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EQUAL SUMS OF LIKE POWERS,
BOTH POSITIVE AND NEGATIVE

AJAI CHOUDHRY

ABSTRACT. Several mathematicians have studied the
problem of finding two sets of integers z1, . . .,zs and y1, . . ., ¥s,
such that > ° al = »° oI, r = ki, k2,... , kn, where
k; are specified positive integers. The particular case when
r=1,2,...,n is the well-known Tarry-Escott problem. This
paper is concerned with the scarcely investigated problem of
finding two or more distinct sets of integers with equal sums
of powers for both positive and negative powers, that is to say,
integer solutions of diophantine systems ZS zl = Zj_l Yi,

=11
and diophantine chains 2;1 x5, ::1 Ty = - =
23:1 z7,, where, in both cases, the equality holds simulta-
neously for negative integral exponents —hm,,... , —h2, —h1
and positive integral exponents ki, k2,... ,kn. It is proved

in the paper that, given any arbitrary set of such expo-
nents, there exists a solution of the aforementioned diophan-
tine chains for a suitable value of s. Parametric or numerical
solutions of many diophantine systems and chains are given
in the paper, two examples being the system of equations

S Lah =300 al,, r=-2-1,1,3,57, and the arbi-

trarily long chains Z?=1 Ty = Z?=1 Tiy == E?=1 zy,
r=-1,1,2,3,4,5.

1. Introduction. This paper is concerned with the study of
diophantine systems of the type

T:*hma *hm—la-" 77h25 7h17 kla k25"' akn7
where z;, y;, 1 =1, 2,... , s, are integers, while h,, u =1, 2,... ,m, as
well as k,, v =1, 2,...,n, are positive integers, and the equality holds

2010 AMS Mathematics subject class%ﬁcation. Primary 11D41, 11D72.
Keywords and phrases. Equal sums of powers, multigrade equations, multigrade

chains.
Received by the editors on August 13, 2008, and in revised form on September 19,

2008.
DOI:10.1216/RMJ-2011-41-3-737 Copyright (©2011 Rocky Mountain Mathematics Consortium

737



738 AJAI CHOUDHRY

simultaneously for negative exponents —h,,, —hmy—1,...,—hs, —h1,
and positive exponents ki, ko,... , k,. More generally, the paper deals
with simultaneous diophantine chains of the type

S S S
T o __ T __ . T
(2) E Ty = E Lig =+ = E Lity
=1 =1 =1

r=—hm, —hm_1,...,—ho, —h1, k1, k2, ..., k,, where t is some inte-
ger > 2, x;; are integers for ¢ = 1,2,...,s, 5 = 1,2,...,t, and, as
before, h,, k, are all positive integers, so that the equalities in (2) hold
simultaneously for the specified exponents which are both positive and
negative. The diophantine systems (1) and chains (2) will be called
multigrade equations and multigrade chains, respectively, for positive
and negative exponents.

We note that various diophantine systems involving equal sums of like
powers, with the equality holding only for certain positive exponents,
have been investigated by several mathematicians (see, for instance,
[3, 4, 6, 12]). Specifically, when the positive exponents take the
consecutive integer values 1, 2,...,n, we get the well-known Tarry-
Escott problem of degree n which has attracted considerable attention
[2, 5, 7, 8, 10-12]. However, the problem of equal sums of like powers,
both positive and negative, has scarcely been investigated till now. It
seems that apart from the following identities given by Shuwen [12],

47 410" + 12" = 5" + 6" + 157, r=—1,1,
(3) 6 +14"+14" =7"4+9" + 18", r=—1,1,
3" 440" =4" + 15" 4+ 24" =5"+ 8" +30", r=-1,1,

there are no other published solutions of (1) or (2).

We note that, when h is a positive integer, the degree of the equation

(4) o=yt
i=1 =1

written as a polynomial equation in the variables z;, y;, is (25 — 1)h,
which increases when we increase the number of variables thereby
making the problem of equal sums of like powers, both positive and
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negative, much more difficult than the problem restricted only to
positive powers.

In Section 2 of this paper we prove certain general results about the
diophantine systems (1) and the diophantine chains (2). Specifically
we establish that, given arbitrary positive integers h,, u =1, 2,... ,m
and k,, v =1, 2,... ,n, there exists a suitable value of the integer s
such that there exists a solution in positive integers of the diophantine
system (1) and, further, there exists an integer s, possibly different from
the previous one, such that there exists a solution in positive integers
of the diophantine chains (2). We also obtain certain estimates for the
values of s.

In Section 3 we prove two theorems concerning the diophantine
system

(5) ix::iyfa r=-n, *’I’L+1,..., 727 71)
i=1 i=1

and the simultaneous diophantine chains

S S S

T T . r

6 E:xm—i xiz—"‘—E Lits
(6) i=1 i=1 i=1

r=-n, —-n+1,..., =2, —1.

Since the diophantine system (5) may equivalently be written as

(7) Z(%):Z(% r=1,2...n,

i=1 im1 \Yi

we will refer to the system (5) or (7) as the nth degree Tarry-Escott
problem for reciprocals. The two theorems of Section 3 provide a
method of generating new solutions of higher degree Tarry-Escott
problems for reciprocals, or the diophantine chains (6) starting from
known solutions of (5) or (6), respectively.

