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BOUNDS USING THE INDEX OF NAGAMI
MARIA MUNOZ

ABSTRACT. We consider the cardinal invariant indez of
Nagami, Nag(X), which measures how the topological space
X is determined by its compact subsets via upper semi-
continuous compact valued maps defined on arbitrary topolog-
ical spaces, to establish relationships between cardinal func-
tions of X and Cp(X), where Cp(X) is the space of continuous
functions with the pointwise convergence topology. Applica-
tions to Lindelof Y-spaces are given.

1. Introduction. Let X be a topological space and C,(X) the
space of continuous functions with the pointwise convergence topology;
a natural question that arises is how the topological properties of both
spaces are related. A way to “measure” topological properties is using
cardinal inequalities in which cardinal functions are involved. A large
list of well-known results about these questions can be found, see for
example [1, 9].

The aim of this paper is to give new topological cardinal inequalities
for a topological space. For that we use the index of Nagami, Nag(X)
which measures how the topological space X is determined by its com-
pact subsets via upper semi-continuous compact valued maps defined
on arbitrary topological spaces.

In Section 3 we use the index of Nagami to establish a bound of
the network weight of a topological space using continuous bijections.
These results will be used in Section 4 to establish inequalities between
the cardinal functions of a topological space X and the space of all
real valued continuous functions on X in the topology of pointwise
convergence, Cp(X). Among other results, we prove that for a subspace
H C Cp(X), nw(H) < max{Nag(X),d(H)}. Monolithic properties are
also studied. Finally, the last section is dedicated to the hereditarily
Lindel6f number and the spread. Applications to the class of Lindelof
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Y-spaces are given. The class of Lindelof X-spaces was introduced
by Nagami [15], see also [13]. A topological space X is said to be a
Lindel6f Y-space if it is the image of some subset of NN under an upper
semicontinuous compact-valued map. The class of Lindelof X-spaces is
the minimal class which contains all second countable spaces and all
compact spaces and is closed with respect to finite products, closed
subspaces and continuous images.

2. Terminology and definitions. We denote by X, Y, Z
topological spaces. All our topological spaces are assumed to be
Tychonoff. Our basic references are [1, 7, 9,11]|. A cardinal number m
is the set of all ordinals which precede it. In particular, m is a set of
cardinality m. Thus, @ < m and o € m are the same. The following set-
theoretic notation is adopted: m, n and t are infinite cardinal numbers.
w is the smallest infinite cardinality. The cardinal number assigned to
the set of all real numbers is denoted by ¢. A cardinal function ¢ is
a function from the class of all topological spaces (or some precisely
defined subclass) into the class of all infinite cardinalities such that
#(X) = ¢(Y) whenever X and Y are homeomorphic. The requirement
that cardinal functions take on only infinite cardinal numbers as values
simplifies statements of theorems and places the emphasis on infinite
cardinal arithmetic. We use well-known cardinal functions. The weight
of X, w(X), is the minimal cardinality of a base for the topology of X.
A network in a space X is a family F of subsets of X such that for any
point x € X and any open neighborhood U of = there is F' € F such
that x € F C U. The network weight of X, nw(X), is the minimal
cardinality of a network in X. The Lindeldf degree of X, denoted
by £(X), is defined as the smallest infinite cardinality m such that
every open cover of X has a subcollection of cardinality < m which
covers X. The hereditarily Lindelof degree of X, hé(X) is defined by
sup{¢(Y) : Y C X}. It is obvious that ¢(X) < hé(X). The density of
X, d(X), is the minimal cardinality of an everywhere dense set in X.
The hereditarily density of X, hd(X), is sup{d(Y): Y C X}.

The notion of the usco map has been studied in [4, 6] among others.
The definition is the following.

Definition 2.1. Let X and Y be topological spaces. A multivalued
map ¢ : X — 2Y is said to be:
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(i) upper semicontinuous at zy € X if ¢(zy) is not empty and for
each open set V' in Y with ¢(xg) C V there exists an open neighborhood
U of zo in X such that ¢(U) C V.

