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AN EQUIVALENT CONDITION FOR
THE FULL HAUSDORFF MEASURE OF
A SUBSET OF THE SET OF FINITE TYPE

JIANDONG YIN AND ZUOLING ZHOU

ABSTRACT. In this paper, the Hausdorff dimensions of
subsets of the set of finite type with positive Parry measure
are gotten firstly. Then by this result, an equivalent condition
for subsets of the set of finite type with the full Hausdorff
measure is given.

1. Introduction and preliminaries. It is well known that the
theory of Hausdorff measure and Hausdorff dimension is the basis
of fractal geometry, so how to compute or estimate the Hausdorff
measures and Hausdorff dimensions of the fractal sets is an important
problem. In general, to compute or estimate the Hausdorff measures
and Hausdorff dimensions of fractals is very difficult, and to compute
the Hausdorff measures of fractals is more difficult. Hence, up to now,
there are few concrete results about the computation of Hausdorff
measure even for some simple fractals (see [6-9]). Furthermore, the
results about the Hausdorff measures of subsets of the set of finite type
determined by (0, 1)-matrix are more rare.

In the present paper, we will investigate the Hausdorff dimensions and
Hausdorff measures about subsets of the set of finite type determined
by an irreducible (0,1)-matrix. Firstly, the Hausdorff dimensions
about subsets of the set of finite type with positive Parry measure
are obtained. Then by this result, we give an equivalent condition for
subsets of the set of finite type with full Hausdorff measure.

Let (X, d) be a metric space, E C X. For U C X, denote by |U| the
diameter of U, i.e., |U| = sup{d(z,y) : x,y € U}. If E C |J;5, Ui and
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for all 4,0 < |U;] < (6 > 0), then {U;}2, is called a d-covering of E.
Let s > 0, for 6 > 0, and write

(1.1)

H}(F) = inf { Z |U;|°,{U;,i > 0} is a countable §-covering of E}
i=0

Let 6 — 0, write H*(E) = lims_,o Hj(E); H*°(E) is called the s-
dimensional Hausdorff measure of E. Furthermore, there exists a
unique nonnegative number s satisfying

0 t>s

() = {
oo t<s,

s is called the Hausdorff dimension of E. Denote by dimg(-) and H*(-)

the Hausdorff dimension and the s-dimensional Hausdorff measure,

respectively.

Put S ={0,1,... ,k — 1} (k > 2) with discrete topology. The one-
sided symbolic space generated by S is denoted as

(1.2) Y ={z = (wo,21,...) | 2; €S, forall i > 0}.

Under the product topology, ¥ is a compact metric space with the
second axiom of countability. Now we define a metric d which is
compatible with the product topology on Xj as follows: for all z =
(l'Ovmla"')a y= (y07y15---) € Ekv

p 0 z=y
(z,y) = ’%N x#y, N=min{n:z, #yn}

Let A = (a;j)o<i,j<k—1 be a k x k-(0,1) matrix, and suppose its every
row, as well as every column, has at least one 1. Such a matrix is

called irreducible if, for any 4, j, there is some n > 0 such that al(-?) > 0,
where al(-?) is the (7, j)-element of A™. Matrix A = (aij)o<i,j<k—1 is
called aperiodic if there exists an n > 0 such that al(»?)
Let

(1.3)

Ya={z= (20,21, - ,Tn,-..) € Tk, A,

> 0 for all i, j.

=1, for all i > 0}.

i+l
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Then X 4 is a compact subset of X, and X 4 is called the set of finite
type determined by the matrix A. Set
(1.4)

[i0y915- -+ »in—1]a = {x € Xa|zo = t0,T1 =01, .. ,Tp1 =Tpn_1}
Then we call it a relative cylinder of ¥4 with length n. The relative
cylinder is both open and closed in X 4, and all of the relative cylinders
form a subbase under the relative topology of ¥4 (see [1-3, 5]).

We say that A = (a;;)o<i,j<k—1 satisfies the property M, if for any

given relative cylinder [ig,%1,... ,in_1]a(n > 0), we have
(1.5)  diam®([io, i1, ... ,in—1]a) = Y diam®([ig,i1,... ;in_1in]a),
in€S

where s = dimg (X 4) and diam (-) denotes the diameter.
2. Lemmas.

Lemma 2.1 [5] (Perron-Frobenius theorem). Let A = (a;j)o<i,j<k—1
be a k x k— (0,1) matriz, k > 2. Then

(1) There is a nonnegative eigenvalue p(A) such that no eigenvalue of
A with absolute values greater than p(A) and p(A) is called the spectral
radius of A;

(2) min(375 aij) < p(A) < max(355 aij);

(3) Corresponding to p(A), there exist nonnegative Tow eigenvec-
tor u = (ug,uy,...,ur_1) and nonnegative column eigenvector v =
(1)0, Viy--- ,vk,l)T;

(4) When A is an irreducible matriz, the row eigenvector u and col-
umn eigenvector v are strictly positive and p(A) is the unique eigenvalue
with this property.

