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THERE ARE ONLY FINITELY MANY D(4)-QUINTUPLES

ALAN FILIPIN

ABSTRACT. A D(4)-m-tuple is a set of m positive inte-
gers with the property that the product of any two of them
increased by 4 is a perfect square. It is known that there
does not exist a D(4)-sextuple. In this paper we show that
the number of D(4)-quintuples is less than 10323. More-
over, we prove that if {a,b,c,d, e} is a D(4)-quintuple, then
max{a,b,c,d,e} < 1010%%,

1. Introduction. Let n be an integer. A set of m positive integers is
called a Diophantine m-tuple with the property D(n) or simply D(n)-
m-tuple, if the product of any two of them increased by n is a perfect
square.

The first one who studied the problem of finding such sets was
Diophantus in the case n = 1. He found a set of four positive
rational numbers with the above property: {%, %, 177, %}. However,
Fermat was the first who found a D(1)-quadruple, which was the set
{1,3,8,120}. Euler was later able to add the fifth positive rational,
87227%8401, to Fermat’s set (see [3], [4, pages 103-104, 232]. Recently,
Gibbs [13] found several examples of D(n)-sextuples. It is conjectured
that there does not exist a D(1)-quintuple. The first result supporting
this conjecture was given by Baker and Davenport [1], who proved
that Fermat’s set cannot be extended to a D(1)-quintuple. Dujella [6]
proved that there does not exist a D(1)-sextuple and that there are only
finitely many D(1)-quintuples. This implies that there does not exist a
D(4)-8-tuple and that there are only finitely many D(4)-septuples (see
[7]). The author [8, 9, 10] improved that result by proving that there
does not exist a D(4)-sextuple and that an irregular D(4)-quadruple
cannot be extended to a quintuple with a larger element.

For n = 4 it is conjectured that there does not exist a D(4)-quintuple.
Moreover, there is an even stronger version of that conjecture.
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Conjecture 1 (cf. [7, Conjecture 1]). There does not exist a
D(4)-quintuple. Moreover, if {a,b,c,d} is a D(4)-quadruple such that
a<b<c<d, then

1
d:a+b+c+§(abc—l—rst),

where r, s,t are positive integers defined by

ab+4 =12 ac+4=s2bc+4 =1t

Ifd=a+b+ c+ (abc+ rst)/2, then {a,b,c,d} is a D(4)-quadruple.
We denote this number by d.. We also define the number d_ =
a+b+c— (abc+rst)/2. If d_ # 0, then {a,b,c,d_} is also a D(4)-
quadruple, but d_ < c.

Definition 1. A D(4)-quadruple {a, b, ¢, d} such that d >max{a, b, c},
is called regular if d = d..

Mohanty and Ramasamy [15] were the first who have studied the
problem of the nonextendability of D(4)-m-tuples. They proved that
D(4)-quadruple {1,5,12,96} cannot be extended to a D(4)-quintuple.
Kedlaya [14] later proved that if {1,5,12,d} is a D(4)-quadruple, then
d = 96.

There are some generalizations of this result that support Conjec-
ture 1. One was given by Dujella and Ramasamy in [7], where they
proved Conjecture 1 for a parametric family of D(4)-quadruples. They
proved that if k£ and d are positive integers and

{Fok, 5Fo1, 4F 2542, d}

is a D(4)-quadruple, then d = 4LopFyri2, where Fj, and Lj are
Fibonacci and Lucas numbers, respectively. The second generalization
was given by Fujita in [12]. He proved that if & > 3 is an integer and
{k — 2,k + 2,4k, d} is a D(4)-quadruple, then d = 4k3 — 4k.

Our main result is the following theorem.

Theorem 1. The number of D(4)-quintuples is less than 10323,
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The proof of the theorem will need the results in [8-10] and go along
the same lines as [11], where Fujita improved the bound for the number
of D(1)-quintuples due to Dujella [5].

