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A CHARACTERIZATION OF
MONOTONELY HOMOGENEOUS DENDRITES

EVAN P. WRIGHT

ABSTRACT. We develop tools for studying dendrites and
monotone maps between them by examining the Cantor-
Bendixson rank of certain subsets of arcs. Using these tools,
we prove that the class of monotonely homogeneous dendrites
is precisely the class of dendrites which contain a copy of
the Omiljanowski dendrite Lo, answering a question originally
asked by J.J. Charatonik.

1. Introduction. As in [5], we may put a quasi-order on the class
of all dendrites by saying that X <p; Y if and only if there exists a
monotone surjection from Y onto X. Two dendrites X and Y are said
to be monotonely equivalent if X <pg Y and Y <y X.

The standard universal dendrite of order n € {3,4,... ,w}, denoted
D, is the unique dendrite with a dense set of ramification points,
each of which has order n (see [1, (6), page 490]). It is known that
each standard universal dendrite admits a monotone map onto D,
and that D,, admits a monotone map onto every dendrite [2, Theorem
6.2, Corollary 6.4], so in particular, all standard universal dendrites are
monotonely equivalent. In fact, the property of monotone equivalence
to the standard universal dendrites is characterized by containment of
the Omiljanowski dendrite Lg (see [2, page 182] for the definition). This
fact was originally shown as Theorem 6.12 in [2], but the proof contains
an error; an alternative proof can be found in [11] as Theorem 5.7.

Given a class of mappings M, a space X is said to be M-homogeneous
if for every z,y € X, there is a mapping f € M from X onto itself
such that f(z) = y. In [2], J.J. Charatonik shows that each standard
universal dendrite is monotonely homogeneous and asks for an intrinsic
characterization of this property among dendrites. Since any dendrite
which is monotonely equivalent to a monotonely homogeneous dendrite
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is itself monotonely homogeneous, a natural question, which appears as
Problem 3 of “Open problems on dendroids” in the book Open Problems
in Topology 11 [9, page 319] (attributed to J.J. Charatonik and W.J.
Charatonik), is whether monotone equivalence to the standard univer-
sal dendrites (equivalently, containment of Lg) characterizes monotone
homogeneity among dendrites (see also [2, 4]). In Section 4, we answer
this question in the affirmative.

2. Preliminaries. In this paper, all spaces are assumed to be
metric. A continuum is a compact, connected space, and a dendrite
is a locally connected continuum that contains no simple closed curve.
It is known that every subcontinuum of a dendrite is a dendrite [7,
Section 51, VI, Theorem 4, page 301]. Dendrites are uniquely arcwise
connected, and for z,y in a dendrite X, we denote by zy the arc from
z to y.

All mappings will be assumed continuous. A mapping f : X —
Y between continua is monotone if the preimage of each point is
connected.

For a dendrite X, the order of a subcontinuum Y of X is the number
of components of X \ Y. We define the order of a point p in X to be
the order of the singleton {p}. Points of order 1 are called end points,
and points of order 3 or more are called ramification points. The set
of end points is denoted by E(X), and the set of ramification points is
denoted R(X).

Given a space E, for each ordinal «, the Cantor-Bendizson derivative
of order a, denoted E(®) | is defined inductively as follows:

e £EO) = F.
e EB+) = {e € F | e is a limit point in E(®)},
e EO =Nz, EP for limit ordinals +.

The Cantor-Bendizson rank of E, denoted rank (E), is defined to be
the least ordinal a such that E(®) = pletl),

For a compact metric space Y, it is known that Y (®) = & for some o
if and only if Y is countable. In this case, it is also true that rank (V")
is a successor ordinal, and that the last non-empty derivative of Y is a
finite set.
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3. Arc rank. The concept of arc rank will prove fundamental in the
proof of the main theorem. We will begin with the relevant definitions
and then prove the basic facts about arc rank that will be needed in
the last section.

