2012 ROZENHART, JACOBSON, JR. AND SCHEIDLER

Table 4 (continued from previous page).
q deg(D), g # of D 3-rank Total Time

8, 3 312500 1 115460 7 m, 49 s
2 2205

10, 4 7812500 1 3240340 3 h, 9 m,
2 128160 18 s
3 100

7 4, 1 2058 1 672 7.08 s
2 42

6, 2 100842 1 30989 5 m, 43 s
2 3115
3 63

8, 3 4941258 1 1510026 6 h, 36 m,
2 142632 21 s
3 2310

Timings for Algorithm 4.4 are compared to those of Algorithm 3.1
in Table 5 for −3D imaginary with q = 5, 7, 11, 13. As seen in the last
column, the modified algorithm is a significant improvement over the
basic algorithm, which becomes more pronounced as q increases. This
is expected as the complexity analysis for Algorithm 4.4 predicts an
improvement in timings by roughly a factor of q, with an improvement
of 2q/3 for degree 11 fields over F5. The actual speed up is below the
factor predicted by Table 5, but this is likely due to the fact that our
degree bounds are too small for the asymptotics to take effect, so the
error terms have a significant effect on the run times.

Table 5: Timings of Algorithm 3.1 versus Algorithm 4.4

q Deg. bd. Alg. 3.1 times Alg. 4.4 times 3.1/4.4
5 3 0.01 s 0.00 s –

5 0.59 s 0.18 s 3.28
7 17.33 s 5.45 s 2.99
9 11 m, 59 s 3 m, 22 s 3.57
11 5 h, 5 m, 19 s 2 h, 15 m, 26 s 2.25
13 — ≈ 4 d —

Continued on next page
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Table 5 (continued from previous page).
q Degree bd. Alg. 3.1 times Alg. 4.4 times 3.1/4.4
7 3 0.09 s 0.04 s 2.25

5 10.75 s 2.48 s 4.33
7 10 m, 2 s 2 m, 20 s 4.30
9 13 h, 47 m, 6 s 2 h, 44 m, 24 s 5.03
11 — ≈ 9 d —

11 3 1.34 s 0.51 s 2.63
5 6 m, 43 s 1 m, 12 s 5.58
7 17 h, 2 m, 52 s, 2 h, 40 m, 4 s 6.39
9 — ≈ 25 d —

13 3 4.26 s 1.35 s 3.16
5 25 m, 44 s 4 m, 25 s 5.81
7 ≈ 4 d 14 h, 38 m, 34 s 5.90

We were able to produce examples of escalatory and non-escalatory
cases over F5; this was ascertained by computing the class groups
of these particular quadratic function fields and their corresponding
dual discriminants. For example, the real quadratic function field of
discriminant D = t10+2t9+ t8+4t7+2t6+3t5+3t4+4t3+3t2+ t has
3-rank 2, but its unusual dual field of discriminant −3D has 3-rank 3.

We note that our algorithm in both the imaginary and the unusual
case is particularly successful at finding quadratic function fields of
high 3-rank and small genus because our method is exhaustive. This
means that any examples of a given 3-rank value found by our algorithm
are minimal, in the sense that any quadratic field with the same 3-
rank must have genus at least as large as the examples found by our
algorithm. For example, our algorithm beats the Diaz y Diaz method,
([10]; adapted to quadratic function fields in [4]), in the sense that
fields of 3-rank equal to 3 were found for genus 4 fields over F5 using
our algorithm. The minimal genus yielded by the Diaz y Diaz method
in [4] for quadratic function fields over F5 with 3-rank equal to 3 is
g = 5. For F11, F13 and 3-rank values 3 and 4, we also found examples
of smaller genus than those given in [4]. The minimal genus values
were the same for F7 and 3-rank 4 for both methods.
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Table 6. Minimal genera: Our method versus Diaz y Diaz’s method (−3D
imaginary)

q 3-rank min g (DyD) min g (RJS) Example D(t)
5 3 5 4 t9 + 2t6 + 2t3 + 3
7 3 4 3 3t7 + 4t6 + t2 + 5t+ 1

