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STABILITY CLASSES OF SECOND-ORDER
LINEAR RECURRENCES MODULO 2* II

WALTER CARLIP AND LAWRENCE SOMER

ABSTRACT. We classify the 2F-blocks of second-order
recurrence sequences with parameter b = 5 (mod 8) and
identify stability classes modulo 2.

1. Introduction. Let w(a,b) denote the second-order recursive
sequence (w;) determined by integer parameters a and b, initial integer
terms wy and wy, and recursion

(1.1) w; = aw;_1 + bw;_o.

For each integer m, let (w;) denote the corresponding sequence of
residues modulo m. The residue sequence (w;) is periodic, and purely
periodic when m is relatively prime to b. Despite their simple definition,
such sequences remain a source of many interesting open questions,
among them the determination of the period, restricted period, and
residue frequency distribution.

Considerable progress has been made in understanding the frequency
distributions of sequences (w;) when the modulus m is a prime power,
much of it motivated by pioneering work of Eliot Jacobson beginning
with [10]. Suppose that m = p* is a power of a prime p. Let
A = Aw(p®) be the (least) period of (w;) and, for each residue d
modulo p*, v, (d, p¥) the number of times that the residue d appears in
a single cycle of the recurrence (w;). Let Q,(p*) be the image of the
frequency distribution function v, (d, p¥), i.e.,

Qu(p*) = {vuw(d,p*) | d € Z}.

In [10], Jacobson observed that when w(a, b) is the Fibonacci sequence,
the sets Q,,(2F) are eventually constant as a function of k, and hence
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computation of the residue distribution of the Fibonacci sequence for
all powers of 2 requires only a finite computational procedure. A similar
analysis applies to any sequence that is known to be p-stable, as defined
below.

Definition 1.1. A sequence (w) is stable modulo p, or simply p-
stable, if there is a positive integer N such that Q. (p*F) = Q, (p") for
all k > N.

There is considerable mathematical literature on the stability of
second-order recurrence sequences. In a series of papers [1-4], Carlip
and Jacobson examined the 2-stability of the generalized Fibonacci
sequences u(a, b), whose initial terms are ug = 0 and u; = 1. In [11],
Morgan examined the 2-stability of the Lucas sequence v(1,1), whose
initial terms are v9 = 2 and v; = a = 1, providing an important
example of a sequence that fails to be 2-stable. Stability modulo odd
primes p has been examined by Carroll, Jacobson, and Somer in [9],
Carlip, Jacobson, and Somer in [5] and Carlip and Somer in [6, 8].
The last two of these papers lay the groundwork for a general theory
of stability of second-order recurrence sequences, not limited to the
generalized Fibonacci and Lucas sequences studied in the earlier papers.
In particular, the treatise [6] provided a broad generalization to blocks
of second-order recursive sequences.

In this paper, the second in a series of papers in which we apply the
methods of [1, 6] to sequences modulo powers of 2, we examine the
2-stability of sequences satisfying (1.1) for which a is odd and b = 5
(mod 8). In particular, in Section 3, we describe the block structure of
the family of regular second-order recurrences, F(a, b). In Section 4, we
offer our main results, a characterization of the 2-stability of blocks in
terms of a parameter t, the transition degree, introduced in Section 3.1.
Finally, in Section 5, we examine the sequences for which the transition
degree is not defined.

2. Background and definitions.

2.1. Regular sequences. Throughout this paper we are interested
in 2-regular recurrence sequences.
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Definition 2.1. A second-order recurrence w(a,b) is said to be 2-
reqular if

(2.1)

‘wo e = wowy —w} Z0 (mod 2).

wp w2

Equivalently, w(a, b) is 2-regular if the initial state vectors (wp,w;) and
(w1, ws) are linearly independent modulo 2.

Lemma 2.2 If a and b are odd, then w(a,b) fails to be 2-regular if
and only if 2 | (wp, wy).

Proof. This follows immediately from (1.1) and (2.1). o

Note that this characterization is true only for p = 2. See [6] for a
discussion of the more complicated situation when p is odd.

Definition 2.3. Let F(a,b) denote the set of all 2-regular recurrences
w(a, b).

We single out two important classes of second-order recurrences, the
generalized Fibonacci and Lucas sequences, also known as the Lucas
Sequences of the First Kind (LSFK) and Lucas Sequences of the Second
Kind (LSSK).

Definition 2.4. The generalized Fibonacci sequence u = u(a,b)
is the second-order recurrence that obeys (1.1) and has initial terms
up = 0 and u; = 1. The generalized Lucas sequence v = v(a,b) is the
second-order recurrence that obeys (1.1) and has initial terms vy = 2
and v; = a.

The generalized Fibonacci sequence u(a,b) is always 2-regular, and
the generalized Lucas sequence v(a, b) is 2-regular when the parameter
a is odd.
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2.2. Periods and restricted periods.

Definition 2.5. Let )\, (2¥) denote the period of w(a,b) modulo 2¥,
that is, the least positive integer A such that for all n,

Wpyx = w, (mod 2%).

Similarly, let h,,(2%) denote the restricted period of w(a,b) modulo
2% that is, the least positive integer h such that for some integer M
and for all n,

Wntn = Mw, (mod 2’“).

The integer M = M,,(2*), defined up to congruence modulo 2%, is
called the multiplier of w(a,b) modulo 2*.

It is well known that h,, (2%) | A, (2¥) and that E,, (2%) =\, (2%)/h,, (2)
is the multiplicative order in (Z/2¥Z)* of the multiplier M, (2¥). More-
over, if h = h,,(2%) and M = M,,(2¥), then for all n,

(2.2) Wpyin = M'w, (mod 2%).

Lemma 2.6. For each k > 1, all recurrences w(a,b) € F(a,b) have
the same period modulo 2¥ and all recurrences w(a,b) € F(a,b) have
the same restricted period modulo 2F.

Proof. This follows from the regularity by a simple argument using
Cramer’s rule. See, e.g., [6, page 695]. o

It is not unusual to find parameters like A, (2¥) and h,(2%) that
depend only upon the defining parameters a and b and not on the
initial terms of the sequence. We refer to such parameters as global
parameters and think of them as parameters of the family F(a,b) as
well as of the individual sequences.

The periods and restricted periods modulo 2¥, for k& > 1, of the
regular second-order recurrences for which a is odd and b =5 (mod 8)
are determined in Theorems 3.10 and 3.11 below.



STABILITY OF SEQUENCES 89

3. The class a odd and b =5 (mod 8).

3.1. The transition degree. The main goal of this section is to
compute the period and restricted period of the sequence u(a, b), under
our general hypotheses that a is odd and b = 5 (mod 8). These are
characterized in terms of a global parameter ¢, the transition degree,
which is useful for describing properties of sequences in the family
F(a,b) and was originally defined in [1].

Definition 3.1. The transition degree, t, is the unique nonnegative
integer satisfying

(3.1) 21 || .

Clearly, if ug = 0, then parameter ¢ is undefined. In this case, we
write ¢ = co. The sequences for which ¢ = co are analyzed in Section 5.