In Sections 4 and 5 we obtain parametric or numerical solutions
of several diophantine systems with equal sums of like powers, both
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positive and negative, some examples being the following multigrades:

ity +as =yl +ys +ys, T=-2,2,
ity tas+ay =yl +yy+ys+ys, r=-2,-1,1,2

9 9
doan = alh, r=-2-1,1,35,7,
i=1 i=1

and the arbitrarily long chains,
6 6 6
wal = Zm& == met, r=-1,1, 2, 3, 4, 5,
i=1 i=1 i=1
7 7 7
29721:235;2:“‘:2%%’ r=-2, -1, 1, 3, 5,
i=1 i=1 i=1

where ¢ is any integer > 2.

2. Some general results. In this section we will prove certain
general results about the diophantine systems (1) and the diophantine
chains (2) and finally show that, given arbitrary positive integers h,, &,
there exist solutions in positive integers of (1) and (2) for suitably
chosen values of s. We first note that all equations in (1) and (2)
are homogeneous; hence, any solution in rational numbers yields, on
appropriate scaling, a solution in integers. It therefore suffices to obtain
rational numerical or parametric solutions of (1) or (2).

A solution of (1) or (2) will be considered as trivial if all equations are
trivially satisfied by the given solution. Henceforth, unless otherwise
stated, when we refer to a solution of (1) or (2) , we will actually mean
a nontrivial solution of (1) or (2) .

A solution in integers of the multigrade equations (1) or the chains (2)
will be called primitive if ged (21, ®2, ... ,Zs, Y1, Y2,--- ,Ys) = 1 in case
of a solution of (1), and if ged (211, ©12,. .- s Tij,- .., Ts¢) = 1 in case of
a solution of (2). Given a solution in integers of (1) or (2), we may by
removing a suitable common factor, obtain a primitive solution of (1) or
(2). We will denote by Ny(—fm, —hm—1,. .+ —ho, —ha, k1, ko, ... kn)
the least value of s such that there exists a solution of the chain equa-
tions (2). In particular, No(—hm, —hm_1,-..,—ha,—h1, k1, k2, ..., k)
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will denote the least value of s such that there exists a solution of the
diophantine system (1). It is well-known that[10, page 616, Theorem 4]

(8) Ny(1,2,...,n) >n+1.

Lemma 1. Given arbitrary positive integers ki, ko, ... ,ky, there
erists a primitive solution in positive integers of the simultaneous
diophantine chains

D ch=2 ap=--=> ok
(9) i=1 i=1 i=1
’I“:kl, kQ,... ,kn,
if we take s > 1+ ki + ko + -+ ky. It follows that
(10) Ni(k1, koy oo skn) S 1+ ki + ko + -+ Ky,
for all positive integer values of t > 2.

Proof. The proof is a straightforward extension of the proof given by
Wright in [13] to establish the existence of simultaneous diophantine
chains of the type (9) with ki, ko, ..., k, being the consecutive integers
1,2,...,n, and is accordingly omitted. In fact, the proof shows

that there exist arbitrarily many distinct solutions of (9) when s >
1+ky+kat--+kn. |

Lemma 2. There is a one-to-one correspondence between the prim-
itive solutions in positive integers of the simultaneous diophantine
chains

293;1 = Z%Tz == Zm;‘tv
(11) i=1 i=1 i=1
r= —hm, —hmfl,... , —hz, —hl, kl, k}z,... ,kn,

and

ZXZ'TI = Zerz == ZX;”
(12) i=1 i=1 i=1

r= th7 hm—la"' ) h27 hla _kla _k27"' ) _kna
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where hy, v = 1,2,...,m and k,, v = 1,2,...,n, are arbitrary
positive integers and t > 2.

Proof. Any primitive positive integer solution z;;, ¢ = 1, 2,...,s,
j=1,2,...,t of (11) immediately yields a positive rational solution
Xij =z i = 1,2,...,8 j = 1,2,...,t of (12), which on
appropriate scaling leads to a unique primitive positive integer solution
of (12). The inverse correspondence is similarly established. It is
easily seen that this is a one-to-one correspondence and the proof is
complete. O

Lemma 3. Given any arbitrary positive integers hi, ho,... Ay,
there exists a primitive solution in positive integers of the simultaneous
diophantine chains

S S S
T o T o __ _ ’I"
(13) E Ti1 = E Tig = '+ = E Lt
i=1 i=1 i=1

r= _hm7 _hm—h s 7_h27 _h17

if we take s > 1+ hy +ha+ -+ hy,. It follows that
(14) Ne(=hi, —h2, ooy —hy) <1+ hi+ha+- -+ hp,

for all positive integer values of t > 2.