(ii) upper semicontinuous if it is upper semicontinuous at each point
reX.

(iil) usco if ¢ is upper semicontinuous and the set ¢(z) is compact for
each x € X.

A usco map can be characterized in terms of nets, see [12, 14]. The
following implication will be used throughout this paper.

Proposition 2.2. Let X andY be topological spaces and ¢ : X — 2V
a usco map. If (z;)je; C X is a net which converges to x € X and
(yj)jes CY is a net such that y; € ¢(z;) for every j € J, then (y;)jes
has a cluster point y which belongs to ¢(z).

The notion of the Nagami index of a topological space can be found
in [3].

Definition 2.3. Let X be a topological space. The index of Nagami
of X, Nag(X) is the smallest infinite cardinality m such that there exist
a topological space Y, with w(Y) < m and a usco map ¢ : Y — 2%
such that X = U{é(y): y € Y}.

When X is a Lindelof Y-space then Nag(X) is countable.

3. Continuous bijections. The following proposition will allow us
to prove the main theorem of this section.

Proposition 3.1. Let X, Y and Z be topological spaces, and let
¢: X —2Y be a usco map such that Y = Usex ¢(x) and f:Y — Z a
continuous bijection. Then 'Y is the image under a continuous map of
a closed subspace of the space X X Z. In particular,

nw(Y) < max{w(X),w(Z)}.
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Proof. We define T := {(z,y) : y € ¢(x)} C X xY. Then T is
closed in X X Y in the product topology, see [10, Proposition 2.22].
Now, we consider the subspace T of X XY with the inherited topology
and the map ® : T'— X x Z defined by ®(z,y) := (z, f(y)) for every
(z,y) € T. We will prove that ®(T) is closed in X x Z and that
®: T — ®(T) is a continuous closed bijection. To prove that ®(T') is
closed in X x Z we consider anet (z;, zj)je; C ®(T) convergent to (z, z)
in X x Z. Since f is a one-to-one map, there exist unique y, y; such
that f(y) = 2z and f(y;) = z; for every j € J. Now (z;,y;)jes C T}
thus, y; € ¢(x;) for every j € J. Since (z;);cs is a convergent net to
z in X we have, again for ¢ being a usco, that (y;);cs has a cluster
point y* € ¢(z). We also have that f is continuous; hence, f(y*) is
a cluster point of (f(y;))jes. But (2;)jes = (f(y;))jes is convergent
to z; hence, z = f(y*). But y* = y because f is one-to-one, and
(z,z) = ®(x,y) where (z,y) € T; and we have proved that ®(T) is
closed in X x Z. The same proof allows us to affirm that ® is a
closed map. To see that ® is continuous we consider a convergent
net (z;,y;)jes to (z,y) in T and we will prove that (®(z;,y;))jcs
converges. The net (®(z;,y;))jes is equal to (z;, f(y;))jcs and now
it is obvious that it converges to (z, f(y)). Finally, the proof that ®
is one-to-one is trivial. Thus, ®(T") is homeomorphic to T', and since
®(T) is a subspace of X x Z, then w(®(T)) < max{w(X),w(Z)}, [7,
Proposition 2.3.13, page 81]; and hence w(7) < max{w(X),w(Z)}.
On the other hand, Y is the continuous image of T' by the projection
m:T — Y, where 7(z,y) = y for every (z,y) € T. Now, we have that
nw(Y) < w(T) because if O = {O; : i € I} is a base for the topology
of T, then the family N' = {f(0;) :C€ I} is a network for Y. Finally,
we obtain nw(Y) < max{w(X),w(Z)} and the proof is over. O

Theorem 3.2. Let X and Y be topological spaces and f : X =Y a
continuous bijection. Then

(3.1) nw(X) < max{Nag(X),w(Y)}.

Proof. Given X, there exist a topological space Z with w(Z) =
Nag(X) and a usco map ¢ : Z — 2% such that X = J,., ¢(z). Now
we use Proposition 3.1 to conclude that nw(X) < max{Nag(X),w(Y)}.
o
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We cannot remove Nag(X) from inequality (3.1). The space (R, 74),
of all real numbers with the discrete topology gives us an example.
The identity map from this space onto R with the usual topology is a
continuous bijection, w(R) = w and nw(R) = ¢; thus, nw(R) > w(R).