We are interested in bounding the number of D(4)-quintuples. So,
we first consider the number of D(4)-quintuples {a, b, ¢, d, e} such that
a <b<c<d<efora fixed triple {a, b, c}. In [8] we have proved that
an irregular D(4)-quadruple cannot be extended to a quintuple with a
larger element. It implies the following lemma, which will be used in
several places in this paper.

Lemma 1. If {a,b,c,d,e} is a D(4)-quintuple such thata < b < ¢ <
d < e, then d=dy, i.e., the D(4)-quadruple {a,b,c,d} is regular.

Since that implies d is unique, it suffices to bound the number of €’s.
Moreover, we are able to get an upper bound for the maximal element
in D(4)-quintuple, i.e., we prove the following theorem.

Theorem 2. If{a,b,c,d, ¢ is a D(4)-quintuple, then max{a, b, ¢, d, €}
028

< 10107,

2. System of Pellian equations. In this section we will transform
the problem of extending a fixed D(4)-triple to a quintuple into the
problem of solving three simultaneous Pellian equations. And we will
see it leads to finding intersections of binary recurrence sequences.

Let {a,b,c} be a D(4)-triple such that a < b < ¢. Furthermore, let
r, s, t be positive integers defined by

(1) ab+4=1r% ac+4 =35> bc+4=1t

Moreover, assume that {a, b, c,d, e} is a D(4)-quintuple with ¢ < d <
e. and put
ad+4=2% bd+4=1y% cd+4 =22

where x,y, z are positive integers. Then there exist integers a, 3,7,9
such that

ae+4=a? be+4=p0% ce+4=r7% de+4=05%
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If we eliminate e, we get the system of simultaneous Pellian equations

(2) ad® — do® = 4(a — d),
(3) b6% — dp* = 4(b — d),
(4) c6? — dy? = 4(c — d).

We can describe the sets of solutions of equations (2), (3) and (4) in
the following lemma. From Lemma 1 we know d = d.

Lemma 2. Let (6, ), (4, 8), (8,7) be positive solutions of (2), (3) and
(4), respectively. Then there exist solutions (5o, ), (61,51), (d2,72)
of (2), (3) and (4), respectively, in the following ranges

1< ap < Va+2<1.236Vad, |6 < 4/ \/\/_E<0468d

. dvd
1< b1 < Vy+2<1.122Vbd, |6:] < \‘g < 0.360d,

[av/d
1< 72 < Vz+2 < 1.122Ved, |85] < \/\(<0360d

such that

(5) 53 +avd = (50\/_+040\/_)(x+\/_>,
(6) aﬁw\/az(al\/éwlx/a)(“;/_) ,
(7) 6ve+ 7\/3 = (52\/54-72\/3) <z +2\/a>"’

for some integers I,m,n > 0.

Proof. The statement of the lemma follows immediately from [7,
Lemma 2] and [9, Lemma 1]. O

Let (v, 3,7,9) be a solution of the system of the equations (2), (3)
and (4). Then from (5) we get ¢ = w; for some integer [ > 0, where

(8) up = 0o, ur = (xdp +dag)/2, U2 = TU41 — Y.
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From (6) we conclude § = vy, for some integer m > 0, where
(9) vo =61, v1=(yo1+dB1)/2, Um+i2 = YUmi1 — U
In the same way from (7) we get § = w,, for some integer n > 0, where

(10) wp =03, w1 = (202 +d¥2)/2, Wpi2 = 2Wpt1 — Wy

Lemma 3. If § = u; = v, = wy, then I,m and n are all even and
0o = 01 = 0o = £2.

Proof. Let us assume [ is odd. Then from [9, Lemma 9] we conclude
|0o] = y and |0y = 2z, which is a contradiction. So [ is even.
Analogously we get n and m are even. But then the same lemma
implies §p = §; = 2. Define ey = (62 — 4)/d. Then

aeo+4 =03, beg+4=p07 ce+4=73 de+4=7;.