While the transition degree ¢ is defined using the generalized Fi-
bonacci sequence u(a,b), its value depends only upon the parameters
a and b and is hence a global parameter of the family F(a, b).

In order to handle subtle differences in the values of the terms of
u(a, b) that depend upon the congruence class of a, Carlip and Jacobson
introduced parameters 6§ and ¢ in [3]. For reference, we reproduce the
definitions we require.

Definition 3.2. For all b =5 (mod 8), define

5 ifa=1 (mod 16) or a =15 (mod 16),
3 ifa=3 (mod 16) or a =13 (mod 16),
7 ifa=5 (mod 16) or a =11 (mod 16),
1 ifa=7 (mod 16) or a =9 (mod 16).

(32) 6=

For all b =5 (mod 16), define

§{0 ifa=1 (mod 8) or a=7 (mod 8)
2 ifa=3 (mod8) ora=5 (mod8),

and for b = 13 (mod 16), define

§{0 ifa=3 (mod 8) or a =5 (mod 8)
2 ifa=1 (mod8) ora=7 (mod8).

(3.3)

(3.4)
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For much of the remainder of the paper, we fix the following hypoth-
esis.

Hypothesis 3.3. Assume that w(a,b) € F(a,b), that a is odd and
b=5 (mod 8), and that t, 6 and & are given by (3.1), (3.2), (3.3) and
(3.4), respectively.

Our computation of the periods and restricted periods of sequences
satisfying Hypothesis 3.3 require several preliminary results. We be-
gin with an extremely useful lemma, which we often refer to as the
Intertwining Lemma.

Lemma 3.4 (Intertwining Lemma). For any nonnegative integers i
and j,
Wiy = bwi_luj + WiUj41-

Proof. The lemma follows easily by induction on j. i

Two consequences of the Intertwining Lemma and the defining recur-
sion (1.1) are the useful relations

(3.5) ugit1 = b(ui)® + (uit1)®  and

36) U2; = 2uiui+1 - a(ui)z.

The Intertwining Lemma can also be used to show that ¢ > 3 when
our standard hypothesis holds.

Theorem 3.5. If w(a,b) satisfies Hypothesis 3.3, then t > 3.

Proof. By the Intertwining Lemma,

Ug = bUQ’U,:J, + ugug = U3(bUQ + U4)
= uz(bug + auz + bua) = ausz(a® + 3b).

But u3 = a®> +b =6 (mod 8), so 2 || u3, while a®> +3b =1+ 15 =0
(mod 8), so 8 | a® + 3b. It follows that 2* | ug, and hence t > 3. O
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Before we turn to the computation of the period and restricted period,
we present several additional lemmas that describe properties of u(a, b).

Lemma 3.6. Assume Hypothesis 3.3. Then, for all k > 4,

(3.7) Us.gn-s = E2F 1 (mod 2F+1),
(3.8) Uggr—241 = (1+ 2817 (mod 2FF1)
(3.9) =142 (mod 2% +1).

Proof. We prove (3.7) and (3.8) simultaneously by induction on k.
The induction is begun by explicit computation for ¥ = 4 and k = 5.
Note that this computation is finite because there are only finitely many
distinct two-term recurrence sequences modulo 2° and 26. We leave it
to the reader to write the elementary computer programs needed to
verify this first step of the induction.

Now assume that (3.7) and (3.8) hold for some k& > 5 and also for
k—1.

By (3.6), the induction hypothesis, and the binomial theorem,

’U/3,2k—2 = 'U/2(3,2k—3) = 2(U3,2k—31}13_2k—3+1) — a(U3,2k—3)2

= 2628711 4-2F72)0 — q(e2871)2 (mod 2F+2)
= ¢2k(1 4 62F72) (mod 2F+2)
= g2 (mod 2F+2),

as desired. This proves (3.7).

Next, by (3.7), (3.5), the induction hypothesis, and the binomial
theorem,

’U,3_2k—1+1 = 'U/2(3.2k—2)+1 = b(’ll/3.2k72)2 + (U3.2k—2+1)2

= b(£25)% + ((1+271)%)? (mod 2*+2)
= (1+42-2F1)? (mod 2F72)
= (14 2F)° (mod 2%+2),

as desired. This proves (3.8), and (3.9) follows by the binomial formula
and the observation that 2k —2 > k+ 1 when k > 3. a
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Lemma 3.7. Assume Hypothesis 3.3. Then, for all n > 0 and all
k>2,
Upyz.or1 = Uup(1+2F)?  (mod 2FF1).

Proof. Consider first the case that & > 3. By the Intertwining Lemma
and Lemma 3.6,

un+3_2k—1 = bunflu?),zk—l + unUI3_2k—1+1
= bup_ 1628 o, (14 28)% (mod 251
=u,(1+ 2’“)9 (mod 2k+1).

Unfortunately, we cannot apply Lemma 3.6 when k = 2, so we treat
this case separately. We know that uz = a®> + b = 6 (mod 8) and
Theorem 3.5 implies that ug = 0 (mod 8). Since w4 is odd, (3.5) shows
that uy = bu? +u2 =5 (mod 8) and, since  is odd, 5 =5 (mod 8).
Finally, by the Intertwining Lemma,

Upi3.02-1 = Upt6 = DUp_1Us + UnUur = up (1 + 22)9 (mod 22+1),

and hence the lemma is true when k& = 2. O

Lemma 3.8. Assume Hypothesis 3.3. If k > 1 is a nonnegative
integer, then 287F || ug.on.

Proof. This follows immediately from Lemma 3.5 of [3]. O

Lemma 3.9. Assume Hypothesis 3.3. Then uy; =0 (mod 2) if and
only if 3 | €. Moreover, for all positive integers m, if 3 | £ and 2™ || ¢,
then 28T™ || wy.

Proof. The first assertion follows from the observation that a complete
cycle of u(a,b) modulo 2 is given by 0,1, 1.

To prove the second assertion, write £ = 3 - 2™ - d, with d odd, and
assume that d has base two expansion

d=do+d12+d22® + - +d,2",
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with dy # 0 and d,, # 0. Proceed by induction on n. If n = 0, then
the result is simply Lemma 3.8. Now suppose that n > 1. Then the
Intertwining Lemma yields

Up = U3.2m.d = UB.2m.(dy+dy 24d222+-+dp2™)
= Uz.2m43.2m+1.(d) +d22+---+d, 27 1)
= U3.2m41U3.2m+1.(d) +da2+---+d, 2"~ 1)
+ bug.2mUz.om+1.(d) 4dp24 -t dn2n—1)—1-
The induction hypothesis and the first assertion of the lemma imply
that
2t+m+1 | Ug.2m +1U3.2m+1.(dy +---4d, 27" 1))
while
2t+m || bU3.2mU3.2m+1.(d1+...+dn2n—1)_1.

It follows that 2!7™ || uy, as desired. O

With these facts in hand, we turn to the question of computing the
period and restricted period of sequences satisfying Hypothesis 3.3. We
begin with the period.