Let X be a dendrite. For an arc A = pg C X, we define I(A) to
be the set (AN R(X)) U {p,q} of interesting points of A. If I(A) is
countable, then the arc rank of A, denoted arankx(A), is defined to
be the Cantor-Bendixson rank of I(A). Otherwise, we will say that
arank y (A) does not exist, and that A is non-scattered. The notation
I(®)(A) will be used as shorthand for [I(A)](®).

The arc rank of a point z in a dendrite X, denoted arankx(z), is
defined as follows. For an ordinal 8, we say that arankx (z) > § if there
exists an arc B C X such that I®)(B) contains z. Then arankx (z)
is defined to be the least ordinal « such that arankx (z) is not greater
than « (if such an ordinal exists).

Finally, to investigate local properties of dendrites, we will need a
third notion of arc rank. For an arc A C X containing a point = € X,
we define the arc rank of  in A, denoted arankx(x; A), to be the least
ordinal o such that I(®)(A) does not contain z.

The following theorem is the primary motivation for using arc rank
to investigate monotone maps between dendrites.

Theorem 3.1. Let f : X — Y be a monotone surjection between
dendrites, and let azb, C X and ayby, C'Y be arcs such that flayb,] =
ayby. Then I®)(ay,b,) C I (azb,)] for all ordinals c.

Proof. First, we treat the case « = 0. Let y € I(ay,b,). Ify € {ay, by},
then y € f[{as,bz}], and so y € f[I(ayb;)]- Otherwise, y € R(Y),
and so [6, Theorem IL.1] implies that y € f[R(X)]. Let z € R(X)
be such that f(z) = y, and let p be the closest point of a.b, to z.
If p ==, then y € f[R(X) Nagzb,] C f[I(azbs)]. Otherwise, since
y € ayb, = flazbs|, we may choose g € a,b, such that f(¢) =y, and so
by monotonicity, we have f[zq] = y and thus f(p) =y. If p € {a,,b:},
then y € f[{as,b:}] C f[I(agzby)]- If not, we claim that p € R(X).
In this case, both pa, and pb, are nondegenerate arcs, and their
intersection is the singleton {p}. By definition of p, the intersection of
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px and a;b, is also {p}, so pa, Upb, Upz is a triod centered at p, and we
conclude that p € R(X). Therefore, y € f[R(X) Nayb;] C f[I(azbs)]-

Thus I(ayby) C flI(azbs)], so by (4.11) and (4.12) in [5], it follows
that

1 ayb,) C (f[I(azbe)) ™ C FI)(arbs)]

for all ordinals a. O

Corollary 3.2. Let X, Y be dendrites, and let f : X — Y be a
monotone surjection. Then for each ordinal o, and for eachy € Y such
that aranky (y) > a, there is a point x € X such that arankx (z) > o

and f(z) =y.

Corollary 3.3. Let A be an arc in a dendrite X, and let f be a
monotone map from X onto a dendrite Y. Then the arc rank of f[A]
'Y is no larger than the arc rank of A in X.

In addition to the three notions of arc rank defined above, we would
like to define the arc rank of a dendrite globally. The obvious way to
assign such a rank is to take the supremum over all arcs in the dendrite.
The following lemma shows that such a construction gives a meaningful
answer precisely when the dendrite contains no non-scattered arcs.

Lemma 3.4. Given a nondegenerate dendrite X, if arank x (A) exists
for each A C X, then the arc ranks of arcs in X have a common,
countable upper bound.

Proof. First, we note that if each arc has arc rank, then each point
has arc rank. Let z € X, and for each pair of distinct components of
X \ {z}, take an arc from an end point in one component to an end
point in the other component. This forms a countable collection of arcs
A such that for an arbitrary arc A containing z, some element of A
contains a neighborhood of x in A. Thus, if z has arc rank « in any arc
of X, then it has arc rank at least « in some element of A. Therefore,
since w; has uncountable cofinality, the arc rank of x over all arcs is
bounded above by a countable ordinal, so  has arc rank.