It implies that {a,b,c,d,ep} is a D(4)-quintuple with ey < d. Now
from Lemma 1 we conclude that the D(4)-quadruple {a, b, ¢, ey} should
be regular. But if d = d, then the D(4)-quadruple {a,b,c,eg} is not
regular unless eg = d_. In that case we would have d;d_ + 4 is a
perfect square, which is impossible. Therefore, we obtain ey = 0, i.e.,
|50| = 2. |

Lemma 4. If6 =u; = vy = Wy, then 8 <n<m <[ < 2n.
Proof. From [9, Lemma 5] we conclude
n—1<m<2n+1, m—1<1[<2m+1.

Now, because [, m and n are all even we conclude n < m <[ < 2n.
The inequality n > 8 follows from [8, Lemma 5]. m
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3. Lower bounds for solutions.

Lemma 5. If {a,b,c,d} is a regular D(4)-quadruple, then d > b° or
d > 5%,

Proof. Let us first assume ¢ > b*. Then d > abec > b°. If ¢ < b*, we
conclude d > abc > bc > b4, m|

Lemma 6. Suppose that § = u; = vy, = wy, and d > 10292,

(i) If d > b°, then m > d%0%.
(ii) If d > ¢4, then m > d°03.

Proof. (i) The case when d > b® can be proven in exactly the same
way as the first case in [9, Lemma 13].

(ii) Now let d > ¢/, and assume m < d°8. Then if we consider
equation u; = wy, [9, Lemma 12] implies
(11) +al® + zl = +en® + 2n (mod d).

We also have the estimate

u > (z—1)7Nd - 2) > (Vad — 1)1 (d — Vad + 4)
> (d0.5 _ l)l—l(d _ 10007d09) > d0.49(l—1)d0.9 — d0'49l+0'41.

Moreover,

wy, < (d+ z)z"’1 =(d+ M)(M)n71

< (d+ l‘OOOIdO.Q)dO.QI(nfl) < d1.01d0.91(n71)
— d0.91n+0.1‘

So u; = w, implies [ < 1.858n. It is easy to check that both sides of
congruence (11) are less than d, so it actually becomes an equation.
We also have

al - lya 1.858¢0-08 . 40-17

z Vd < 05

cn - n\/E d0.08 . d0.4

2 Vd < o8

=1.858d %% < 0.001,

=d %92 < 0.001.
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That gives us
1.001xl > 0.9992zn,

l 0.999z c
- > 10012 > 0.998\/5 > 1.996,

which contradicts [ < 1.858n. O

ie.,

4. Upper bounds. In this section we will find upper bounds for
b and d. For that, we first need the lemma we have already proven in
[10].

Lemma 7. If u; = v, = w,, then

m

— < 6.543-10"%1og?d
log(m + 1) < & &

l
— < 6.543-10"1og?d.
log(l+ 1) < 8

We can now prove the following proposition.

Proposition 1. Let {a,b,c,d,e} be a D(4)-quintuple such that
a<b<c<d<e Thend<11-10°? and b < 2.57-101%4.

Proof. Let us first assume d > b°. Then from Lemmas 6 and 7 we
have m
= < 6.543 - 10'% log’ d
log(m + 1) < o8 b
which together with m > d%9%% implies m < 2-10%* and d < 1.1-10°72.
Inequality b < 2.57 - 10'%* follows easily from b° < d.

If d < b°, then ¢®* < d. If we take d > 10292, then again from the
Lemmas 6 and 7 we have m < 2- 102 and d < 1.84 - 10%!, which is a
contradiction. If d < 1022, we would get an even better upper bound
for b because b* < d. O

Now, we are ready to prove Theorem 2.
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Proof of Theorem 2. Let {a,b,c,d,e} be a D(4)-quintuple such that
a <b<c<d< e Then we have just proved d < 1.1 -10°72. Tt
furthermore implies n < m < 2 - 10%*, where de + 4 = w2. So, we can
conclude

w2 ((z+d)zn"1)? 2d-dn !