Theorem 3.10. Suppose that w(a,b) satisfies Hypothesis 3.3. Then
Aw(2F) =321 when k > 1.

Proof. By Lemma 2.6, it suffices to prove the theorem for the Lucas
sequence u(a,b). It is a simple matter to computationally verify the
period modulo 2*¥ when k = 1, 2, and 3. For k > 3, we proceed by
induction.

By way of induction, assume that A, (2¥) = 3 - 2*~1 for some k > 3.
Clearly, A\, (2*) divides A, (28*1), so

(3.10) 3.2F71 ), (2.

By Lemma 3.6, ugor = €282 (mod 2F+4), and therefore ug.or = 0
(mod 2¢*1). Similarly, Lemma 3.6 implies that ug.qrq = (1 + 2F+1)7
(mod 2F+2), and hence, uz.or; =1 (mod 28+1). It follows that

(3.11) A (25F1) | 3 2K,
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On the other hand, uz.ok-1,; = 1+ 62% (mod 2%+2), so ug.gr-1,; =
1+ 62% (mod 2*+1). Since 6 is odd, ug.gr-1,; = 1+ 2% (mod 2F+1).
Therefore A, (28+1) # 3. 2k—1,

We now conclude from (3.10) and (3.11) that A, (2*1) = 3. 2%, and
the induction is complete. o

Next we compute the restricted period. Notice that the restricted
period h,,(2¥) is constant for k greater than one and less than or equal
to the transition degree, but doubles for each increment of k£ when k
has passed the transition degree. This difference in behavior when k
surpasses t is one motivation for the name transition degree.

Theorem 3.11. Assume Hypothesis 3.3. Then h,,(2F) = 3 -2kt
when k > t, A\, (2F) = 6 when 1 < k < t, and hy(2%) = 3 when k = 1.

Proof. By Lemma 2.6, it suffices to prove the theorem for u(a,b).
Moreover, since ug = 0, the restricted period of u(a,b) modulo 2k is
simply the rank of appearance of 2¥, i.e., the least index m > 0 such
that 2% | u,,.

Since 2 || us and 2! || ug, the first assertion of Lemma 3.9 implies
that h,,(2¥) = 3 when k = 1 and h,,(2¥) = 6 when 1 < k < t. Moreover,
if £ > t, Lemma 3.9 implies that the first term of u(a, b) that is divisible
by 2F is ug.9x—¢, as desired. O

3.2. Blocks. One of the primary tools used in [6] to study second-
order recurrence sequences is an equivalence relation used to partition
the set of recurrence sequences into equivalence classes known as blocks.
In this section we examine the ramifications of this theory for sequences
modulo powers of 2.

Definition 3.12. For each k& > 1, we define a relation on the set of
second-order recurrences with fixed parameters a and b by w(a,b) ~y
w'(a, b) if w'(a,b) is an odd (hence invertible modulo 2) multiple of a
translation of w(a, b) modulo 2¥, that is, w(a, b) ~x w'(a,b) if and only
if there exist integers m and ¢ such that 2 { ¢ and, for all nonnegative
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integers n,
(3.12) W, = Wiy (mod 2F).

Since c is odd, it is easy to see that ~j defines an equivalence relation
on the set of two-term recurrence relations with fixed parameters a and
b. The equivalence classes of ~}, are called the 2F-blocks, or simply the
blocks when k is evident.

It is also clear that regularity is preserved by ~y, i.e., if w(a,b) ~y
w'(a,b), then w(a,b) is 2-regular if and only if w'(a,b) is 2-regular.
Thus, the equivalence relation ~y, restricts to F(a,b) and, without risk
of confusion, we can refer to regular blocks. Furthermore, if w(a,b) and
w'(a, b) satisfy (3.12), and d is any integer, then v,,(d, 2F) = v, (cd, 2),
and therefore, for every n,

(3.13) Q,(2%) = Q.0 (2%).

In the following theorem we determine the number of regular 2*-
blocks in F(a,b). Once again, the behavior changes when & surpasses
the transition degree t.

Theorem 3.13. Assume Hypothesis 3.3. Then for all k > t, there
are exactly 2t~ reqular 2% -blocks and each 2*-block contains 3-22F—t—1
distinct sequences modulo 2.

Proof. Since a second-order recurrence w(a,b) is determined by its
two initial terms, there are (2¥)2 distinct recurrences modulo 2F. Of
these, exactly (281)2 satisfy 2 | (wo,w;) and, by Lemma 2.2, are not
2-regular. It follows that F(a,b) contains (2%)? — (2F-1)2 = 3.22(k~1)
distinct sequences modulo 2.

If w(a, b) is a 2-regular recurrence, then, modulo 2¥, w(a, b) has 2~F~!
distinct odd multiples, each of which has h(2*) distinct translations that
are not nontrivial multiples of each other. It follows that the 2*-block
containing w(a, b) has exactly 2¥~1h(2*) distinct sequences modulo 2*.
Moreover, since, by Theorem 3.11, h(2%) = 3 - 28—t a regular 2*-block

contains 3 - 22#~¢~! recurrences.
We now see that the number of regular 2*-blocks in F(a,b) is

3. 22(k—1)
k= 3.922k—t-1

= 2t— 1 o
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Remark. By the argument of the previous theorem, when 1 < k£ <,
there are 22 2*-blocks, each containing 3 - 2F sequences, and, when
k = 1, there is only one block, which contains 2¥~! . 3 = 3 sequences.
It follows that, as k increases from 2 to t + 1, the number of 2¥-blocks
doubles at each step, but the number of blocks remains constant once
k passes the transition degree.

Corollary 3.14. For all k > t, w(a,b) and w'(a,bd) lie in the same
2k _block if and only if they lie in the same 2T -block.

Proof. If w(a,b) and w'(a,b) lie in the same 2*-block, it is obvious
that they lie in the same 2!*!-block. The converse follows from
Theorem 3.13. O

Corollary 3.15. If w(a,b) and w'(a,b) lie in the same 2+ -block,
then w(a,b) is 2-stable if and only if w'(a,b) is 2-stable.

Proof. This follows from Corollary 3.14 and (3.13). O

In view of Corollary 3.15, we may, with no ambiguity, refer to stable
blocks of sequences.

3.3. Principal divisors. One of the consequences of Lemma 3.9 is
that we can identify the precise power of two that divides each element
of u(a,b). Since every sequence w(a, b) in the same 2*-block as u(a, b) is
a translation of an odd multiple of u(a,b), we can easily determine the
exact power of two that divides each element of w(a,b). In particular,
for every k > t, there is an element of u(a,b), and hence of w(a,b),
that is exactly divisible by 2¥. Moreover, if a sequence w(a, b) contains
a term that is divisible by 2!*1, Corollary 3.14 tells us that w(a, b) lies
in the same 2*-block as u(a, b) for all k > ¢, and hence w(a, b) contains
terms divisible by 2% for all k > t.