Let A be an irreducible k£ x k£ — (0,1) matrix. Then p(A) > 0. u =
(ug,ui,... ,ux_1) and v = (vg,v1,... ,v5_1)7 are the row eigenvector
and column eigenvector corresponding to p(A) with wv = 1. Let
pi = u;v;,0 < i < k—1. Then P = (po,p1,...pr_1) is a probability
vector. Put
(2.1) pi; = 3% g <gj<k-1.

J p(A)'Ui, — ™ —=
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P = (pij)o<i,j<k—1is a k X k stochastic matrix. Now a measure on the
relative cylinder of X 4 is defined as follows:

(2.2) m([io,i1,--- ,in—1]4) = PioPigis == * Pin_sin_, > 0, for all n. > 0.

m can be extended to the o-algebra B(34) of all the Borel subsets of
34 to be a probability measure, we call it the Parry measure.

Lemma 2.2 [4]. Let A = (a;j)o<ij<k—1 be a k x k — (0,1) matriz,
k> 2. Then

. _ logp(4)
(2.3) s=dimg(X,4) = logk

Lemma 2.3. Let X4 be the set of finite type determined by a
k x k—(0,1) matriz A = (aij)o<i j<k—1. We can use the countable
covering consisting of the relative cylinders of Y4 to calculate its
Hausdorff measure.

Proof. Let U C ¥,4. Obviously |U| = |U|. Therefore, there exist
z,y € U, such that d(z,y) = |U|. By the definition of d, there is an
n > 0, such that

(2.4) d(z,y) = =X ie.x; =y, 1=0,1,...,n—1, Tp # Yn
and for any z € U, d(z,2) < d(z,y). So it is easy to prove that
z € [z0,Z1,-.- ,Tp_1]a, that is, U C U C [zg,Z1,..- ,Tn_1]a. It

means that for any subset of X4, there exists a relative cylinder of
>4 such that the former is included in the latter and they have the
same diameter. So Lemma 2.3 holds. O

We point out: for any subset C' of ¥ 4, we can also use the countable
covering consisting of the relative cylinders of ¥4 to calculate its
Hasudorff measure. By a proof similar to that of Lemma 2.3, we can
prove it.

Lemma 2.4. Let A = (aij)o<i,j<k—1 be an irreducible k x k — (0,1)
matriz and X4 the set of finite types determined by A. m is the Parry
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measure. For any C C X4, if C' is measurable and m(C) = 1. Then, for
any relative cylinder [ig,%1,... ,in)a, we have [ig,01,... ,i,]| NC # B.

Proof. Suppose that there is some relative cylinder [jo, j1,...,Ji]a
(I > 0), such that

(25) [jOajla"' 7jl]AmCZ®-
Since [jo, j1,-- - ;j1JaUC C X 4, by the monotonic property of a measure
and Lemma 2.1, we obtain
(2.6)

m(Xa) 2 m(C) +m([jo, j1,- -, jila) = L+ PjoPjoji * " Pju_rji > 1.
But m is a probability measure on X4, i.e,, m(X4) = 1, so it is
contradicting. o

3. Main results.

Theorem 3.1. Let A = (a;j)o<i,j<k—1 be an irreducible k x k—(0,1)
matriz and X5 the set of finite type determined by A. m is the Parry
measure. For any C C X 4, if C is measurable and m(C) > 0. Then

log p(A)

(3.1) dimr(C) = dimyr (S4) = =70

Proof. If C C ¥4 and m(C) > 0, then 0 < m(C) < 1. So m is a mass
distribution on C. Suppose @ # U C C. Then there exist x,y € U,
z = (zo,x1,---), ¥ = (Yo, Y1,--.) € Xa, such that d(z,y) = |U| = |U].
From the definition of d, there is some n > 0, such that d(z,y) = =,

so that U C U C [zg,... ,Zn_1]a. Furthermore,
m(U) S m([x07 e 7xn—1]A) S PaoPzozyr """ Par_oxn_1
= UV awowlviﬂl . amn72zn71/uzn71
0 p(A)vg, p(A)va, _,

max{u,;v;|0 < i,j <n—1}
- p(Ant '
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log p(A s s
Let s = lgog(k ). Then |U|* = (L) = ﬁ. Hence for any U C C
with [U] < 2, we get
(3.2) m(U) < p(A) max{u;v; : 0 <i,j <n-—1}U|".