“n =241 < 1010,
e < P < d < d < O

We will now use the methods from [2] and in the same way as [11] to
prove that, for a fixed D(4)-triple {a,b,c} such that a < b < ¢, there
are at most four D(4)-quintuples {a,b,c,d, e} with ¢ < d <e.

Let {A,B,C} be a D(4)-triple such that A < B < C, and let

S =+VAC +4, T = BC + 4. If we have the system of simultaneous
Pellian equations

(12) AZ? - CX?*=4(A-0),
(13) BZ? - CY? =4(B - 0),

we may express its solutions as Z = V; = Wy, j,k > 0, with some
binary recurrent sequences (V;);>o and (Wg)g>o.

Lemma 8. Suppose that Vo = Wy = +2 and that there exist three
positive solutions (X;,Y:,Z;), i = 1,2,3, of equations (12) and (13)
with Z1 < Zy < Zs that come from the same fundamental solution
Z =Vy=Wy. Put Z; =V;, = Wy, fori=1,2,3, with j1 < j2 < js.
Then we have

A

21
2AC§ Og 777

Js —Js >

where
S +VAC
e
T+ vBC
ﬂ:f,
A= |F2—k ks =k
J2—J1 J3 — )2
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Proof. Let ¢ = Vy/2 = Wy /2. From Z = V; = W), we conclude

_ b
VA
_ b
VB

7= L ((Vor=vA)e - (VO - vA) )

(VG +2VB) ot — (VG- VB) ™).
So we can find three points
(pi, i) = (Jilog &, kilogn), i=1,2,3,
on the curve
F(p,q) = (VO +2VB) et — (VO ~2VB) et
B ((VE+evA) e - (VE-evA)e ) o
Since

aFg()Z’q) = (\/6+E\/§) el + (\FC’— 6\/5) e >0,

for all p and ¢, we may implicitly differentiate F'(p,q) to obtain

(VO +VB) et + (VO - =VB) ) %

P

1855

B (Vo + vy + (VC - V) 7).

which yields
(14)

dg _ (VC +evA)er — (VC — eV A)e )2 +4(C - A)
W\ A(((VC+evBer - (VT - eVB)e=)2 +4(C - B)) /B

_ ¢ (VT + evA)er = (VT - eyA)e )+ 4(C - A)
(VC + eVA)er — (VC — ev/A)eP)2 + 4((AC/B) — A)
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Similarly we obtain

(Vo o)+ (Vo - evB) ) 22

dp?
+ (VG +evB) et - (VO - evB) ) (%)
= <\/5 + s\/E) el + <\/5 + e\/E) e d,
which yields

w5 = (- (@» (VC +evB)et = (VO —evBje™®
dp) ) (VC +eVB)et + (VO +eVB)e

dnZ <0.
From (14) and (15) together with the mean value theorem, we conclude

P

(16) 0<Q2—Q1_Q3—CJ2<Q2—CI1_1'
P2—p2 PpP3—PpP2 PpP2—DP1

On the other hand, we may transform V;, = Wy, for ¢ = 1,2, into
inequalities for linear forms in logarithms of algebraic numbers (see [9,
Lemma 10]) to obtain

0 <p; — i +logu < 2ACE™ %%,

where

VB(VT + ev/A)

VAN + eVB)’

Hence, using (16), we get
0<ps—go+logp <pr—aq +logpu < 2ACE%,
which implies
(17) 0<(g2—q1) — (p2 —p1) < 2ACEY.
It follows from (16) and (17) that

- - —q1) — (p2 — 2AC
@2 —q1 a3 Q2<(Q2 q1) — (p2 p1)<

0< —.
P2—P1  P3— P2 P2 — D1 (p2 — p1)&20
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If we substitute p; = j; log € and ¢; = k; logn, we obtain

ko — k1 ks — ko 2AC
< e :
J2—J1  Jz—J2  (j2—Jg1)€%rlogn

0

Therefore,

Jz —J2 > mf log 7. d

Let us mention that, due to the results we have proven in [8, Lemma
5] and [10], where we have checked that all D(4)-triples {a,b, c} such
that a < b < c and ab’c < 107 can be extended to a quadruple in a
unique way, we may assume ad > d > 29240 and cd > bd > 5 - 10°.