For sequences w(a,b) that lie outside of the 2!*1-block containing
u(a, b), the situation is strikingly different. In particular, no element
of w(a,b) can be divisible by 2¢*! since otherwise w(a,b) would be
a multiple of a translation of u(a,b) modulo 2!*!. Tt follows that
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sequences in F(a,b) may be characterized by the largest power of two
dividing any element in the sequence. This motivates the following
definitions.

Definition 3.16. Let m be a nonnegative integer and w(a,b) €
F(a,b). We say that m is a divisor of the sequence w(a,b) if m | w,, for
some n. We say that 2 is the principal 2-divisor, or simply the principal
divisor of w(a, b) when the prime 2 is evident, if 2 is the largest power
of 2 dividing any element of w(a,b). If w(a,b) contains terms divisible
by 2* for unbounded values of k, for example when w(a, b) contains a
term that is identically zero, as u(a,b) does, we say that the principal
divisor does not exist or, informally, that the principal divisor is infinite.

It is self-evident that any two sequences in the same block have
the same principal divisor. It is often convenient to choose a block
representative w(a,b) with the property that wg is divisible by the
principal divisor. Clearly, this is always possible when a principal
divisor exists, and we refer to such a representative as a principal
representative of the block.

Armed with these definitions we can now describe precisely the

powers of two that divide each term in a sequence w(a, b) lying outside
the 2t 1-block of u(a,b).

Lemma 3.17. Assume Hypothesis 3.3, and suppose that k > t. If
w(a, b) is a principal representative of a 2F-block that does not contain
u(a,b), then w(a,b) has principal divisor 2™ for some m satisfying
2 < m < t. Moreover, 2™ || we, and 2 || wents for all nonnegative
integers n.

Proof. That m < t follows from the fact that w(a,b) does not lie
in the same block as u(a,b). Moreover, since a and b are odd, two
consecutive odd terms of w(a,b) must be followed by an even term, so
m > 0.

To show m > 2, suppose instead that m = 1, i.e., 2 || wp. Two
applications of (1.1) show that

(3.14) w3 = a(aw; + bwg) + bwy = (a* + b)w; + (ab)wy.
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Since a? + b =6 (mod 8) and w; is odd, we know that 2 || (a? + b)w;.
By our hypothesis and the fact that ab is odd, we also know that
2 || (ab)wy. But then 4 | ws, contrary to the maximality of m.

To show that 2™ || we,, for all n > 0, proceed by induction on n. For
n = 0, the result follows from the definition of a principal representative
of a block. By way of induction, assume that 2™ || wg, for some n > 0.
It is easy to see that a complete cycle of w(a,b) modulo 2 is given by
0,1,1, and therefore that wg,+1 is odd. By the Intertwining Lemma,

Wen+6 = W(en+1)+5 = DWernUs + Wen+1Us-

Since bus and wg,41 are odd, 2! || weni1ug, while 2™ || bwe,us.
Since m < t + 1, we conclude that 2™ || wen46-

Finally, we prove that 2 || wgp+3 for all n > 0. First note that (3.14),
together with the fact that m > 1, implies that 2 || ws. Now, for each
n > 0, the Intertwining Lemma yields

Wen+3 = W(en+1)+2 = DWenU2 + Wen+1U3-

Since bus is odd, the previous paragraph shows that 2™ || bweg,uz. On
the other hand, wgp41 is odd, so 2 || wen+1us. Since m > 1, it follows
that 2 || Wen+3- [}

While sequences in the same block always have the same principal
divisor, the converse is not true.

Theorem 3.18. If k > t, then there is a unique 2%-block having
principal divisor infinity, namely the block containing u(a,b). If 2 <
m < t, then there are exactly 2t=™ distinct 2*-blocks with principal
divisor 2™.

Proof. First note that if a sequence w(a,b) has infinite principal
divisor, then some term of w(a, b) is congruent to zero modulo 2¥, and
it is clear that w(a, b) is a multiple of a translation of u(a,b). The first
statement of the theorem follows immediately.

Now suppose that m < t. Since, by Theorem 3.13, each 2*-block
contains 3-228~t~1 sequences, we need only count the number of distinct
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sequences modulo 2* that have principal divisor 2™. Since any two
consecutive terms determine the entire sequence modulo 2* and, by
Lemma 3.17, one of the first six terms must be exactly divisible by 2"
and followed by an odd term, the number of sequences modulo 2% with
principal divisor 2™ is 6 - 2k—m~1.2k=1 — 3. 92k=m—1 Tt now follows
that the number of 2¥-blocks having principal divisor 2™ is

Note that, since 14+1+4+2+4+---+2!2 = 2¢=1 Theorem 3.18 yields
an alternate proof of Theorem 3.13.

4. Stability.

4.1. Stability classes. In this section we begin our study of the
stability of sequences for which a is odd and b =5 (mod 8) and state
our three main results, which characterize the stability of each block
of F(a,b). By Corollary 3.14, it is sufficient to examine the 2¢+1-
blocks. The first theorem concerns the block containing the generalized
Fibonacci sequence u(a, b), the block with infinite principal divisor, and
is proven in this section. The next two theorems examine in turn the
stability of blocks with principal divisors m # 2¢~! and m = 2¢~1, and
are proven in Sections 4.2 and 4.3, respectively.

In our first result, we observe that Theorem 1.2 and Corollary 1.5 (a)
of [3] apply to each sequence in the 2!*!-block of the generalized
Fibonacci sequence u(a,b), and therefore this block is 2-stable.

Theorem 4.1. Assume Hypothesis 3.3. Then the 2*1-block of
u(a, b) is 2-stable.

Proof. By Corollary 3.15, if w(a,b) lies in the same 2!*1-block as
u(a,b), then w(a,b) is 2-stable if and only if u(a,b) is 2-stable. By
Corollary 1.5 (a) of [3], u(a,b) is, indeed, 2-stable. O

The blocks that do not contain u(a,b) require a little more work.
By Lemma 3.17, if k& > t, the 2*-block of a sequence w(a,b) lying
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outside the block of u(a,b) has principal divisor 2™ with 2 < m < t.
If m # ¢t — 1, we obtain the following theorem, which is proven in
Section 4.2.

Theorem 4.2. Assume Hypothesis 3.3, and suppose that k > t.
Then each sequence w(a,b) € F(a,b) that lies in a 2*-block having
principal 2-divisor 2™, with m # t — 1, is 2-stable.

When m =t — 1, the stability classification is more complicated. By
Lemma 3.18 there are exactly two 2!*!-blocks having principal divisor
2!=1 The following definition provides canonical representatives of
these two blocks.

Definition 4.3. Let z(a,b) and y(a,b) denote the two sequences
in F(a,b) that satisfy (zg,z1) = (271,1) and (yo,71) = (2071,3),
respectively.

Theorem 4.4. Assume Hypothesis 3.3, and suppose that k > t.
Then there are exactly two 2F-blocks with principal divisor 2=, each
containing 3 - 22*=t=1 distinct sequences modulo 2. The sequences
z(a,b) and y(a,b) are principal representatives of these two blocks.