Now, choose a countable collection of arcs A,, such that every point
of X that is not an end point is contained in the union. For example,
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if X is not an arc (in which case the theorem is obvious), we may take
the collection of arcs whose end points are ramification points of X,
and add to this collection all arcs from an isolated end point (of which
there must be at most countably many) to the nearest point of R(X).
If R(X)\ E(X) was uncountable, then the intersection with some arc
of this collection would be uncountable, and that arc would have no
arc rank, contrary to our assumption. Thus, arguing by cofinality as
before, the arc ranks of points in R(X)\ E(X) are collectively bounded
above by some countable ordinal a.

Let A be an arbitrary arc of X with arankyx(A4) = B, and let
x € I®~1(A). (Since § is the Cantor-Bendixson rank of a countable
compact metric space, it is a successor ordinal). Because A contains at
most two points of F(X), for any sequence of distinct points of I(A)
converging to z, all but finitely many of them must be in R(X)\ E(X),
and thus have rank no larger than « in I(A). Therefore, the arc rank
of z in A (and therefore the arc rank of A itself) is bounded above
by a + 1, and since A was arbitrary, all arcs share an upper bound of
a+1l. 0O

Finally, we show that the arc rank of a point z € X can be determined
by looking only in one “direction” from x. Note that if the inequalities
in the lemma are replaced by equality, the result is not true in general
for points of infinite order.

Lemma 3.5. Let X be a dendrite, let B be a countable ordinal, and
let x € X be such that arankx (z) > B. Then there is some component
C of X \ {x} such that arankg(z) > 3.

Proof. Let A C X be an arc containing z such that = € I(®(A). If
[ is a successor ordinal, let 3, be the constant sequence 8 — 1, and if
[ is a limit ordinal, let 3, be a sequence of ordinals such that 3, 1 5.
Choose a sequence of points z,, € I(ﬂn)(A) such that x,, — z. Since A
intersects at most two components of X \ {z}, we may assume that each
Z,, lies in the same component, call it C. Let A’ be the arc obtained as
the intersection of A and the closure of C. Then each z,, is contained
in A’, so z € I¥(A’), and we conclude that arankz(z) > 3. O
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4. Main results. Based on the definition, we would intuitively
expect that monotonely homogeneous dendrites display a high degree
of self-similarity. The following lemma quantifies some of that intuition.

Lemma 4.1. Let X be a nmondegenerate monotonely homogeneous
dendrite, and let x be a point of X. Then there is some component of
X \ {z} whose closure is monotonely equivalent to X .

Proof. Choose e to be an arbitrary end point of X. By monotone
homogeneity, there is a monotone map from X onto itself taking x to
e. Since X \ {e} is connected, the mapping m must shrink all but
one component of X \ {z} to a point, namely e. If C is the unique
component with nondegenerate image, then the image of C' under f is
at least X \ {e}. Since z € C and f(z) = e, the closure of C' maps onto
X, and since C' is a subcontinuum of X, there is a monotone map from
X onto C, so we conclude that C' and X are monotonely equivalent. 0O

The preceding theorem is the cornerstone of the proof of the main
theorem, and the reason for using arc rank to examine monotonely
homogeneous dendrites. We would like to show that monotonely
homogeneous dendrites lie at the top of the monotone hierarchy, along
with the universal dendrites. The following theorem shows that they
must at least lie at the top of the arc rank hierarchy.

Theorem 4.2. Let X be a nondegenerate monotonely homogeneous
dendrite. Then there is an arc in X with no arc rank.

Proof. Suppose not. Then by Lemma 3.4, the supremum of arank (A)
taken over all arcs A C X is a countable ordinal a.

If the supremum « is attained, then as the rank of a compact set, o
is a successor ordinal, and we let 3,, be the constant sequence oo — 1. If
the supremum is not attained, then « is a limit ordinal, and we let 3,
be a sequence of ordinals such that 5, 1 a.

Let x; be an arbitrary point of X. By induction, we will construct
an arc starting from z; and contradicting our definition of a.

Suppose that, for some n, we have defined a sequence of points
T1,T2,...,T, such that:
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(1) 2129 C 2123 C - -+ C 212, is an increasing sequence of arcs.
(2) For k =2,3,...,n, the arc rank of z;,_;x) is greater than Sj.