Proposition 2. Let {a,b,c} be a D(4)-triple with a < b < c. Then
the number of D(4)-quintuples {a,b,c,d,e} such that ¢ < d < e is at
most four.

Proof. Let us assume that there exist five D(4)-quintuples {a, b, ¢, d, e}
such that ¢ < d < e, containing the fixed triple {a,b,c}. Since d = d,
we have five such e’s, which gives us five positive solutions

6:uli:1}mi:wni7 1<4<5,

with I3 < lo <3 < Iy <5, of equations (2), (3) and (4). We know
that three of those solutions belong to the same fundamental solution,
so we can use the last lemma, together with lower bounds for ad and
bd. We also know A > 4, because all indices are even. We obtain

A(Vad)?

2ad log Vbd > 2(ad)" log Vbd > 2.81 - 10%2.
Qa

ls >

But this is a contradiction with (see Lemma 7)

ls

— > <6.543-10"%1log? d,
log(ls + 1) &

which yields d > 100", 0
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5. Proof of Theorem 1. We are now ready to prove the main
theorem. In the proof we will use the same methods as Dujella used in
[5] and Fujita in [11].

Proof of Theorem 1. Suppose {a,b,c,d,e} is a D(4)-quintuple such
that a < b < ¢ < d < e. By Proposition 1 we know that d < 1.1 -10°72
and b < 2.57 - 10'%. We can first bound the number of the pairs
{a,b}. If b < 10'%2, then this number is at most 102%4. If 10192 < b <
2.57 - 1014, by (8) in [5] we know

1
log b > §w(b) log w(d),

where w(b) is the number of distinct prime factors of b. If 2¢() > 4030,
we get w(b) < 101.6, which gives us b < 10'92 a contradiction. So we
can take 2¢(® < p93_ and the number of corresponding pairs {a, b} is
less than (see [5, Theorem 4])

2.57-101%4—1 2.57-1019%—1 2.57.10194
IR T I S / B3 b
b=10102 41 b=1010241 10102
< 8.32-10%°2

Therefore, the number of pairs {a, b} is less than 8.32 - 1022, Now, for
the fixed pair {a,b} we want to find the number of possible ¢’s. But
the number ¢ belongs to the union of finitely many binary recurrence
sequences, and the number of the sequences is less than or equal to the
number of solutions of congruence relation t3 = 4 (mod b), such that
—b97 <ty < 75, We get the last inequalities considering the Pellian
equation at? —bs®> = 4(a —b), which gives us the extension of D(4)-pair
{a,b}. We see that this equation is of the same type as (2), (3) and
(4), so from Lemma 2 we have estimate for the fundamental solution

Ito] < 1/ (bVb)/a < bO75.

If b < 10°8. then the number of sequences is less than or equal to
2-10%5 < 10%. If 10°® < b < 2.57 - 10'°%, then we see 2¢() < p1/3,
Hence, the number of sequences is less than or 2 - 2¢(®)+1 < 4p1/3 <
2.55-1055. Furthermore, the elements contained in each of the sequence
grows exponentially with base > ab > 5, so the number of elements
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contained in each of the sequence is less than log(1.1-1097%) < 1391.
Therefore, the number of ¢’s is less than or 2.54 - 10° - 1391. So at the
end, because the number d is unique, and we can have at most four e’s,
we see that the number of D(4)-quintuples is less than

8.32-10%°2.2.55-10% - 1391 - 4 < 103%,
which finishes the proof of Theorem 1. ]
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