By the mass distribution principle and Lemma 2.1, we have

(33)  H(C)> 1

0.
~ p(A)max{u;v; : 0 <i,j <n—1} ”

So dimp (C) > s = logp(4) Byt ¢ ¢ Y 4, therefore

log k
. . log p(4)
< = —"
dimpy (C) < dimpy(X4) log
and
. log p(A
(3.4) dimp (C) = dimp (S4) = %(k). 0

Theorem 3.2. Let A = (a;j)o<ij<k—1 be an irreducible k x k-
(0,1) matriz with the property M. Then, for any relative cylinder
[t0, 81, .. yipla C Za(p > 0), we have

log p(4)

H*([ig,%1, ... yipla) = diam®([do, 91,... ,p|a), where s = Tog

Proof. Let [ig,i1,... ,ip]a C X4 (p > 0) be a relative cylinder. From
Lemma 2.1 and Theorem 3.1, we know that m([ig, i1, .. ,ip|a) > 0 and
dimpg ([io, i1,--- ,ipla) = § = %. Let o = {U;}3°, be any open
covering of [ig,i1,... ,ip]. By Lemma 2.3, we can assume that a con-
sists of the relative cylinders of ¥ 4. Because [ig, i1, - - ,ip] is compact,
we can also assume that « is a finite covering of [io,%1,... ,%]a. Let
0 > 0, and for any i, |U;| < §. By the property M, for any n > 0, we

have
(35) diams([io, il, ceey ip]A)

P, . .
= E diam®([30, 915+« 3 0py tptiy v+ »iptn]a)
0<ipg1yemr yippn <k

<Y Uil
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Hence, from the definition of Hausdorff measure, we obtain
(36) diams([io, il, e ,ip]A) S Hg([lo, ’il, e )ip]A)-
In (3.6), letting 6 — 0, we get

(37) diams([i07i1, . ,ip]A) S HS([io,il, - ,ip]A).

Moreover, since A = (a;j)o<i,j<k—1 satisfies property M, by the
definition of Hausdorff measure and Lemma 2.3, for any § > 0 and
n > 1, we have

H§([i0,91,. -+ y0pla)
< > diam® ([ig, 315+ - »ipyipi1y--- »ipin]a)
0<ipi1,eeyiptn<k
= diams([io, il, N ;ip]A)-
Therefore,
(38) HS([io, il, e ,ip]A) S diams([io, ’il, e )ip]A)-

From (3.7)and (3.8), we obtain

(39) Hs([i(),il,... ,ip]A) :diams([io,il,... ,ip]A). O

Theorem 3.3. Let A = (a;j)o<ij<k—1 be an irreducible k x k-
(0,1) matriz with property M and X 4 the set of finite type determined
by A. m is the Parry measure. C C X4, C is measurable. Then
H*(C) = H*(X4) if and only if m(C) = 1, where s = %.

Proof. Firstly, we prove the necessary condition as follows.

If there is a measurable set C' C X4, such that H*(C) = H*(X ), but
0<m(C)<1. Let B=%4 —C (where ¥4 — C denotes the difference
set of ¥4 and C). Since C is measurable, B is measurable and

(3.10) 0<m(B)=m(Xa—C)=m(Xa) —m(C) <L
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So there exists a relative cylinder [ig,i1,...,%4a(¢ > 0), such that
[¢0,%1,--- ,iq)a C B. By Theorem 3.1 and Theorem 3.2, we have
1 A
(3.11) dimp ([ig, i1, ... ,ig]) = s = Olgog(k)
and

(3.12) H*([igy i1, ... iq)) = diam®([ig, i1, ... ,iq]) > 0.

So
(3.13)
H*(C) = H*(Z4)—H*(B) < H*(24) — H([i0, i1, - - - ,iq]) < H*(Z4),

which contradicts H*(C) = H*(X4). Hence, m(C) = 1.
Next we will show the sufficient condition.

Suppose ¥4 — C # &. By Lemma 2.3, we can only use the countable
covering consisting of the relative cylinders of ¥4 to calculate the
Hausdorff measure of C. Let {U;}3°, be a countable covering of C
consisting of the relative cylinders of X 4. Suppose that, for any ¢,
|U;| <6(0 <6 <1). We can assume that, by the definition of Hausdorff
measure, for any i, U; is a relative cylinder as [ig, ... ,ix]a,k > 1 and
U;NU; = (i # j). By Lemma 2.4, for any = (2o, Z1,... ,Tm,...) €
Y 4 — C and any positive integer g, we have [zg,z1,... ,24,Ja NC # @.
So there exists some positive integer p, such that U, € {U;}2,
and [zg,Z1,...,24la NUp # . Suppose that p < ¢ (in fact, if
p > ¢, from Lemma 2.4 and U; NU; = @(i # j), there is another
relative cylinder [zg,...,z.Ja(r > p > ¢) including z, such that
[0,---,2,]a NUp # @. In this case, we replace ¢ with r), so that
z € [Tg,...,24)a C Upand z € |J;=, U;. The arbitrariness of = implies
(4 — C) C U;2, U;. This means that all the §—coverings of C, which
consist of the relative cylinders of X 4, are also coverings of X 4. By the
definition of Hausdorff measure, we obtain X;|U;|* > Hj(X4). Also
the arbitrariness of {U;};2, implies that Hj(C') > H$(X4). Let 6 — 0.
We have H*(C) > H®*(X4). Obviously, H*(C) < H*(Xa4); hence,
Hs(C) = H*(Z4). O
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work.
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