Proof. 1If we take s > 14+ hy + ho + -+ + Ay, it follows from
Lemma 1 that there exists a primitive solution in positive integers of
the diophantine chains

S S S
T __ T __ - T
(15) E Tip = E Tig =0 = E LTits
i=1 i=1 i=1
r= hma hmfla-' . 7h27 hla

and now following Lemma 2, we get a primitive positive integer solution
of the simultaneous diophantine chains (13). This proves the lemma. O

As in the case of the simultaneous diophantine equations (9), there
exist arbitrarily many distinct solutions of (13) when s > 14+ hy +ho +
R

Theorem 1. Given arbitrary positive integers hy, ha,... ,hy, and
ki, ko, ... ,kn, there exists a solution in positive integers of the simul-
taneous diophantine equations (1) if we take s > 2(1+ Y 0" | hy)(1 +
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ZZZI ky), and further, there exists a solution in positive integers of
the simultaneous diophantine chains (2) if we take s > 2(t — 1)(1 +
Yoo ha)(L+ X0 ky). It follows that when t > 2,

(16) Ni(—hm, ..., —h1, k1, kn) < 2(t—1 <+Zh><l+zn:kv>.

Proof. In view of Lemmas 1 and 3, for appropriately chosen integers
p and g,

(17) p§<1+§jhu>, q§<1+§ijkv>,

there exist positive integers a;, b;, ¢ = 1, 2,... ,p, and positive integers
¢j,dj, j=1,2,...,q, such that

p p
(18) da; =3, r=—hmn, —hmo1,...,—hs, —h1,

It follows that

(20) (z_zb><z_zd>:o

for r = —hy, —hm—1,-..,—ho, —h1, k1, ko, ..., k,, and hence we get
P g P g
ZZ{ aic;)" + (bid;)"} = Zz{az + (bics)"}
(21) o1 j=1 i=1 j=1
r=—hm, —Pm_1y...,—ho, —h1, k1, ka,...  kn.

This gives the desired solution and it immediately follows that

(22) Na(—hpm, ..., —hi, kl,...,kn)gpqg2<1+2hu><1+Zkv>.
v=1

u=1
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This proves the relation (16) when t = 2.

Since there exist arbitrarily many solutions of (18) and (19) when p
and ¢ satisfy the inequalities (17), it follows that there exist arbitrarily
many solutions of (1) when s > 2(1+ >"1" | hy)(1 4+ >0'_; ky). Thus
if we take s1 = 2(1+ >0 hy)(1+>"_, ky), for any given arbitrary
integer t > 2, there exist ¢ — 1 distinct positive integer solutions of
(1) with s = s, that is, there exist positive integers a;j, b;;, ¢ =
1,2,...,81,7=1,2,...,t—1, such that foreach j, j =1, 2,... ,t—1,

S1
ay b,
(23) ; 1.7 Z 1.7
r= _hma _hmfla'-' 7_h27 _h17 klv k27"' 7kn'

On adding 22);11, b;,, to both sides, for each j, j =1, 2,...,t -1, we
wj

get
s1
(24) Z%JFZZI) ZZ%, veeo—h, ki, k.
i=1 w=1, i=1 w=1
wtj
Since the righthand side of (24) is independent of j, we get for each r,
r= _hma _hmfla-' . 7_h27 _hla kla kZa' e 7kn7
s t—1 S1
Zan+ZZb ZawZ > -
i=1 w=2 i=1 w=1,
w7é2

- TS o) ST

i=1 w=1,
w#j

s t—2

—Z“ EIRD I B
i=1 w=1
s; t—1

=22 Y

=1 w=1
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This gives a solution in positive integers of the simultaneous chains (2)
with

s=s1(t—1)=2(t-1)(1 —i—ihu)(l +Zn:kv).

This proves the relation (16) when ¢ > 2 and the proof is complete. O

3. Equal sums of powers of reciprocals. In this section we
prove two theorems concerning equal sums of powers of reciprocals
of integers in the special case when we consider only the consecutive
exponents 1, 2,... ,n of reciprocals of integers. Starting from a given
solution of equal sums of powers of reciprocals for the consecutive
exponents 1, 2,... ,n, these theorems provide new solutions of this type
for the consecutive exponents 1, 2,... ,n as well as for the consecutive
exponents 1, 2,...,n,n + 1. By continuing the latter process, we
may obtain a solution of equal sums of powers of reciprocals for the
consecutive exponents 1, 2,..., N, where N is any positive integer
greater than n.

Theorem 2. Ifz;;,i=1,2,...,s,5=1,2,...,t, is a solution in

integers of the simultaneous diophantine chains
S T S T S T
1 1 1
o 2lw) 2E) -2
r=1,2,...,n,

then another solution in integers of these simultaneous diophantine
chains is given by
M:Eij

27 Xy = T
(27) dyx;j + dy

i=1,2,...,8 j=1,2,...,t

where di, da and M are arbitrary integers such that X;; is a nonzero
integer fori=1,2,...,s,7=1,2,...,t.

Proof. It follows from (26) that there exist constants S,, r =
1, 2,...,n, such that for each 5, j =1, 2,... ,t,

(28) > (L) =s-

i=1



746 AJAI CHOUDHRY

Therefore, for each j, j =1, 2,... ,t,and each r, r =1, 2,...

s 1 T ., s d2 r

2 (x;) = (o)
s T N dg h
(e (2)

i=1 \h=0 v

(29)

7n7

= M7"(d} +7C d; T do Sy + -+ d5S,).