Equation (3.1) holds for every topological space Y which is an image
of X under a continuous bijection. Now, it makes sense to have the
following definition, see [1, page 5].

Definition 3.3. Let X be a topological space; we call iw(X) the
smallest cardinal m for which there exist a topological space Y with
w(Y) < m and a continuous bijection f: X — Y.

Theorem 3.2 can be reformulated in these terms as:
Theorem 3.4. Let X be a topological space. Then

nw(X) < max{Nag(X),iw(X)}.

4. Network weight and density. In this section we establish
bounds of the network weight of a subspace.

Theorem 4.1. Let X be a topological space, G C X a subspace of
X and H C C(X) a subspace of Cp(X). Then:

(i) nw(H ") < max{Nag(X), |H|}.
(ii) nw(H) < max{Nag(X),d(H)}.

<
(iii) nw(G) < max{Nag(Cp(X)),d(G)}.

Proof. (i) We consider a subspace H C Cp(X). Let f : X — RH
be the map defined by f(z) = (h(z))ncn for every z € X. We define
T := {(h(z))her € R¥ : © € X}. Let 7 be the product topology
on R¥., Now w(R¥,7) < |H| and hence w(T,7) < |H|. Let 7 be
the quotient topology in T defined as the largest topology such that
f: X — T is continuous. Also, this topology T is the topology on T
such that for all functions g € RT, go f € C(X) [11, Theorem 9, page
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95]. Now we have

x L7,

where fis a continuous map onto, being f(w) := f(z) for every z € X.
By Theorem 3.2 we have that nw(T,7) < max{Nag(T,7),w(T,T)}.
The index of Nagami does not increase by continuous image, because
the composition of a usco and a continuous map onto is again usco, see

[3, 6]; thus, Nag(T,7T) < Nag(X), and
nw(T,7) < max{Nag(X), |H|}.

In fact, as nw(Cp(T, 7)) = nw(T,T), see [1, Theorem L.1.3, page 26],
we have the inequality nw(C,(T, 7)) < max{Nag(X), |H|}. The space
C,(T,T) is homeomorphic to the subspace F = {gof:gc Co(T,7T)} of
Cp(X). We show that F is closed in C,(X). To this end, let s € F * be
amap in C,(X). Then there is a net (s;);cs in F such that (s;) X s. For
each ¢ € I, choose g; € C(T,T) such that s, = g,-Of. Note that, for each
t €T, all s;’s are constant on f_l(t). Since s; - s, we conclude that s
is constant on f’l(t) as well. Thus, we can defineamap g: (7,7) > R
such that for each t € T, g(t) = s(z) for any = € f~1(t). This implies
that s = go f, and the continuity of g follows from the fact of s € C (X)
and the choice of 7. Therefore, s € F, which verifies that F' is closed
in Cp(X). Fix h € H. Then h = m,0io f, where 7, : R — R
is the projection in the h-coordinate and i : (T,7) — (T,7) is the
identity map. The map 7, 0i: (T,7) — R, again because of h € C(X)
and the choice of 7 verifies that 7, o ¢ € Cp(T,7). Thus, h € F. It
follows that H'* ¢ F'” = F and nw(H ") < nw(F) = nw(T,7) <
max{Nag(X),|H|}, and the proof is finished.

(ii) follows immediately from (i). Let H' C H be a set with the
minimal cardinality such that H C H' "; then using (i) we have

nw(H) = nw(H *) < max{Nag(X), |H'|} < max{Nag(X),d(H)}.

(iii) Using (ii) we have that for every H C C,(Cp(X)) we obtain the
following inequality

nw(H) < max{Nag(Cy(X)),d(H)}.



BOUNDS USING THE INDEX OF NAGAMI 1983

To finish the proof, it is enough to observe that the network weight
is a hereditarily invariant cardinal function and X C C,(Cp(X)) is
a subspace. The inclusion is given by i : X — Cp(Cp(X)), where
i(x) : Cp(X) — R is defined as i(x)(h) = h(z) for every h € Cp(X). D

The following definition can be found in [1, page 83].

