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REGULARITY AND EXACT CONTROLLABILITY FOR
THE TIMOSHENKO BEAM
WITH PIEZOELECTRIC ACTUATOR

CHUN-GUO ZHANG

ABSTRACT. In this paper, we study an initial, boundary
value problem of the Timoshenko beam with attached piezo-
electric actuators. We establish the regularity of the solution
of the Timoshenko beam equation. The main results concern
the dependence of the space of exactly controllable initial data
on the location of the actuator. Our approach is based on the
Hilbert uniqueness method combined with some results from
the theory of diophantine approximation.

1. Introduction. In recent years, there has been much interest
in the problems of the stability or the controllability for an elastic
beam (see [9-12] and references therein), but little attention has been
paid to the case of a Timoshenko beam with piezoelectric actuator.
Tucsnak studied the regularity and exact controllability of an Euler-
Bernoulli beam with a piezoelectric actuator in [9]. Zhang investigates
boundary feedback stabilization of the undamped Timoshenko beam
with both ends free in [10]. In this paper, we study the regularity
and exact controllability of a Timoshenko beam with piezoelectric
actuators. More precisely, we consider the initial and boundary value
problem of the piezoelectric actuators which are attached to the simply
supported Timoshenko beam:

(1.1) wy(z,t) — kywee(z,t) + kroz (2, t)

d
:ul(t)ﬁ[ém(x)féﬁ(x)]a 0<z<mt>0,
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Qatt(xat) - k%amz(l‘at) - klwz(x’t) + leO(x,t)

d
:u2(t)£[5n2(x)7652(x)], O0<z<mt>0,

w(0,t) = w(m,t) = ¢(0,t) = pu(m,t) =0, t>0,

’lU(LE,O) = wO(m)awt(xao) = wl(w)v (p(.’l?,O)
= po(z), pe(x,0) = p1(z), 0<z<m.

Here, a beam of length 7 moves in the zt-plane, w(z,t) is the deflection
of the beam from its equilibrium, and ¢(z,t) is the total rotatory
angle of the beam at z. Two wave speeds k; > 0 are not equal,
& € (0,m),m; € (0,7), j = 1,2, stand for the ends of the actuators, and
dy is the Dirac mass at the point y. The boundary condition means that
both ends of the beam are simply supported. The controls are given
by the functions uq,us : [0,7] — R representing the time variation of
voltage applied to the actuators.

In this paper we are interested in the following exact controllability
problem: Under what conditions on the actuators is the system (1.1)
exactly controllable for the given initial data? We will adapt the
Hilbert uniqueness method developed in [7] to the exact controllability
of system (1.1). The main difficulty in this approach is establishing the
observability inequality. We deal with this difficulty by using Fourier
series, asymptotic expansions and Diophantine approximation theory.

First, we give the following exact controllability definition.

Definition 1.1. We say that the initial data wg, w1, @g, p1 are
“exactly L?-controllable in (&1,m1), (€2,7m2) at time T7 if uj,ux €
L?(0,T) exist such that the solution (w,¢) of system (1.1) satisfies
the condition

(1.2)  w(z,T)=w(z,T) = p(z,T) = pe(z, T) =0, 0<zx<m.

The plan of this paper is as follows. In Section 2 we state our main
results. In Section 3 we show the existence and regularity results for
the system. The proof of the main result is given in Section 4.
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2. Preliminaries and main results. Before stating preliminaries
and the main results of this paper, the relevant Sobolev space notations
and other definitions are briefly surveyed (see [1]).

To study the well-posedness and controllability of the system in (1.1),
we need the following crucial proposition.

Let us consider the homogenous initial and boundary value problem:
2.1
( )vtt(:c,t) — k1vgz (2, t) + k1¢(z,t) =0, 0<z<m, te(0,T),
G11(x,t) —kotpr(2,t) —k1vz (2, t)+k16(2,t) =0, 0 <z <7, t € (0,T),
v(0,t) = v(m,t) = ¢.(0,t) = ¢p(m,t) =0, te€(0,T),
v(z,0) = vo(z),ve(,0) = v1(x), P(2,0) = do(x),
d1(2,0) = p1(z), O0<z<m.

It is well known that the initial and boundary value problem (2.1) is
well posed in H*(0,7) x H*~(0,7) x H*(0,7) x H*71(0,7) for all
a > 0; moreover, as a consequence of the Hilbert uniqueness method
(HUM), introduced in [7], the following result holds.