Thus Y7 _,(1/X;;)" is independent of j for each value of r and the

theorem follows. ]

It follows from Theorem 2 that if we have a solution of (26) in positive
and negative integers, we can, by an appropriate choice of dy, d2 and

M, obtain a solution of (26) in positive integers only.

Theorem 3. Ifz;, y;, i =1,2,...,s, is a solution in integers of the

diophantine system

(30) 53(%>T=§3<i>1 r=1,2..n,

i=1 i=1

then a solution in integers of the diophantine system

2s 1 T 2s 1 r
(31) Z(Y) =Z<?>, r=1,2... .m0+l

i=1 i=1
s given by
(32) Xi = Mz;, Xy = Mdayi/(dvyi + d2),
Yi = My;, Yspi = Mdaz;/(dizi + d2),
where 1 = 1, 2,...,s in each case while dy, dy and M are

nonzero integers such that X;, Y; are integers fori =1, 2,...

arbitrary
,28.

Proof. Combining >0 _,(1/X;)" = >0_,(1/Y)", r = 1,2,...,n,
which is an immediate consequence of (30), with >2° . (1/X;)" =

i=s+1
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Z?is+1(1/}/i)r, r =1, 2,...,n, which is a consequence of Theorem 2,
proves the relations (31) for the exponents 1, 2,... ,n. To prove (31)
when r = n + 1, we observe that

2s 1 n+1 1 n+1
Six) -G)
i=1
_M,Hi Ki)"“ - <i>"+1 . (dlyi+d2>”“
[\ Yi day;
_ dix; + do ntl
dgﬂ?i
s 1 n+1 1 n+1
-
; T; Yi

d n+1 d n+1
e () - (aeg) ]

s n h h
1 1
-y | e () - (5)
i=1 ¢

h—0 Yi
n s 1 h 1 h
(g e () G
h=0 i=1 i yi
=0.
This proves the theorem. ]

4. Multigrade equations with both positive and negative ex-
ponents. In this section we obtain parametric or numerical solutions
of several diophantine systems of type (1). Solutions of several other
diophantine systems of this type follow from the more general results
on multigrade chains obtained in Section 5.

4.1. Multigrade equations for exponents r = —1,1. In
this subsection we obtain a solution of the simultaneous diophantine
equations

(33) zs:w::zs:yf, r=-1,1,
i=1 i=1

where s is any integer > 2.
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Ifz;,,9=1,2,...,s, are positive integers or rational numbers, and
we take y; = m/z;, i =1, 2,...,s, where m is an arbitrary parameter,
both equations of the diophantine system (33) reduce to the same
condition that immediately yields m = >>5_ =;/ 35 ;' and we
thus obtain a solution in positive rational numbers of the diophantine
system (33) for any arbitrary integer s > 2. A solution in positive
integers is obtained on appropriate scaling.

When s = 3 we can find several parametric solutions of (33). We give
one such rational solution in which z;, ¢ = 1, 2, 3 are arbitrary. We
write

(34) y1 = (z2 —z1)t + 21, Y2 = (3 — T2)t + 22, Y3 = (71 — 23)t + 73,
when (33) holds for all values of z; and ¢ with » = 1, while the condition
for r = —1 leads to a cubic equation in ¢ which can be readily solved

to yield the following solution of (33) with s = 3:

(22 — zox3) (23 — x371)73
xr] — 333)(172 — I3 (3711172 + Toxs + 1‘3371),

311:(

)
)
(23 — z321) (2% — z122) 71
Ty — z2)(z1 — ®3)(T122 + T2T3 + T3T1)’
)
)

(35) Y2 = (

(22 — zoz3)(T122 — 2) T2
z1 — x2) (T2 — x3) (122 + T223 + 333171)'

y3:(

4.2. Multigrade equations for exponents r = —2,2. In
this subsection we obtain a solution of the simultaneous diophantine
equations

3 3
(36) Zw::ny, r=-2,2.
i=1 i=1

We note that when we substitute y3 = m/z1, yo = m/x2, 3 = m/ys,
where m is an arbitrary parameter, both the equations of diophantine
system (33) reduce to the same condition which is as follows:

(37)  wizjyi(al + x5 — v3) + (ziah — zly3 — x3y3)m® = 0.



EQUAL SUMS OF LIKE POWERS 749

When we make the further substitutions,
(38) z1=az+b, x2=a—bz, yz3=az—Db
where a, b, z are arbitrary parameters, equation (37) reduces to

(39) (a2z2 _ b2)2(a2 _ b2z2)2
— (a*z* — 4ab®2® + 6ab* 2% — 4a®bz + b*)m? = 0.