Proof. The first assertion of the theorem follows immediately from
Theorems 3.13 and 3.18, and it suffices to show that the sequences
z(a,b) and y(a,b) lie in different blocks with principal divisor 2¢~1.

Since 2¢~! divides both xy and yg, and 2¢~! > 2, Lemma 3.17 implies
that both z(a,b) and y(a,b) have principal divisor 2¢~1.

Suppose now that z(a,b) and y(a,b) lie in the same 2*-block. Then,
by Corollary 3.14, x(a,b) and y(a,b) lie in the same 2!T'-block. By
Theorem 3.11, z(a, b) has restricted period 6 modulo 2¢*1. Since y(a, b)
is in the same 2¢*!-block as x(a,b), there must be an odd integer «
with the property that «(2/=1,1) = (271,3) (mod 2!*1). But then
a2t7t — 271 =0 (mod 2°!), s0 « — 1 =0 (mod 4), while « —3 =0
(mod 2'%1), so @ — 3 = 0 (mod 4). Subtracting these congruences
yields 2 = 0 (mod 4), a contradiction, and it follows that z(a,b) and
y(a,b) lie in different 2*-blocks. O
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Finally, the following theorem, which is proven in Section 4.3, de-
scribes the stability of the blocks with principal divisor 2¢~1.

Theorem 4.5. Assume Hypothesis 3.3, and suppose that k > t.
Then one of the two 2F-blocks with principal divisor 2t=1 is stable. In
particular, if the congruence class of (b,a) modulo 16 is in the set

{(5,3),(5,5),(5,7),(5,9),(13,3),(13,5),(13,9),(13,13), (13,15) },
then the block that contains the sequence x(a,b) is 2-stable, and if the
congruence class of (b,a) modulo 16 is in the set

{(5,1),(5,11), (5,13), (5, 15),(13,1), (13, 7), (13,11)},
then the block that contains the sequence y(a,b) is 2-stable.

4.2. Principal divisors not equal to 2!~!. In this section we
prove Theorem 4.2, the stability classification of blocks with principal
divisor 2™ for m finite and not equal to t —1. We require several lemmas
that repeatedly apply the Intertwining Lemma to obtain congruences
that are used in the stability analysis. First we augment our main
hypothesis.

Hypothesis 4.6. Assume Hypothesis 3.3. Let w(a,b) € F(a,b) be a
principal representative of a block that does not contain the generalized
Fibonacci sequence u(a,b) and has principal divisor 2™ with 1 < m < t.

Lemma 4.7. Assume Hypothesis 4.6, and suppose that k > t. Then

(a) wyygoe-1  =w, + 27 (mod 281)  if 34 n,

(b) Wpigon-—2 =w, +2F (mod 2571 ifn =3 (mod 6),

(¢) Wpigos-m1=w, +2F (mod 2571) ifn =0 (mod 6) and
m<t—1, and

(d) Wizt =wy,+2F (mod 25TY)  ifn =0 (mod 6)

and m =t.

Proof. (a) Since w(a,b) is a principal representative of its block and
3 1 n, we know that w,, is odd. By Lemma 3.8, 2751 || u3.0x 1 and,
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since t > 3, ugox-1 = 0 (mod 2¥+!). By the Intertwining Lemma,
Lemma 3.7, and the binomial equation,

wn+3,2k—1 = bwn_1U3_2k—1 + 'LUn'LL3,2k—1+1
=0+ w, (1425 (mod 28T1)
= w, + 2% (mod 2F1).

(b) Since w(a,b) is a principal representative of its block and n = 3
(mod 6), Lemma 3.17 implies that 2 || wy, while w,_; is odd. By
Lemma 3.8, 272 || 430k > and, since t > 3, ug.ox-2 = 0 (mod 2F+1).
By the Intertwining Lemma, Lemma 3.7, and the binomial equation,

wn+3,2k—2 = bwn,1u3_2k72 + wn’ll/3,2k—2+1
0+ w,(1+251% (mod 2F+1)
= w,, + 2F (mod 2k+1).

(c) Since w(a,b) is a principal representative of its block and n = 0
(mod 6), Lemma 3.17 implies that 2™ || w,, while w,_; is odd. By
Lemma 3.8, 2075~ =1 || 4y o1 m 1 and, since m +1 < ¢, ug.or-m-1 =0
(mod 2¢*1). By the Intertwining Lemma, Lemma 3.7, and the binomial
equation,

Wp43.2k—m—1 = bwn,1U3_2k—m—1 + WpUgz.2k—m—141
=0+ w,(142™)% (mod 2~+1)
= wy + 2% (mod 2F1).

(d) Since w(a,b) is a principal representative of its block, n = 0
(mod 6), and m = ¢, Lemma 3.17 implies that 2¢ || w,,, while w,_1
is odd. By Lemma 3.8, 2¥ || uz.ox—+. By the Intertwining Lemma,
Lemma 3.7, and the binomial equation,

wn+3,2k:—t = bwn_1U3,2k—t + 'LUn'LL3,2k—t+1
=28 4w, (14 287117 (mod 2F11)
= 2% + w, (mod 2F1). o

We can now prove Theorem 4.2. The method used is the same as
that used in [1, 7].
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Proof of Theorem 4.2. Assume Hypothesis 4.6, and suppose that
m # t — 1. By Lemma 4.7 (a) and (b), and either Lemma 4.7 (c) or
(d), if k > ¢, then

Wy pg.08-1 = Wy, + 27 ( ) if3tn

Wy yg.05—2 = Wy + 27 (mod 2°T1) if n =3 (mod 6)
( ) ifn=0 (mod6)and m<t—1
( ) ifn=0 (mod 6) and m =t.

wn+3,2k—m—1 = Wy + 2k

wn+3_2k—t = Wn + 2k

It follows that each instance of a residue d in one cycle of w(a, b) modulo
2k+1 can be paired with a unique instance of the residue d + 2* in
the same cycle. Therefore, v, (d,21) = v, (d + 2%,2¥+1). On the
other hand, by Theorem 3.10, the period of w(a,b) modulo 2**! is
double the period modulo 2*. It follows that v,,(d, 2¥) = v,,(d, 28t1) =
Vi (d + 2%, 2%+1). Finally, we conclude that no new residue frequencies
occur modulo 281 that is Q,,(2%) = Q,,(2%*1). Since this is true for
all sufficiently large k, it follows that w(a,b) is 2-stable. O

4.3. The principal divisor 2!~!. Finally, in this section, we
examine the stability of sequences w(a,b) € F(a,b) that have principal
divisor 2¢~1 and establish Theorem 4.5. Since, by Theorem 4.4, there
are exactly two blocks with principal divisor 2¢~!, and these have
principal representatives z(a, b) and y(a,b) given in Definition 4.3, we
can restrict our attention to these two sequences.