4 4 4 3t9 + 5t8 + 2t7+
2t4 + 3t3 + 5t2 + t+ 1

11 3 4 3 2t7 + 3t6 + t5 + 8t4+
3t3 + t2 + 3t+ 8

13 3 4 2 t5 + 10t3 + 8t2 + 1
4 4 3 t7 + 10t6 + 12t5 + 5t4+

3t3 + 11t2 + 4t+ 10

Table 7. Minimal genera: Our method versus Diaz y Diaz’s method (−3D
unusual)

q 3-rank min g (DyD) min g (RJS) Example D(t)
5 3 5 4 2t10 + 4t9 + 2t8 + 3t7+

4t6 + t5 + t4 + 3t3+
t2 + 2t

7 3 4 3 3t8 + t6 + 5t2 + 4t+ 6

An explicit comparison of our method to Diaz y Diaz’s algorithm is
given in Tables 6 and 7. The third column denotes the minimal genus
found with Diaz y Diaz’s method yielding the corresponding 3-rank
specified in column 2. The fourth column denotes the minimal genus
found with our method for the same 3-rank. The fifth column gives an
example discriminant of minimal degree with given 3-rank found by our
method. Table 7 treats the case where −3D is unusual. These tables
indicate a genuine improvement over previous methods in this regard
with respect to finding minimal genera with high 3-rank.

8. Observations on our numerical data.

8.1. Divisibility properties of the field counts. We note that
various values in Table 3 have some interesting divisibility properties.
For instance, all entries in column 5 are divisible by q, entries in
column 5 for odd degree discriminants are divisible by 2, and some
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entries in column 5 are divisible by q − 1. These properties can be
explained via automorphisms in the field Fq(t). We now briefly discuss
the effect of the Fq(t)-automorphisms on the number of discriminants
in the various columns of Table 3, thereby solving an open question
from [27, 28]. We note that the counts in column 3 are always of the
form k(q − 1)qd−1 where d = deg(d) is the discriminant degree and
k = 2 for d odd and k = 1 for d even. A standard inclusion-exclusion
argument proves that the number of monic square-free polynomials of
degree d ∈ N with coefficients in Fq is (q − 1)qd−1; see, for example,
[21, Exercise 2, subsection 4.6.2, page 456, and its solution on page
679]. The value of k is also easily explained: for odd degree, there are
two choices for sgn(D), namely, 1 and h, whereas for d even, there is
one, namely h. Note also that every quadratic function field over Fq

is the function field of a curve of the form y2 = D(t) where D(t) is
a fundamental discriminant. Our first result explains why the 3-rank
totals in column 5 of Table 3 are divisible by q.

Proposition 8.1. Assume that d ≥ 3 and q does not divide d. Then,
for any 3-rank r, the number of imaginary/unusual/real fundamental
discriminants of degree d that define a quadratic function field of 3-rank
r is a multiple of q.

Proof. Let D(t) ∈ Fq[t] be a fundamental discriminant of degree d.
Then the polynomials D(t + β) with β ∈ Fq are all fundamental
discriminants of the same type (imaginary/unusual/real). Since q - d,
D(t) cannot be a polynomial in tq − t, by Lemma 4.1, the polynomials
D(t+ β) with β ∈ Fq are pairwise distinct. Furthermore, the q curves
y2 = D(t+ β) are all isomorphic and hence define the same quadratic
function field. �

It remains to explain why the entries of column 5 for which the dis-
criminant degree is a multiple of q are also divisible by q. Note that the
proof of Proposition 8.1 remains valid for fundamental discriminants D
such that q | deg(D) but D is not a polynomial in tq − t. For the
remaining discriminants, the divisibility by q is simply an artifact of
the small parameter sizes and no longer holds for larger values of q and
deg(D). For example, the quadratic function field Fq(t,

√
tq − t) has

3-rank 3 for q = 11 and 3-rank 6 for q = 13. Explicit formulas for the
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class numbers of Fq(t,
√
tq − t+ j) with q an odd prime can be found

in [11].

Next, we explain why each entry in column 5 of Table 3 is even.

Proposition 8.2. Assume that q is odd, and let d ≥ 3 be odd. Then,
for any 3-rank r, the number of imaginary fundamental discriminants
of degree d that define a function field of 3-rank r is even.