Equation (37) will have a rational solution for m if
(40) #(2) = a*2* — 4ab®2> + 6a%b%2% — 4a3bz + b?,

is a perfect square. Now ¢(z) is a quartic in z and, following the usual
procedure described by Dickson [9, page 639], we can find values of z
that would make ¢(z) a perfect square. Two such values of z are given
by

21 = (a® + a®b+ b%)/(a® + ab® — b®),

41
(41) 2y = —(a® + ab® — b*)/(a® — a®b — ab?),

and these lead to two rational solutions of the diophantine system (36)
which, on clearing denominators, may be written as

zy = a'® + 2a°b + 3a®b* + 10a"b* — 10a®0”
+ 3ab® — 2ab® + b0,

zo = a'’ — a’b + 3a®b? — 2a"b® — 6a°b* — 6a*b® + 2a%b”
+ 3a2b® + ab® + b0,

23 = —a'® — 2a°b + 2a7b% + 9a°b* + 9a*1°

(42) —2a%b" + 2ab® — b1°,

y1 = —al® + 40703 — a®b* + abS + 40307 + b1,

yo = —a'® — 3a%b — 3a%b% — 2a7b% + 2a5b* — 6a°b° — 2a1°
—2a3b" + 3a2b® — 3ab® + b'°,

ys = a'? + 3a®b? + 2a7b® — 2a°b* + 2a10°
+2a%b" — 3a%0® — b',
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and
z1 = —a'® — 2a%b + a®b? — 8a7H3 + 2a®b* — 4a°b° — 2a*b°
+2a3b” — 40208,
2o = a'¥ + 3a°b — a®b? + 2a°b* — 5a°b° + 4a*b® — 24367
—2a%6® + 2ab® — 2610,
(43) z3 = a'® — 2a°b — 7a%b* — 5a*b° + 236" — 3a%b® + 2ab°,

yr = a'® — 4a®b? — 6a7b® — a®b* + 4a®b® + ab5 + 4437
+ a?b® + 2ab® — 2010,

yo = —a'® + a®b + a®b? + 4a"b> + 2a5b* + 11a°b° + 4a*b°
+2a%b" — 40208,

ys = —a'® — 4a°b — 3a®b? + 4a°b* + 2a*b° — 2a3b7 + 4ab®.

4.3. Multigrade equations for exponents r = —2, —1, 1, 2. In
this subsection we obtain a solution of the simultaneous diophantine
equations

4 4
(44) doar=>"u,
=1 =1

where r = -2, -1, 1, 2.

A solution of the diophantine equation (44) valid simultaneously for
the exponents r = —1, 1, only, obtained as in subsection 4.1, is given
by y; =m/z;, 1 =1, 2, 3, 4, where

1222324 (21 + 2 + T3 + 24)

(45) m = .
(37111725[,'3 + Tox3Tyg + x3x421 + 1174331372)

Direct computation now shows that with these values of y;, equation
(44) will also be satisfied for both the exponents 2 and —2 if z;, i =
1, 2, 3, 4 are chosen such that the following condition holds:

(46) T1T2 + T1T3 + 124 + T2z + T2T4 + T374 = 0.

Thus when x1, x2, x3 are arbitrary nonzero rational numbers such that
3
> i1 xi # 0, and we choose x4 = —(z1x2+x2x3+x321)/ (1 +T2+T3) SO
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that condition (46) is satisfied, then it is easily seen that Z?Zl z; #0,
m # 0, and we obtain a rational solution, and hence a solution in
integers of the simultaneous diophantine equations (44) valid for the
exponents r = —2, —1, 1, 2.

As a numerical example, starting with 1 = —4, 2 = 2, 3 = 1, we
get the solution

(—230)" + (—92)" + 23" + 46" = (—220)" + (—110)" + 22" + 55",
r=-2-1,1,2

4.4. Multigrade equations for exponents r = —6, —2, —1, 1, 2,
6. In this subsection we obtain a numerical solution of the simultaneous
diophantine equations

18 18
(47) doal=>"yi, r=-6-2-1,1,26.
=1 =1

We will use the following identities which have been established earlier
in [6, page 846]

83" + 2117 + (—300)" = (—124)" + (—185)" + 303",

48
(48) r=1,2,6.

437 4 3717 + (—372)" = 140" + 307" + (—405)",

49
(49) r=1,2,6.

It follows from (48) that when M is any nonzero integer,

(50) (M/83)" + (M/211)" + (—M/300)"
= (—=M/124)" + (—~M/185)" + (M/303)",

for r = —1, -2, —6. We take M = 22.3.52.31.37.83.101.211 and,
combining identities (49) and (50) as described in Theorem 1, we get
the following two sets, of 18 integers each, which provide a solution of
the multigrade equations (47):
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{—2727918817200, —1506896015025, —1073067591600, —1010027599260,
—813540145500, —752695377581, —687183850500, —460598905200,
—87239625973, 124037382900, 281223754000, 315323949300,
616683517700, 754724206092, 1070183001300, 1332446832900,
1987924710375, 2720585702100}
and
{—2969911615500, —1821037203825, —1220587098780, —1168259071500,
—747251689200, —622850352877, —284035991540, —211063611225,
—141469663740, 86375867300, 403842642000, 745242948100,
821675546955, 885569222100, 1026636114000, 1223877090960,
1825945659900, 2251266335700}

As shown in [6], we can obtain infinitely many solutions of the
multigrade equations
(51) zl+as+ay=y] +ys +yz, r=1,2,6,
and hence, we can obtain infinitely many solutions of the multigrade
equations (47).

5. Multigrade chains with both positive and negative ex-
ponents. In this section we obtain parametric solutions of several
multigrade chains with both positive and negative exponents.