To begin, we observe that the argument of Theorem 4.2 does not
work for blocks with principal divisor ¢ — 1 simply because we have
provided no analogue of Lemma 4.7(c) and (d) in this case. It is easy
to see that the stability of these blocks can be reduced to a study of
the subsequences xg,, and yg,. By Lemma 3.17, each of the terms of
these two subsequences is exactly divisible by 2¢~!, so we can study the
sequences g, /2! and y, /2t 1. For convenience, we fix the following
notation:

/

Tn

2t—17

Y,
2t—1 )

! -~ / ~
T, = Tén, Tn = Yn = Yén, Yn =

We observe that 2/, Z, v/, and ¥ are second-order recursive sequences.
b b b
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Theorem 4.8. If z is any of the sequences =', T, y' or ¥y, then z is
a second-order recursive sequence that satisfies the recursion

(4.1) zi =ad'zi_1 + bz,
where a’' = vg, for v =v(a,b) € F(a,b), and b’ = —(—b)".

Proof. That z satisfies (4.1) follows immediately from Lemma 2.10 of
[6]. o

Lemma 4.9. Suppose that a is odd. If b =5 (mod 8), then o' =10
(mod 16) and ¥ = 7 (mod 16). Moreover, if b = 5 (mod 16), then
b = 23 (mod 32) and ¢’ = 26 (mod 32), while if b = 13 (mod 16),
then b’ =7 (mod 32) and o’ =10 (mod 32).

Proof. By definition, vg = a® + 6a*b + 9a2b? + 2b°, and it is easy
to compute that this expression is congruent to 26 modulo 32 when
be {521} anda € {2t+1 |0 <t < 15}. Now suppose that b = 5+16k.
Then b* = 25 + 160k + 256k> = 25 (mod 32) and b* = 625 = 17
(mod 32). Therefore, b* = 425 = 9 (mod 32) and ¥’ = —(—b)® = 23
(mod 32).

Similarly, it is easy to compute that vg is congruent to 10 modulo 32
when b € {13,29} and a € {2t + 1| 0 < ¢ < 15}. Write b = 13 + 16k.
Then b* = 169 + 416k + 256k = 9 (mod 32) and b* = 81 = 17
(mod 16). Therefore, b® = 153 = 25 (mod 32) and b’ = —(-b)® =7
(mod 32). o

Lemma 4.10. Ifa is odd and b =5 (mod 8), then one of T1 or Y
is congruent to 1 modulo 16 and the other is congruent to 9 modulo 16.

Proof. Let w = x or y and v = wy, so that v € {1,3}. An easy
computation shows that

wg = 2" (a*b + 3a%b? + b*) + v(a® + 4a®b + 3ab?)

4.2
(4.2) =271 (a*b + 3a%b* + b®) + vug.
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Since b= 5 (mod 8), a2 =1 (mod 8), and 2!*! || ug, we obtain

we/2"7 = a*b + 3a*b* + b + 4 (mod 8)
=54+75+125+4 (mod 8)
=1 (mod 8).

Moreover, using the expression for wg with both v =1 and v = 3, we
have

o)+ vy = 2" (a*b + 3a%b? +b°) + 4(a® + 4a3b + 3ab?)
= 2'(a*b + 3a%b? +b*) (mod 2°+3)
=5-2" (mod 2'13),

and therefore
Z1+ 71 =10 (mod 16).

Since 1 and 7 are both congruent to either 1 or 9 modulo 16, it follows
that one of them is congruent to 1 and the other to 9. O

Explicit computation using (4.2) provides even more detail.

Theorem 4.11. Assume that b = 5 (mod 8) and a is odd. Then
(Z1,71) = (1,9) (mod 16) when

(b,a) €{(5,3), (5,5),(5,7),(5,9), (13,3), (13,5), (13,9), (13,13), (13,15)}
modulo 16 and (Z1,71) = (9,1) (mod 16) when
(b,a) € {(5,1),(5,11), (5,13), (5,15),(13,1),(13,7), (13,11)}

modulo 16.
Proof. This result is obtained by explicit computation using (4.2). O

To continue our study, we require a deeper analysis of the generalized
Fibonacci sequence u(a’,b’) € F(a',b'). We begin with the period,
which was computed in [4].
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Theorem 4.12. Suppose that u(a’,b’) is the generalized Fibonacci
sequence in the family F(a',b'), where (b',a’) is congruent to (7,10)
modulo 16. Then A, (2F) = 2% for all k > 1.

Proof. This theorem follows immediately from Theorem 3.1 of [4]. O

It follows from Theorem 4.12 that uyx = 0 (mod 2*) and ugk ; = 1
(mod 2F) for all k > 1. Accordingly, we can define integer-valued
functions ((k) and n(k) as follows.

Definition 4.13. If u(a’,b') € F(a’,b') and k > 4, define ¢(k) and
n(k) by

Uge—s = C(k)2F72 and  wgr-sy = n(k)28 73 + 1.

In the next theorem, we show that, if k is sufficiently large, then, up
to congruence modulo a power of 2, ¢ and 7 are independent of k.

Theorem 4.14. For all integers s > 1, ((k) = ¢(¢) (mod 2%) and
n(k) = n(€) (mod 2°%) when £ >k > s+ 4.
Proof. By (3.6) and the definition of ((k), {(k + 1), and n(k),
C(k+ l)2k_2 = Ugk—2 = 2Ugk—3Ugk—34] — a(ugr-3 2
= 20(k)25 72 (n(k)2" % + 1) — a(¢ (k)25 %)
= (k)28 2 + C(k)n(k)2%*° — aC(k)2%%°.

Since k > s + 4, we know that 2k — 6 > k 4+ s — 2, and hence
C(k+1)2872 = ¢(k)2¥"2  (mod 2FF572),

and therefore
C(k+1)=¢(k) (mod 2°).

It follows inductively that {(k) = ((¢) (mod 2°).
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By (3.5) and the definition of n(k), n(k + 1), and (&),

Nk +1)2572 41 = uge2g = bugrs)? + (ugr-s41)°
= bC% (k)220 4 (n(k)2% 3 4+ 1)2
_ bCZ(k)22k76 + ,,72(k)22k76 + n(k)2k72 + 1.

As in our analysis of ((k), it follows that
n(k +1)2""2 = n(k)2¥=2  (mod 2"T*72),

and therefore
n(k+1) =n(k) (mod 2°).

Again, it follows inductively that n(k) = n(¢) (mod 2%). o

To prove our main theorem of this section, we require the values of
n(k) and ¢(k) modulo 16. By the theorem above, the values of n(k)
and ((k) are constant modulo 16, when k£ > 8, and therefore we can
determine all possible values of n(k) and (k) modulo 16, when k > 8,
by examining uor-s and ugk—s,; when k = 8, i.e., the terms u3s and uss.
Moreover, the values of ((k) and n(k) modulo 16 can be determined
by examining the sequence u(a’,b') modulo 2¥+1, i.e., modulo 2°. We
perform this examination in the next lemma.

Lemma 4.15. If k > 8, then

(4.3) (C(k),m(k)) = (13,13) (mod 16)
when (b',a") = (7,10) (mod 32)
(4.4) (C(K),n(k)) = (5,5) (mod 16)

when (b',a") = (23,26) (mod 32).