(3) There is a component X,, of X \ {x,,} such that X,, is monotonely
equivalent to X and X,, Nx1z, = J.

Let P = {# € X : arankx(z) > Bnt1}. By Lemma 3.5 and
Lemma 4.1, for each p € P we may find components C), and D), of
X \ {p} such that C, is monotonely equivalent to X, and arankD—p(p) >

/6n+1-

If for some p € P we may choose Cp, # Dy, then let e be an arbitrary
point of E(X) N Dy, and let g = p.

If not, then we claim that for some p € P, there is a subcontinuum
M of C}, such that M is monotonely equivalent to X. Suppose not.
Then every subcontinuum of X that is monotonely equivalent to X
contains every point of P. If |P| > 2, then there is some point y
that separates two of them. Then the closure of each component of
X \ {y} misses a point of P, so none is monotonely equivalent to X,
contradicting Lemma 4.1. If |P| = 1, then Corollary 3.2 implies that
every monotone self-map of X leaves the unique element of P fixed,
contradicting monotone homogeneity. Thus, the claim is shown, and
we may choose p € P and a subcontinuum M of C), such that M is
monotonely equivalent to X. Choose ¢ to be the nearest point to p in
M, and choose e = p.

In either case, since X, is monotonely equivalent to X, which is
monotonely homogeneous, we may find a monotone map m : X,, — X
such that m(z,) = e. Since by construction the arc eq has arc rank
greater than (3,11, and since the arc from z,, to the nearest point of
m~1(q), call it ¢’, maps onto eq, by Corollary 3.3, this arc has arc
rank greater than (,41. Moreover, by construction, there is some
component of X,, \ m~1(q) other than the one containing x, whose
closure is monotonely equivalent to X. Therefore, letting z,,1 = ¢,
we have

(1) 2129 C x123 C -+ C T1Tp41 is an increasing sequence of arcs.
(2) For k =2,3,...,n+1, the arc rank of z)_zy is greater than fBy.

(3) There is some component X,, 1 of X \ {z,41} such that X,,;; is
monotonely equivalent to X, and X,, 11 Nx12,41 = .
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By induction, this results in a nested sequence of arcs x1x2 C 123 C
.-+, so the sequence {z,} converges to some point x of X. If the global
(supremum) arc rank « was attained, then the arc rank of some point
in each arc z,x,41 is greater than a — 1, so the arc rank of z;z is
greater than «, a contradiction. If o was not attained, then the arc
rank of z;x is greater than each ordinal less than «, so it must be at
least «, a contradiction. Therefore, our initial assumption was false,
and we conclude that some arc of X has no arc rank. ]

Corollary 4.3. If X is a monotonely homogeneous nondegenerate
dendrite, then the subcontinuum of X irreducible about the set of points
of X which have no arc rank is nondegenerate.

Since the irreducible subcontinuum in Corollary 4.3 may not be
irreducible about its own set of points with no arc rank, we must iterate
the construction. Our final lemma shows that this iteration always halts
on a nondegenerate and monotonely homogeneous dendrite.

Lemma 4.4. Let X be a mondegenerate monotonely homogeneous
dendrite. Then there is a subcontinuum of X which retains these
properties and which is, in addition, irreducible about its set of points
with no arc rank.

Proof. For each ordinal a (not necessarily countable), define X, as
follows:

e Xo=X.

® X, 11 is the irreducible subcontinuum of X, about the set of points
x such that arankx_(z) does not exist.

o X, = Ng<yXp for limit ordinals ~.

We claim that if f : X — X is a monotone surjection, then
Xo C f[X,4] for all ordinals @. The case o = 0 is trivial. If the claim
is true for all @ < ap, then by considering f|Xa, : Xog — f[Xao] D
Xop, Corollary 3.2 implies that (f[Xao])1 € f[Xao+1]. But clearly
Xoo+1 = (Xag)1 C (f[Xao])1, so the claim holds for & = ap + 1. If v
is a limit ordinal and the claim holds for all 8 < «, then the fact that
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X, C f[X,] is an easy consequence of each Xg being compact, and f
being continuous. By induction, this demonstrates the claim for all a.