5.1. Multigrade chains for exponents r = —1,1,2. In this
subsection we obtain a parametric solution in integers of the following
multigrade chain of arbitrary length:

3 3

3
E: r_§ ro_ _E r _
Tip = Tig =+ = Lits T'——l, ]-7 2;
A i=1

=1

(52)

where ¢ is any positive integer > 2.

For each j, j =1, 2,... ,t, we define
z1; = Maj(a; + b;)/D;,

= Mbj(a; +b;)/Dj,
—Ma;b;/Dj,

(53)

l‘gj

T35
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where D; = a? + a;b; + b}, while aj, b; and M are arbitrary integers
such that z;;,1=1, 2,3, 7 =1, 2,...,t, are all nonzero integers. It is

easily verified that

3

3 3
(54) Zx;l = 0’ inj = M, Zx?] — M2.
i=1 i=1

i=1

Since for each of the exponents r = —1, 1, 2, the sum Z?Zl Ti; 1s
the same for each j, it follows that the integers zij;, x2j, x35, J =
1,2,...,t, provide a solution of the multigrade chain (52). Hence,
using (8) we obtain, for arbitrary ¢ > 2,

(55) Ny(~1,1,2) =3.

5.2. Multigrade chains for exponents r = —1, 1, 2, 3. In this
subsection we obtain a parametric solution in integers of the following
multigrade chain of arbitrary length:

4 4

4
(56) ZIL:ZI&::ZIZ, r=-1,1,2,3,
i=1

i=1 i=1

where ¢ is any positive integer > 2.

For each 7, j =1, 2,... ,t, we define

(57) z1; = Maj(a; +b;)/Dj, 2 = Mbj(a; +b;)/Dy,
x3; = Maj(a; —b;)/Dj, 45 = Mbj(b; —a;)/D;,

where D; = a? + b?, while a;, b; and M are arbitrary integers such
that z;;, 1 =1,2,3,4, j =1, 2,...,t, are all nonzero integers. It is

easily verified that
4
—1 o _
YRR S
j i=1

(58) -
i=1 i=1
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Since for each of the exponents r = —1, 1, 2, 3, the sum Zle T
is the same for each j, it follows that the integers x1j, T2j, T3;, T4j,
j=1,2,...,t, provide a solution of the multigrade chain (56). Hence,
using (8) we obtain, for arbitrary ¢ > 2,

(59) Ny(-1,1,2,3)=4.

5.3. Multigrade chains for exponents r = —1,1, 2, 3, 4, 5.
In this subsection we obtain a parametric solution in integers of the
following multigrade chain of arbitrary length:

6 6 6
(60) ;%1:;97;2:‘”:297;,

i=1
r=-1,1,2 34,5,

where ¢ is any positive integer > 2.

For each j, j =1, 2,... ,t, we define

oo = Maj(a; — b) oo — Mb;(b; — ay)
15 — D] ’ 2] — D] ’
Ma;(2a; +b; Mb;(a; + 2b;
(61) 255 = aj(g].+ ])’ T4 = J(aé.‘i‘ ])’
J J
I M(aj +bj)(aj +2bj) o M(aj +bj)(2aj +bj)
55 — Dj y  Lej = Dj ’

where D; = a? +a;b; + b?, while a;, b; and M are arbitrary integers
such that z;;, ¢ =1, 2,...,6, j =1, 2,... ,t, are all nonzero integers.

It is easily verified that

6 6
Sagt=0. Yoy =6,
=1 =1
6 6
(62) D @l =10M% ) af =18M°,
i=1 i=1
6 6

> al =34M*, Y af; = 66M°.
i=1 =1
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Since for each of the exponents r = —1, 1, 2, 3, 4, 5, the sum Z?Zl T
is the same for each j, it follows that the integers x1;, z25, T35, T4j, Ts5;,
z¢j, j = 1,2,...,t, provide a solution of the multigrade chain (60).
Hence, using (8) we obtain, for arbitrary t > 2,

(63) Ni(—1,1,2,3,4,5)=6.

As a numerical example, when t = 4, taking (a1, b;) = (2, 1),
(a27 b2) = (37 1)7 (a37 b3) = (57 1)7 (a47 b4) = (57 _3)7 we get the
multigrade chain,

(=7657)" + 15314" + 30628" + 76570" + 91884" 4 114855"
= (—8246)" 4 20615" + 24738" + 82460" + 86583" + 115444"
= (—6916)" + 12103" + 34580" + 72618" + 95095" + 114114"
= (—5642)" 4 8463" 4 39494" 4 67704" + 98735" + 112840",

where the equality holds for r = —1, 1, 2, 3, 4, 5.

5.4. Multigrade chains for exponents r =—2, —1,1,3,...,2k+1.
In this section we give a method of generating multigrade chains of the

type

2k+3 2k+3 2k+3

ol = Ty == iy,
(64) ; 1 ; 2 ; t
r=-2,-1,13,...,2k+1,

by using symmetric ideal solutions of the Tarry-Escott problem of
degree 2k + 2. We know parametric symmetric ideal solutions of the
Tarry-Escott problem of degrees 4 and 6 [5] and two numerical solutions
of the Tarry-Escott problem of degree 8 [2]. These solutions lead to
parametric solutions of the chains (64) when &k = 1 or 2 and ¢ is any
integer > 2, and a numerical solution of (64) when k£ = 3 and t = 2.