Proof. By Theorem 4.14, it is sufficient to prove (4.3) and (4.4) when
k=8. First let ' € {7+32t |0<t <15} and o’ € {10+ 32t |0 <t <
15}. It is a simple computation to verify that, with these parameters,

uzy = 416 (mod 2°) and w3z =417 (mod 27).
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Since 416 = 2°-13 and 417 = 2°-13+1, we obtain (¢(8),7(8)) = (13, 13)
(mod 16) when (¥,a’) = (7,10) (mod 32), as desired.

Next, let b’ € {23+32t |0 < ¢t < 15} and a/ € {26+32¢ |0 < ¢ < 15}.
Again, a simple computation yields

uzy =160 (mod 2°) and w3z =161 (mod 2°).

Since 160 = 2% -5 and 161 = 2% -5 + 1, we obtain (¢(8),7(8)) = (5,5)
(mod 16) when (V',a’) = (23,26) (mod 32), as desired. o

The next lemma will serve as an analogue of Lemma 4.7 (c) and (d)
in the proof of Theorem 4.5.

Lemma 4.16. Suppose that z =7 or z =y, z1 = 1 (mod 16), and
that either (V',a') = (7,10) (mod 32) or (V',a') = (23,26) (mod 32).
Then, for all k > 8,

Znpor—s = 2z, + 25 (mod 2FF1).

Proof. By the Intertwining Lemma,

Zpyok—3 = b zp_1Uok—3 + ZpUgk—3
=201 (k)25 7% + 2 (n(R)2" 2 + 1)
Zn 4 (V'C(k)zn—1 + n(k)2,)2" 2.

Now, since zp =1, z; =1 (mod 16), and (¢',a’) = (7,10) (mod 16),
it is easy to verify that 2o = a’z; + b2 = a’ + b =1 (mod 16), and
therefore z, =1 (mod 16) for all n. Applying Lemma 4.15 in the case
that (b',a’) = (7,10) (mod 32), we obtain

b'¢(k)zn—1+n(k)z, =7-13-1+13-1=104 =8 (mod 16).

On the other hand, in the case that (V/,a’) = (23,26) (mod 32),
Lemma 4.15 yields

b'¢(k)zn1+n(k)zn =7-5-1+5-1=40=8 (mod 16).
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Thus, in both cases,
Znpor-s = 2z + (V'C(K)2n_1 +n(k)2,)28 72 = 2, + 28 (mod 2FF1),

as desired. O

Our next goal is to compute the period of the sequences Z and 7.
First note that these sequences are not 2-regular. If z is either Z or
U, then zp = 23 = 1 (mod 8), a’ = 2 (mod 8), and b’ = 7 (mod 8).
It follows that 2o = 1 (mod 8), and therefore zpzo — 22 = 0 (mod 8).
Thus z is not 2-regular.

Irregular sequences are usually more complicated than regular ones
and require special techniques to analyze, similar to those discussed
in [8]. It is a general property, true for most second-order recursive
sequences z, that for k sufficiently large X, (2%) = 2- X, (2*"1). Gener-
alizing the standard definition for odd moduli given in [6], we offer the
following definition.

Definition 4.17. If z is a second-order recursive sequence, let f
denote the smallest integer, if it exists, such that \,(28T!) = 2. X, (2F)
forall k > f.

Armed with this definition we can compute the periods \,(2*), for
z =7 and z = 3. These depend upon the value of z;, which, according
to Lemma 4.10, is congruent to either 1 or 9 modulo 16.

We require two lemmas. For both lemmas, assume that z = Z or
z =7, that z; =1 (mod 16), and that either (b',a’) = (7,10) (mod 32)
or (b/,a") = (23,26) (mod 32).

Lemma 4.18. For alln > 1, 2, = z1u, + b'u,_1.

Proof. When n = 1 the result is obvious. For n = 2, we obtain
21Up + b up_1 = z1us + b'u; = a’z; + b’ 29 = 29, as desired.

By way of induction, assume that the result is true for n — 1 and n.
Then
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! / ! 11/ / 1\ 2
Zng1 = @' 2 + 021 = d' 21U, + @'V up_1 + 0 21U 1 + (b)) Uup_2

= 21(a'up +'up 1) + 0 (a"up 1 + b up_2) = 21un g1 + b'uy,

as desired. O

Lemma 4.19. For all k > 1,

(4.5) Zok-3 = Ugk—341 — Ugk-3 (mod 2¥)

(46) 2ok—-341 = 21Ugk-3 41 — Ugk-3 (mod Qk)

Proof. By Lemma 2.1 of [4], 2¥=2 || ugx—s. Since z; = 1 (mod 16),
it follows that z1usx-s = ugk-s (mod 281). Moreover, since a’ = 10
(mod 16), we obtain (a’ — 1)ugk-3 = ugs—s (mod 2F).

Now, by Lemma 4.18,

Zok—3 = 2 Ugk—3 + D Ugk—3_1
= Z1Ugk-3 + Ugk-341 — a'u2k—3
= Ugk—3 + Ugk—341 — a'uzkfs (mod Qk)
= ugk-s41 — (a' — 1)uge—s (mod 2F)

= Ugk—341 — Ugk—3 (mOd 2k)

This verifies the first congruence.

Similarly, by Lemma 4.18, Lemma 2.1 of [4], and the hypothesis that
b =7 (mod 16),

Zok—341 = Z1Ugk-341 + blu2k—3
= 21ugk-341 + (8 — 1)ugr—s (mod 2¥)

= 21Ugk-s 4 — Upe—s (mod 2F),

as desired. ]

Theorem 4.20. Suppose that z =7 or z =y and z; =1 (mod 16).
Then A\, (2Ft1) = 28=2 when k > 4 and A, (2K*1) =1 for0 <k < 3. In
particular, f = 5.
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Proof. First note that by Theorem 4.9, either (V',a’) = (7,10)
(mod 32) or (b',a’) = (23,26) (mod 32), and in either case (b',a') =
(7,10) (mod 16).

For k < 4, the result is easily verified by computation. To prove the
result for k£ > 4, proceed by induction.

Assume that \,(2F) = 2¢=3 for some k > 4. Then, in particular, by
Lemma 4.19,

(4.7) Upk—341 — Ugk—3 = 2zpp—3 = 1 (mod 2F).
However, by Lemma 4.19, (3.5), and (3.6),

Zok-2 = Ugk-241 — Ugk—2 (mod 2FT1)
b (ugr—s)? + (ugr—s11)?
— 2ugkstugr-sgy + a’(uges)? (mod 28F)
= (0 + ) (ugeca)? + (tgas )2
— 2ugr-3Ugr-3 1 (mod 2k+1),

Since a’ + b =1 (mod 16) and, by Lemma 2.1 of [4], 2873 || ugx-s,

Zok—2 = (uzkz—a)2 + (U2k—3+1)2 — 2’1,62k—3U2k—3+1 (mOd 2k+1)

= (qu—3+1 — U2k—3)2 (mOd 2k+1).