Proof. Suppose D(t) is monic. Then the curves

y2 = D(t) and (h(d−1)/2y)2 = D(ht)

are isomorphic over Fq[t] and hence have the same quadratic function
field. The result now follows since the distinct polynomials D(t) and
h1−dD(ht) are imaginary fundamental discriminants with respective
leading coefficients 1 and h. �

We remark that many, but not all, of the entries in column 5 of
Table 3 are divisible by q − 1. This is likely due to the fact that, most
of the time, for the corresponding discriminants D(t), the polynomials
D(at) with a ∈ F∗

q are pairwise distinct. For example, we have the
following result:

Proposition 8.3. Assume that q is an odd prime and D(t) ∈ Fq[t]
is a fundamental discriminant with D(t) monic when deg(D) is odd.
Suppose that, for at least one j ∈ {0, 1, . . . d − 1} with d − j coprime
to q − 1, the coefficient of tj in D(t) is non-zero. Then the q − 1
hyperelliptic curves y2 = h−2⌊id/2⌋D(hit) for 0 ≤ i ≤ q−2 are pairwise
distinct and isomorphic and hence have the same quadratic function
field.

Proof. For brevity, set Fi(t) = h−2⌊id/2⌋D(hit). If d is even, then all
the Fi(t) have the same leading coefficient, namely, sgn(D). So they are
either all real or all imaginary fundamental discriminants. If d is odd,
then Fi(t) is monic if i is even and has leading coefficient h if i is odd; in
either case, all Fi(t) are imaginary fundamental discriminants. Hence,
the hyperelliptic curves y2 = Fi(t) are well defined and isomorphic over
Fq, and therefore they all have the same function field.
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It remains to show that the polynomials Fi(t) are pairwise distinct.
If aj is the coefficient of tj in D(t), then the coefficient of tj in Fi(t)

is ajh
ij−2⌊id/2⌋. So assume that aj ̸= 0 and gcd(q − 1, d− j) = 1, and

suppose that Fi(t) = Fk(t) with 0 ≤ i, k ≤ q − 2. Then

(8.1) hij−2⌊id/2⌋ = hkj−2⌊kd/2⌋.

If d is even, then (8.1) reduces to h(j−d)(i−k) = 1, so (j − d)(i− k) ≡ 0
(mod q − 1). Since j − d is coprime to q − 1, this forces i = k.

If d is odd, then i and k must be of the same parity, as otherwise
one of Fi(t) would be monic and the other would have sign equal to h.
The exact same argument as for d even again forces i = k. �

Most discriminants satisfy the condition of Proposition 8.3. If those
discriminants that do not satisfy this condition correspond to function
fields of 3-rank 0 over Fq, then the number of fields with positive 3-
rank is divisible by q− 1 for a given D. Note, however, that this is not
always the case; counterexamples include q = 5, deg(D) ∈ {5, 8} and
q = 7, deg(D) ∈ {3, 6} (see column “Total” of Tables 3 and 4).

8.2. Comparison of 3-rank data to heuristics. Since our algo-
rithm is exhaustive for imaginary or unusual discriminants −3D of
fixed degree, we compared our data to the distribution suggested by
the Friedman and Washington heuristic (Conjecture 6.1) and the El-
lenberg, Venkatesh and Westerland result (Theorem 6.2), in an effort
to provide numerical evidence in support of the validity of the results in
the case of fixed q. A comparison of our 3-rank data for imaginary and
unusual discriminants for the field F5 to the expected value predicted
by the aforementioned results is given in Figure 1. We compared our
data to the value given by (6.2) in the imaginary and unusual cases for
p = 3. The solid line denotes the value of (6.2) for r = 1, and the dotted
line denotes the proportion of 3-rank one values found up to a given
bound found by our algorithm. As seen in Figure 1, our data mostly
agrees with the predicted asymptotic probability (6.2). The data for
F11 (figure omitted) does not agree as closely, but this is likely because
computations were not carried out far enough to obtain a sufficient
sample size.