We note that every symmetric ideal solution of the Tarry-Escott
problem of degree 2k + 2 is reducible to the form

2k+3 2k+3
(65) dap=>yl, r=1,23,...,2k+2
=1 i=1
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where y; = —z;, 1 =1, 2,...,2k 4+ 3. Thus, each such symmetric ideal
solution gives a solution of the following diophantine system:

2k+3
(66) d aj=0, r=1,3,5...,2k+1.
i=1

We will use ¢ such solutions to generate the multigrade chain (64). We
first prove a couple of preliminary lemmas. We will use these lemmas
to obtain solutions of (64) for k = 1, 2 and 3 as mentioned above.

Lemma 4. Ifa;, i = 1, 2,...,n, are the roots of the polynomaial
equation

aoxr” + a1z P+ a2+ a, 323+ a1z +a, =0,
(67)
apan # 0,
that is, the equation Z?:o ajx"’j = 0 where a,_o =0, aga, # 0, then
n

(68) doat= (gai‘l)z-

i=1

Proof. If 8;,i =1, 2,... ,n, are the roots of the polynomial equation

boz™ + bia™ t + b3z 3 4 - + bp_1z+ b, =0,
bob, # 0,

that is, the equation Z?:o bja:"’j = 0 where by = 0, bob,, # 0, then,
by the theory of equations,

(69)

n

>N BB =ba/by =0,

i=1, j=1
i#]
and hence
n 2 n n n n
(70) (Zm) =D BE+2) > BiBi = B
i=1 i=1 i=1, j=1 i=1

i#j
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Since «y, i =1, 2,... ,n, are the roots of equation (67), it follows that
04;1, i=1,2,...,n, are the roots of the polynomial equation
(71) ™ + ap_12” P F ap_gz™ 3+ +ax+ag =0,

which is of type (69), and the result of the lemma follows from (70). O

Lemma 5. If for each value of j, j =1, 2,... ,t, there exist nonzero
integers o5, 1 =1, 2,...,2k + 3, such that

2k+3
(72) dap=0, r=1,3,...,2k+1,
i=1

then a solution in integers of the multigrade chain (64) is given by

2k+3
— -1 ..
(73) e M( ; %is >a”’

i=1,2,...,2k+3, j=1,2,... ¢,

where M is an arbitrary nonzero integer such that x;; is an integer for
1=1,2,...,2k+3,57=1,2,...,t.

Proof. For any fixed value of j, let the nonzero integers a;;, ¢
1, 2,...,2k+3, satisfying the simultaneous diophantine equations (72),
be the roots of the polynomial equation
(74) .’L‘2k+3 + a1w2k+2 + a2w2k+1 4.

+ ak®® + ase412” + Agpp2m + agpgs =0,
. . _ 243
where we necessarily have asgy3 # 0. If we write s, = Zi:l i
Newton’s theorem [1, page 297] gives the following relations between
the coeflicients of (74) and s,

(75) s+ a18p—1+assp—2+ -+ ar_181 +ra, =0, (r<2k+3).

It follows from (72) that s, =0 for r =1, 3,... ,2k + 1, and applying
successively the relations (75) for r =1, 3,... ,2k + 1, we obtain

(76) ay = 0, as = 0, as = 0, e, A2k41 = 0.
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Since asgg+1 = 0, askts # 0, we may apply Lemma 4 to equation (74),
and hence we obtain

243 2k+3 2
(77) Z a;jz = < Z ozij1> .
i=1

i=1
It now follows that, for each j, j =1, 2,... ,t,
2k+3 2k+3 r ,2k+3
> o =wr(2a5t) (Xan) =0
i=1 i=1 i=1

r=1,3,...,2k+1,

2k+3 2k+3 ~1 ,2k+3

-1 _ -1 -1 -1\ _ -1
E:vij—M <Eaij> <Eaij>—M,
i=1

i=1 i=1
2k+3 2k+3 —2 ,2k+3

-2 -2 -1 -2\ _ -2
E T;; =M <Zaij> <E aij>—M ,
i=1 i=1 i=1

in view of (77).

Since for each of the exponents r = —2, —1, 1, 3,... ,2k + 1, the sum
22251'3 z;; is the same for each j, it follows that the integers w;;,
1=1,2,...,2k+3,5 =1, 2,...,t, provide a solution of the multigrade
chain (64). o

We will now apply Lemma 5 to obtain specific multigrade chains of
type (64). To obtain a solution of (64) with k& = 1, we use the following
solution of the diophantine equations

(78) d af=0, r=1,3,

a1(p, ¢, 7, 8) = pa(r® — %) + ¢*r?,
as(p, g, 7, 8) = —{p’s(r +s) — ¢ 7“8}

(79) as(p, g, r, 8) = p’r(r + s) + pgr? — ¢’rs,
as(p, g, 7, 8) = —{p’r(r + s) +P(Z(7“ — 32)}
as(p, g,y 8) = p*s(r + s) — pgr? — ¢*r?,
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where p, ¢, r, s, are arbitrary parameters. Following Lemma 5, we
define o;; = a;(pj, g5, 75, 85), ¢ = 1,2,...,5, j = 1,2,...,t, where
Dj, qj, Tj, Sj, are arbitrary integer parameters, and

5
(80) xij_M<Za;jl>aij, i=1,2,...,5 j=1,2,...,t
=1

when, as in Lemma 5, we get,

5 5
Sag=0, Y=o
i=1 i=1
(81) s s
2wy =M ) @ =M,
i=1 i=1
and hence z;;, 1 = 1, 2,...,5, j = 1, 2,...,t, provide a parametric
solution of the multigrade chain
5 5 5
(82) Zmﬁ:Zm;z:---:fot, r=-2,-1,1, 3,
i=1 i=1 i=1

where ¢ is any positive integer > 2. Hence we obtain, for arbitrary
t>2,

(83) Nt(_27 _17 ]-7 3) < 5.