Proposition 2.1. For all a > 0, problem (2.1) of all initial data
in H*(0,7) x H*=*(0,7) x H*(0,7) x H**(0,7) is “ezactly L*-
controllable in (&1,m), (&2,m2) at time T” if and only if there exists
a positive constant C > 0 such that

T
(2.2) / {[ve(€1,8) = v (m, 1)) + (@2 (2, 8) — bu (m2, )]} dt
0
2 C[HUOH?‘I—D‘(O,W)+||U1||%-I—°‘_1(0,7r)+||¢0||%{—°‘(0,7r) +||¢1||§-I—°‘_1(0,7r)]7

for all (vo,v1, ¢o, ¢1) € H(0,7) x L2(0,7) x H*(0,7) x L?(0,7).

We shall also need some results from the theory of Diophantine
approximation.

Denote by Q the set of all rational numbers. Let us also denote
by S the set of all numbers p € (0,7) such that p/m ¢ Q and if
[0,a1,a2,... ,aGn,...] is the expansion of p/7 as a continued fraction,
then (a,) is bounded. Let us notice that S is obviously uncountable
and, by a classical result on Diophantine approximation (see [3, page



1002 CHUN-GUO ZHANG

120]), its Lebesgue measure is equal to zero. In particular, by the Euler-
Lagrange theorem (see [5, page 57]) S contains all p € (0, ) such that
p/m is an irrational quadratic number. According to a classical result
(see [9]), if p € S, then there exists a constant C, such that

C
(2.3) | sin(np)| > Xp for all n > 1.

Let us denote by B the set of all numbers & € (0, 7), where ¢ is an
irrational number with coprime factorization

2 = g, where ¢ is odd.
Then there exists a constant C¢ such that
(2.4) | cos(n€)| > C¢ for all n > 1.

We make use of the result of Proposition 2.4 in [9] given as follows.

For any ¢ > 0, there exists a set B. C [(0,7)\7Q], the Lebesque
measure of B, being equal to 7, such that for all p € B, we have

C
(2.5) | sin(np)| > nlis for all n > 1.

Now we can state our main results as follows.

Theorem 2.1. Suppose that (§&1 +m1)/2, (&1 —m)/2 and (§2 — n2)/2
belong to S, and that (§3 + 12)/2 belongs to B. Then all initial data in
HY(0,7) x L*(0,7) x H'(0,7) x L?(0,7) are exactly L?-controllable in
(&1,m), (&2,m2) at time T, for any T > 0.

Theorem 2.2. For any e > 0, suppose that (&1 +m1)/2, (&1 —m1)/2
and (&2 — 1n2)/2 belong to B., and that (€3 + 12)/2 belongs to B. Then
all initial data in H'T¢(0,7) x H®(0,7) x H'T¢(0,7) x H®(0,7) are
exactly L*-controllable in (£1,m1), (€2,m2) at time T, for any T > 0.

3. Existence and regularity of solutions. In this section, we
give existence and regularity results for the system in (1.1).
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Theorem 3.1. Suppose that wgy,p9 € HY(0,m) and wi,p; €
L2(0,7). Then the initial and boundary value problem (1.1) admits
a unique solution having reqularity
(3.1)

(w, ) € C([0,T]; L*(0,7)x L*(0,7))NC*([0, T]; H (0, 7)x H (0, 7)).

Consider T € [0,7]. We introduce the homogenous initial and
boundary value problem:
(3.2)
'Utt(xat) 7klvzz($at)+k1¢z(xat) =0, O<z<m te€ (077-)’

Ore(x,t)—kotye (z,t) —k1vg (2, t)+ k1 (2, t) =0, 0 <z <m, t € (0,7),
v(0,t) = v(m,t) = ¢z (0,t) = ¢z (m,t) =0, te(0,7),
’U(.’B,T) = Ovvt(xaT) = f(m)’qs(xﬂ-) = Oa¢t(xa7-) = g(x), O<z<m.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. For any (f,g9) € L2*(0,7) x L?(0,7), the initial
and boundary value problem (3.2) admits a unique solution having the
regqularity
(3.3)

(v,¢) € C([0,T]; H*(0,7) x H*(0,7)) n C*([0, T]; L*(0,7) x L*(0,)).

Moreover, for any p € (0,7) the function vy (p,:) and ¢ (p,-) are in
L?(0,T) and there exists a constant C > 0 such that

(3.4) llvz(py NZ2 0,1y + 162 (P MLz 0,0y < ClUIFIL20,m) + 19112200, m) -

Proof. For simplicity, we will denote dv/0zx by v'. Let H =
H(0,7) x L?(0,7) x H*(0,7) x L*(0,7) with the norm

I 1/2
10, 601t = ( [l =+ ke + ) dm)

We define a linear operator Ag as follows:

D(Ao) = {(v,y, 6, ¥)|v, & € H*(0,),y, % € H'(0,7),v(0) = v(r)
= ¢'(0) = ¢/(m) = y(0) = y(m) = 0},
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AO : D(Ao) — H,
Ao(U, Y, ¢a 1/’) = (y7 [klv” - k1¢/]7 ¢7 [k2¢” + klvl - k1¢])a
(vaya ¢7’¢}) € D(AO)

Then problem (3.2) can be formulated as the following Cauchy problem

on H: d
— =AyZ, Z(0)=2Z
dt 04, () 05

Where Z = (U7 ?J:Qsﬂ/’) a‘nd ZO = (any07¢07¢0)-

One can easily check that Aq is skew-adjoint. So, by Stone’s theorem,
it generates a semi-group of isometries in H. This implies that problem
(3.2) admits a unique solution (v, ¢) satisfying (3.3).