Definition 4.2. A topological space X is called m-monolithic if
nw(A) < m for every A C X such that |A] < m. A space X is called
strongly m-monolithic if for every Y C X with |Y| < m, the weight of

the space Y does not exceed m.

We obtain the following result, which was proved in [3] using proper-
ties of the index of Nagami.

Corollary 4.3. Let X be a topological space and H C C(X) 7p-
compact. Then H is strongly Nag(X)-monolithic.

Proof. We consider H' C H with |H'| < Nag(X). Then, after
Theorem 4.1 (i) and since, for compact space, the network weight and
the weight coincides [7, Theorem 3.1.19, page 127], w(H') = nw(H’) <
max{Nag(X), |H'|} = Nag(X). O

Corollary 4.4. Let X be a topological space and H C X compact.
Then H is strongly Nag(Cp(X))-monolithic.

Proof. We consider H' C H with |H'| < Nag(Cp(X)). Then, by
Theorem 4.1 (iii),

w(H') = nw(H') < max{Nag(Cp(X),|H'[} = Nag(Cy(X)). O

The following corollaries can be found in [1, Theorem II1.6.9].

Corollary 4.5. Let X be a Lindelof X-space and H C Cp(X). Then

In particular, if H is 1,-compact subspace then H is metrizable, see [5].
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Proof. By Theorem 4.1 (ii) we have that nw(H) < d(H). Another
inequality is always true, see [8, page 14]. For H a compact space
w(H) = nw(H); hence, w(H) = nw(H) = d(H) = w and the proof is
over. O

Corollary 4.6. Let X be a topological space such that Cp(X) is
a Lindeldf X-space. Then for every subspace H of X we have that
nw(H) = d(H).

5. Hereditarily Lindel6f number and spread. The spread of
X, s(X), is the smallest infinite cardinal m such that the cardinality of
every discrete subspace of X does not exceed m.

The following result is due to Sapirovskii [16].

Proposition 5.1. Let U be an open cover of a topological space X,
and let s(X) < m. Then there evist a subset A of X with |A| <m and
a subfamily V of U with |V| < m such that X = AU (UV).

Theorem 5.2. Let X be a topological space. Then:
(i) he(X) < max{Nag(Cp(X)), s(X)}.
(i) h(Cy(X)) < max{Nag(X), s(Cy(X))}.

Proof. (i) Let U be any family of open subsets of X. It is enough to
show that there is a subfamily W* with [W*| < max{Nag(X), s(X)},
such that UU = UW*. By Proposition 5.1, we can find a subset A
of X with |A] < s(X) and a subfamily V of U with |[V| < s(X)
such that U = AU (UV). Theorem 4.1 (iii) implies that nw(A4) <

max{Nag(Cp(X)),|Al}. Hence, since ¢(A) < nw(4), [7, Theorem
3.8.12, page 193], we have that there exists a subfamily W such that

W] < max{Nag(Cy(X)), s(X)}

and A C UW. Finally UU = (UW) U (UV). The family W* := VU W
has cardinality [W*| < max{Nag(X), s(X)} and the proof is over.

(ii) The proof mimics the steps used in (i), now using Theorem
41 (). o
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The following theorem follows using that hd(X?) < hf(C,(X)), see
[1, Corollary I1.5.27, page 73] and Theorem 5.2 (ii).

Theorem 5.3. Let X be a topological space. Then
hd(X?) < max{Nag(X), s(Cp(X))}.

The following corollary can be found in [2].

Corollary 5.4. If X is a Lindeldf X-space and the spread of Cp(X) is
countable, then Cp(X) is hereditarily Lindeldf, and X x X is hereditarily
separable.

Proof. After Theorem 5.2 (ii) we have that h((Cp(X)) < s(Cp(X)),
and by Theorem 5.3, a Lindeléf Y-space X verifies that hd(X %) <
s(Cp(X)). o
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