As a numerical example, taking
(pla qi, T1, 31) - (17 1727 1)7 (p?a g2, T2, 32) - (]-7 27 27 1)7
(p37 q3, T'3, 83) = (17 _27 27_1)7 (p47 q4, T4, 84) = (37 57 17 1)7

we get the multigrade chain,

(—1156760)" + (—1012165)" + 144595" + 722975" + 1301355
= (—818370)" + (—467640)" + 194850 + 233820 + 857340"
= (—743490)" + (—578270)" + 165220" + 330440" + 826100
= (—630718)" + (—516042)" + 200683" + 229352" + 716725,

where the equality holds for r = -2, —1, 1, 3.
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When k& = 2, we may similarly obtain a parametric solution of the
multigrade chain (64) with arbitrary ¢ > 2 by using the parametric
symmetric ideal solution of the Tarry-Escott problem problem of de-

AJAI CHOUDHRY

gree 6 given in [5] and establish that for arbitrary ¢ > 2,

(84)

As the parametric solution is cumbersome, we restrict ourselves to
giving a numerical example with ¢ = 3 obtained from the following
three solutions (quoted in [2, page 9] and [5, pages 631-632]) of the
equations (72) with k£ = 2:

Ni(-2,-1,1,3,5) < 7.

(=51)" 4+ (—33)" + (—24)" + 7"+ 13" + 38" + 50" =0,

(85)

(—134)" + (=75)" + (—66)" + 8" + 47" + 87" + 133" = 0,
(—11907)"+(—6001)"+(—5893)" +121"+5200" +6586" +11894" = 0,

where, in each case, the equality holds for » =1, 3, 5.

We accordingly write

r1 = —5lmyq,
To = —33my,
T3 = —24my,
(86) T4 = Tmy,
rs = 13myq,
re = 38my,
x7 = 50my,

y1 = —134mo,
Yo = —75ma,
y3 = —66ma,
Y4 = 8ma,

ys = 47Tma,

ys = 87Tmg,
y7 = 133mg,

when, in view of (85), we have

(87)

where, in each case, the equality holds for r = 1, 3, 5, and further, we

z1 = —11907mg,

29 = —6001ms,

z3 = —H893ms,

z4 = 121mg,

z5 = 5200ms3,

zg = 6586ms3,

z7 = 11894mg,
zi =0,

i=1
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obtain by direct computation,

T, 11285167
;xi = 64664600m,°
"L, 3456089047
3) 2" = S57a0521600m;
T, 42921079758702791974441
;Z T 5188487856887861419093200m5 "
We take
M = lem (64664600, 26720524600,
5188487856887861419093200),
(89) — 473817899578856392653010117200,
_ 11285167M
" 764664600
~ 3456089047M
"2 = 96720524600
g 12921079758702791974441.11
5188487856887861419093200°
when
7 7 7
(90) D oat=M7Y D yt=MT DY 5 t=MT,
=1 =1 i=1

and in view of Lemma 5, we have

7

7
O Yert=m Yyt=m Yatomt
=1

i=1 i=1

The relations (91) may also be verified by direct computation. It follows
from (87), (90) and (91) that when we take my, ma, ms as in (89), the
integers z;, yi;, 2; defined by (86) provide an example of the multigrade
chain

7 7 7
(92) doap=> yr=>Y 2, r=-2,-1,1,35.
=1 i=1 =1
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Finally using the following two numerical solutions given in [2,
page 9],

(—98)" + (—82)" + (—58)" + (—34)" + 13" + 16" + 69" + 75" + 99" =0,
(—169)"+(—161)"+(—119)"+(—63)"+8"+50"+132" +148"+174" =0,

where, in both cases, the equality holds for » = 1, 3, 5, 7, we obtain a
numerical solution of (64) with k = 3, ¢t = 2, which is given below:

(—59866534997533082)" + (—50092406834670538)"
+ (—35431214590376722)" + (—20770022346082906)"
+ 7941479132325817" 4 9774128162862544" + 42150927702344721"
+ 45816225763418175" + 60477418007711991"
= (—122664510625104994)" + (—116857906571845586)"
+ (—86373235292233694)" + (—45727006919417838)"
+ 5806604053259408" + 36291275332871300"
+ 95808966878780232" + 107422174985299048"
+ 126293638158392124",

where the equality holds for r = -2, —1, 1, 3, 5, 7.

Acknowledgments. I am grateful to the referee for his comments
which have led to improvements in the paper.
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