To prove (3.4), we need to compute the eigenvalues of Ay. Now we
solve the characteristic equation

A0(07y7¢7 '(/}) = A(vayﬂba 1)[})7 (Uayaqsaw) € D(AO)

Eliminating the unknown y, ¢, ¢, we obtain

{ k1kovepow — (k1 + kg))\zvm + )\Z(kl + )\2)’0 =0,
v(0) = v(7) = Vz4(0) = vga(m) = 0.

Eliminating the unknown v, y, 1, we obtain

{ k1k2¢mzzz - (kl + kZ))\quma: + )\Z(kl -+ )\2)¢) = 0,

Eigenvalues of these two characteristic equations have asymptotic ex-
pansions:

i) by > ks A2, = —kan?(14O(1/n2)), A2, = —kin?(L+0(L/n?));

n

) by < ko A2, = —kan2(140(1/n2)), A2, = —kan?(1+0(1/n?)).

n,l

We further suppose that k; > ks. In order to prove (3.4), we put
(3.5) f(z)= Z na, sin(nz), g(z) = Z nby, cos(nz)
n=1 n=1

with Y7 | n?(a? + b2) < oco.
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By density, it is enough to show that (3.4) holds for f,g € C§°(0, ).
Obviously the solution of (3.2) is given by

o(, 1) = ,i 2, sin {\/k:n (1 + o(%))t} sin(nz),
bz, t) = gbn sin[\/z?ln<1 + o<%>>t] cos(na),

(3.6)

which implies that

va(pyt) = ni_o:l — [\/i?zn (1 + o(%))t} cos(np),

(3.7) -
be(pyt) = — ;nbn sin |:\/k71n <1 + o(%))t} sin(np).

If we consider the righthand side of (3.7) as a Fourier series in ¢ (see
[4, Theorem 4.1] for details), we obtain the existence of a constant C
dependent only on T such that

(38) 020 Moz +1 620 Moz < C[Zn2<ai+bi>] < too,

n=1

which is exactly (3.4). The case k; < kg can be proved by simply
adapting the proof of the case k1 > ko2, so we skip the details. The
proof is completed. a

Proof of Theorem 3.1. Due to the linearity of (1.1) and the well-
known properties of the Timoshenko beam equation (see [10, 11, 12]),
it is enough to consider the case wy = w1 = g = ¢1 = 0. Suppose
again f,g € C§°(0,7), and let (v,®) be the solution of (3.2). Now,
we use the multipliers v and ¢ to the first equation and the second
equation of (1.1). Integrating by parts, we obtain that
(3.9)

/0 w(:v,T)f(ac)d:vz—kl/O/O [w(z, )b (@, 8) — 0 (@, )0, £)] da di
[ st - o)

0
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and
(3.10)

o, )g(z) dz = ky / ' / Cwe, 06s (1) — gula, tyo(a, 6)] de dt

0

- " ()]0 (E0rt) — e, 1)] di.

Taking the sum of (3.9) and (3.10), we can obtain

™

(3.11) /Dﬂw(x,T)f(x)dx—i— ; o(z,7)9(z) dz

_ _/OTM(t)[vw(gl,t) — v (m, )] dt
- / " un(8) [ (€ ) — b ) d.

Lemma 3.2 implies that

T 2

/0 " (Ol (€1, ) — va (s, ]t + / wr (1) (€2, ) — o 12, )] i

< ClllwalZ2o,zy - 11122 0,m) + 12l 20,2y - N9l1Z20,m)-

So, by (3.11), we obtain that (w(-,7),¢(-,7)) € L%(0,7) x L?(0, ), for
all 7 € [0,T]. By replacing 7 by 7+ h in (3.11) we easily get that

(3.12) (w, ) € C([0,T]; L*(0,7) x L*(0,)),
which implies that

(3.13) (Waas Pae) € C((0,T]; H2(0,m) x H*(0,)).
As (w, p) satisfies (1.1), from (3.13) we obtain that

(3.14) (wee, per) € L2([0,T); H2(0,7) x H2(0,7)).