We also compared our F7 data to the expression given in (6.2). As
expected, the data is a poor fit to this value. As noted in Malle [24],
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Figure 1. Comparison of actual 3-rank data with predicted value (6.1)
over F5.
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the Cohen, Lenstra and Martinet heuristics for ℓ-ranks may fail when
primitive ℓth roots of unity lie in the base field. This phenomenon
occurs for function fields as well, in particular, for the case of F7.
For ℓ = 3, we compared our data for F7 to the Garton and Malle
formula (6.4) and Achter’s α(g, r) function (6.3) in Figure 2. As seen
in Figure 2, our data agrees more closely with these predictions. The
values of α(g, 1) for g ≤ 3 appear in [1]. Our data agrees more closely,
and in one case exactly, with this formula.

We conclude by noting that our data also compares favorably to both
the Ellenberg et al. and Garton distributions, again giving evidence that
the dependence on q → ∞ could perhaps eventually be removed.

9. Conclusion. We presented extensive data on 3-rank distribu-
tions of quadratic function fields of discriminantD with−3D imaginary
or unusual, using our cubic function field tabulation algorithm [28], but
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Figure 2. Comparison of actual 3-rank data with predicted values
(6.3) and (6.4) over F7.

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 2  3  4  5  6  7  8  9

P
ro

po
rt

io
n 

of
 f

ie
ld

s 
w

it
h 

3-
ra

nk
 1

Degree bound for D

Observed Data in F7 for r=1
Malle conjecture for (r=1) = 0.3195022883

FW heuristic for (r=1) = 0.4200945584
Achter’s alpha function for r=1

with significant performance improvements in the imaginary case. Our
computations were carried out up to degree bounds deg(D) ≤ 13 for
q = 5 and various smaller bounds for q = 7, 11, 13. In addition, we were
able to give an improved algorithm in the imaginary case, which allowed
us to extend our computations further than those in [27]. Finally, we
accumulated enough data to allow for a meaningful comparison of our
3-rank data with the Friedman-Washington heuristics [14], along with
the results of Ellenberg et al. [12], Malle [24, 25] and Garton [17, 16].
Our results approach these heuristics as deg(D) grows.

It would be interesting to modify the algorithm to the case where
−3D is real. As noted in [27, 28], this is currently an open problem.
In this case, it is unclear how to efficiently single out a unique reduced
representative in each equivalence class of binary cubic forms, and in
fact, there are generally exponentially many reduced forms in a given
equivalence class.



2020 ROZENHART, JACOBSON, JR. AND SCHEIDLER

We were unable to make use of Fq(t)-automorphisms for the case
where −3D is unusual. This is mainly due to the fact that, in this case,
translation of a reduced form by β results in a partially reduced form
and not a reduced form. Losing this unique form in the first part of the
modified algorithm means a different approach must be used in order to
maintain accurate discriminant counts. One could attempt to just use
partially reduced forms instead, but a method to avoid double-counting
is needed. Storing all the forms found so far in memory would be one
solution but would result in a significantly slower algorithm with more
overhead than the original algorithm. Trying to find specific symbolic
transformation matrices to get from a type 1 form to a reduced form
also seems to be a challenge. In fact, it is unknown to the authors
how many type 1, 2 or 3 forms lie in a given cycle of partially reduced
unusual forms. Getting this or any speed up to work in the unusual
case is currently an open problem.

Computing ℓ-ranks for quadratic function fields where ℓ ̸= 3 via a
similar indirect technique would also be of interest. This requires a
special connection between certain higher degree function fields and ℓ-
rank values of quadratic function fields, as given by Hasse in the case
of cubic fields and ℓ = 3. Such a connection, along with a tabulation
algorithm, was provided in [33] for odd primes ℓ dividing q − 1 and
degree ℓ function fields whose Galois closure has Galois group Dℓ,
the dihedral group of 2ℓ elements. As yet, the tabulation method of
[33] has not been directly applied to the problem of finding quadratic
function fields of high ℓ-rank, and it is unclear how efficient it would
be at performing this task. Other techniques for computing ℓ-ranks of
quadratic function fields are currently being investigated. Some recent
work has been done on generating data and developing a heuristic for
the case where the prime ℓ for which the ℓ-rank is under consideration
is equal to the characteristic of the field. See [7] for some new results
along these lines.
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