This implies that each nonempty X, is monotonely homogeneous.
For z,y € X,, take a monotone self-map f of X which takes z to y.
Then by the claim above, f[X,] is a subcontinuum of X which contains
X,. Composing f with a monotone retraction of f[X,] onto X,, we
have a monotone self-map of X, taking z to y.

This means that if « is the least ordinal such that X, is empty, then
X, 1 must be a single point by Corollary 4.3 (o must be a successor
ordinal because nested intersections of nonempty compact spaces are
nonempty). However, this would contradict monotone homogeneity of
X, since by the first claim above, each monotone self-map of X would be
forced to leave that point fixed. Therefore, each X, is nonempty, and
thus nondegenerate and monotonely homogeneous. Moreover, there
must exist some o such that X, = X, 41 (take o with cardinality
larger than that of X, for example), and then X, is the required
subcontinuum. O

Finally, with all of these tools in hand, we are prepared to prove the
main theorem.

Theorem 4.5. Let X be a nondegenerate monotonely homogeneous
dendrite. Then there exists a monotone map from X onto a dendrite
with a dense set of ramification points.

Proof. By Lemma 4.4, X contains a nondegenerate monotonely
homogeneous subcontinuum that is irreducible about its set of points
which have no arc rank. By taking a monotone retraction of X onto
this subcontinuum, we may suppose without loss of generality that X
has this property.

Define a relation on X by x ~ y if and only if xy has arc rank.
This is clearly an equivalence relation, since xy has arc rank exactly
when I(xy) is countable. Also clear is that equivalence classes of ~ are
arcwise connected. We claim that they are closed as well. Let {z,} be
a convergent sequence of points which lie in a single equivalence class,
and let p be its limit. For each k, let c; be the nearest point of zip
to x. Since equivalence classes are connected, either p is in the same
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equivalence class as the x,, or each z, lies in the same component of
X \ {p}. In the latter case, z1p and zyp intersect on a final segment
for each k, so ¢ € xgp for each k, and lim ¢, = p. Moreover, since by
construction zrcrUckrr1 = T, each ¢ is in the same equivalence class
as 1. Therefore, up to reordering, x;c, is an increasing sequence of
arcs such that I(z;c,) is countable for each n, and z1p\ {p} = Unz10p,
so 1 ~ p, and the claim is shown.

The equivalence relation thus gives a decomposition of X into sub-
continua. Since every sequence of disjoint subcontinua in a dendrite
forms a null-sequence [10, Chapter 5, (2.6), page 92], the decompo-
sition is automatically upper semicontinuous, and therefore defines a
monotone map f on X. We claim that the image contains no free arcs.
First, note that the image of each ramification point is a ramification
point. Indeed, since X is irreducible about its set of points which have
no arc rank, for any point r € R(X), each component of X \ {r} con-
tains a point (and therefore an arc) with no arc rank. The image of
an arc with no arc rank under f is nondegenerate by definition, so the
image of each component of X \ {r} is nondegenerate, and the image
of r is a ramification point. Thus, the preimage of any nondegenerate
free arc @'’ C f[X] would contain a nondegenerate free arc ab C X
which maps onto it. If ab was free, then a would be equivalent to b,
and then the image of ab would be a single point, contradicting our as-
sumption. Therefore, X admits a monotone map onto a nondegenerate
dendrite that contains no nondegenerate free arcs and which therefore
has a dense set of ramification points. O

Since every dendrite with a dense set of ramification points is mono-
tonely equivalent to each of the standard universal dendrites [2, The-
orem 6.7], and since monotone equivalence to the standard universal
dendrites is characterized by containment of the Omiljanowski dendrite
Ly (see [2, Theorem 6.12] and [11, Theorem 5.7]), Theorem 4.5 implies
that the class of monotonely homogeneous dendrites is precisely the
class of those dendrites which contain a homeomorphic copy of L.
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