From (3.12) and (3.14), by applying the intermediate derivative theo-
rem (see [8]) it follows that

(3.15) (wy, 1) € L*([0,T]; H~(0,7) x H1(0, 7).
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Combining (3.12) with (3.15) and the general lifting result (see [6]), we
can obtain

(w, p) € C([0,T]; L*(0,7)x L*(0,7))NC* ([0, T]; H~ (0, 7)x H~*(0, 7)).

This completes the proof of Theorem 3.1. o
4. Proof of the main results. In this section we prove our main

results of this paper.

Let us put

= Z an sin(nz), wvi(z) = Z ney, sin(nz),
n=1 n=1

= Z b, cos(nz), ¢é1(z) = Z nd,, cos(nz),
n=1 n=1

(4.1)

with Y07 n?(a2 4+ b2 + ¢2 + d2) < +00.
A simple calculation shows that the solution of (2.1) is given by

tnqg

) [ cos (V/fan (1

of?
mmn(m(uo(;?tﬂm "
)9t

(4.2)

w5 e (o (2))
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which implies that

(4.3) /0 {[v2(€1,t) = va (01, 1)]* + [ (62, 8) — Pa(n2, 1))} dt

[ (S (o))
s (o))

« sin2 [”(51 +771)] sin? [n(ﬁl - 771)] } &t

+4/0T{T§n2 [bncos <\/l?1n(1+o(%>>t>

+ dy sin <\/k/1”(1+0(%>>t>]2

o [ ) g )

Proof of Theorem 2.1. By Proposition 2.1, the conclusion of Theo-
rem 2.1 is equivalent to the existence of a constant C' > 0 such that

T
(4.4) /0 {[va(€1,) = va (1, 1)) + [0 (E2,1) — P (n2,1)]%} dt
> Clllvollzr—10,m) + lv1llzr—20,m) + I€0lzr-1.0,m) + 111120,

for all (vo,v1,do, 1) € HY(0,7) x L?(0,7) x H(0,m) x L?(0, ).

By applying the Ball-Slemrod generalization of Imgham’s inequality
(see [2]), from (4.3) we obtain that a constant C' > 0 exists such that

(4.5) /0 {[v2(€1,t) = valn1, )] + [$a (62, t) — Pa(n2, 1))} dt

> O{ i n®(ay, + c5,) sin® [M] -sin® [M]

n=1

n=1
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As (§1+m)/2, (& —m)/2 and (§& — 12)/2 are in S, (€2 +72)/2 is in
B, from (2.3) and (2.4) we can obtain that there exists a constant C' > 0
such that for n large enough we have

T
(46) [ {lea(0,8) = valm, OF + [bu(Eart) — dum, O} de
0
> C[an(ai +c2 +02+d2)|,
n=1
which is exactly (2.2) for o = 1. The proof has been completed. O

Proof of Theorem 2.2. As (&, +m1)/2, (&1 —m)/2 and (€2 — 12)/2 are
in B, (& + 72)/2 is in B, from (2.4) and (2.5), it follows that

(4.7)
“in {n(&;m)] ‘ > nia, sin {n(§12 771)] ‘ > nﬁa,
“in [n(&; 7]2)] ‘ > nis, ‘cos [M] ‘ >0, Vn>1.

Consider again the solution (v, ¢) of (2.1) with the initial data given
by (4.1). By applying (4.3) and (4.7) we obtain

(4.8) /0 {[va(€1,) = va (1, 1)) + [0 (E2,) — P (n2,1)] 7} dt

> Oll[vollFr-1-<(0,m) + 1011 F-2=< (0,m)
+ b0l Fr-1-<(0,m) + 611 Fr-2-c (0,m)]-

For o = 1+4¢, € > 0, by Proposition 2.1 it follows that all initial data in
HYe(0,m)x H*(0,m)x H'*¢(0, 7) x H*(0, ) are exactly L?-controllable
in (§1,1m1), (&2,72) at time T, for any 7" > 0. This completes the proof
of Theorem 2.2. o

One can observe that Theorems 2.1 and 2.2 give no information on
the controllability of initial data in H*(0, ) x H*~1(0,7) x H*(0, ) x
H*1(0,7), with o < 1. Because the characterization of the space
of L2-controllable initial data depends strongly on the location of two
piezoelectric actuators that are attached to a Timoshenko beam. A
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natural question concerning the exact controllability of initial data in
H*(0,7) x H* 1(0,7) x H*(0,7) x H* }(0,7), with 0 < a < 1, is
about the appropriate location of the actuators that are attached to a
Timoshenko beam. What conditions on the positions of the actuators
must be imposed in order to achieve controllability? This problem
appears to be open.

Acknowledgments. The author is very grateful to the referees for
their valuable suggestions and comments.
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