Finally, by (4.7), 26> = 1 (mod 2F+1).
Similarly, by the induction hypothesis and Lemma 4.19,

Z1Ugk-3 1 — Ugk-3 = 22k-311 = 21 (mod 2k).

Since z; =1 (mod 16), Lemma 2.1 of [4] implies that zjugk-3 = ugk—3s
(mod 2F*1); and Lemma 2.3 (a) of [4] implies that (z; — 1)ugk-s, =
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(21 — 1) (mod 2¥*1). Now, by Lemma 4.19, (3.5), and (3.6),

ZQk—2+1 = 'LLQk—2+121 — Ugk—2 (mOd 2k+1)
[bl(UQk—3)2 + (U2k—3+1)2]21
— 2Upk-sUgk—sq + a (ugr-3)? (mod 2FF1)

= (o' +b')(ugr—s)? + (ugr—s41)*zn
2k+1)

— 2ugr-3Ugk-3 1 (mod
= (ugr-3)” + (ugr-s41)%21
— 2upk-sUgk-s,, (mod 2FF1)
= (ugk-s41 — uge—s)® + (21 — 1) (ugr—s4,)* (mod 28*)
14 (z1—1) (mod 2k+1)
21 (mod 2FF1),

as desired.
It follows that A, (2FF1) | 2+—2,

On the other hand, 273 = X,(2%) | A, (2%!). Finally, Lemma 4.6
implies that \,(28*1) =2F-2. @

We can now prove Theorem 4.5. Again, the method used is the same
as that used in [1, 7].

Proof of Theorem 4.5. By Theorems 4.4 and 4.11, it is sufficient to
prove stability for a sequence w(a,b) equal to either z(a,b) or y(a,b),
with the additional condition that wg = 1 (mod 16). Assume that
k > max(7,t). Then by Lemma 4.7 (a) and (b),

Wy pg.05-1 = Wy, + 27 (mod 2°T1) if 34n
Wy 5052 = Wy + 27 (mod 2°T1) if n =3 (mod 6).

By hypothesis, if z=1wg,,, then z satisfies the hypotheses of Lemma 4.16,
and therefore

Znyok-s = 2, + 28 (mod 2FF1),

or, in terms of w,

Wy g.9k—2 = wy + 28 (mod 28*1) if n =0 (mod 6).
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It follows that each instance of a residue d in one cycle of w(a, b) modulo
2k+1 can be paired with a unique instance of the residue d + 2* in
the same cycle. Therefore, v, (d,2""1) = v, (d + 2%,2*+1). On the
other hand, by Theorem 3.10, the period of w(a,b) modulo 2**! is
double the period modulo 2*. It follows that v, (d, 2¥) = v,,(d, 28t1) =
Ve (d + 2%, 2F+1), Finally, we conclude that no new residue frequencies
occur modulo 25+1 that is, 2, (2%) = Q,,(25*1). Since this is true for
all sufficiently large k, it follows that w(a,b) is 2-stable. o

5. The case when the transition degree does not exist.

5.1. Classification. Under our hypotheses that a is odd and b =5
(mod 8), there is a parametrized family of recurrence sequences u(a, b)
for which the transition degree ¢ fails to exist. This unique family is
given by the following theorem.

Theorem 5.1. Suppose that w(a,b) satisfies Hypothesis 3.3. Then
the transition degree t fails to exist when (a,b) € {(3s,—3s%) |
s is an odd positive integer}.

Proof. Using the definition of u(a, b) an easy computation shows that
ug = a® + 4a®b + 3ab?, and therefore ¢ fails to exist if and only if
a® + 4a®b + 3ab® = 0.

Let s be an odd positive integer, and suppose that (a,b) = (3s, —3s?).
Then certainly a isodd and b= —3 = 5 (mod 8), and it is easy to verify
that ug = 243s° + (108s3)(—3s%) + (9s)(9s?) = 0.

Conversely, suppose that a® +4a3b+ 3ab? = 0, and let a = a®. Then
0 = a® + 4a®b + 3ab® = a(a* + 4a®b + 3b*) = a(a® + 4ab + 3b%).

Under our hypotheses, a is odd, so it cannot be zero. Therefore o and
b must satisfy the quadratic equation

a? +4ab+ 3% =0,

which has solutions « = —b and a« = —3b. However, again by
hypothesis, & = a®> =1 (mod 8) and b = 5 (mod 8). This eliminates



114 WALTER CARLIP AND LAWRENCE SOMER

the possible solution oo = —b, and we are left with a®> = o = —3b. But
if —3b is to be a square, we must have b = —3s? for some odd integer
s, as desired. ]

5.2. Stability. In this section we examine the 2-stability of the
sequences in F(a, b) for which the transition degree ¢ fails to exist.

Theorem 5.2. Suppose that w(a,b) satisfies Hypothesis 3.3 and the
transition degree t does not exist. Then w(a,b) is 2-stable if and only
if w; #0 for all 1.

Proof. Suppose that w(a,b) satisfies Hypothesis 3.3, t does not exist,
and k > 3. By Theorem 3.10, w has period A\, (2*) = 3-2¥~! and,
by Theorem 3.11, w has restricted period h,,(2%) = 6. It follows that
the multiplier M of each sequence has multiplicative order 2¥~2 in the
group Gy = (Z/2*Z)*, and therefore, Hy, = {M°, M*,... ,M2k72_1}
is a cyclic subgroup of Gy, of order 2¥~2 and index [G}, : Hy] = 2. One
period of the sequence w(a,b) modulo 2 consists of the residues

U Mwj= ) wiHe
0<<5 0<i<5
0<i<2k—2

Since the parameters a and b are both odd and 2 { (wp,w;), (1.1)
implies that of any three consecutive terms of w, two are odd and one
is even. Without loss of generality, we may suppose that w is a principal
representative of its block, so that wy and w3 are even, while wy, wo,
w4 and ws are odd. It follows that all of the even residues in one period
of w modulo 2% lie in the subsets woH}, and wsHj, and all of the odd
residues lie in w; Hy, for i = 1, 2, 4, and 5.

Consider first the even terms. Since h,,(2*) = 6, wo and w3 cannot
both be zero. If wy = 0, then v,,(0,2%) = |Hy| = 2¥~2, since in this
case ws # 0 and 0 ¢ wgHj. Thus, if w contains a term that is equal to
zero, then w is not stable.

Now assume that neither wg nor ws is equal to zero, and that 2™ || wq.
By the argument of Lemma 3.17, m > 1 and 2 || ws.
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Let woM'® € woH; and wsM? € wsH;. Since 4 | woM? and
2 || wsM7, it follows that 2 || woM® — wsM?, and therefore, since
k Z 3, woMi §é ’ngj (mod 2k).

Next consider the residues in wzHj. Since 2 || ws, it follows that
wsM? = wz M7 (mod 2F) for exponents i and j satisfying 0 < i < j <
2k=2 if and only if M* = M7 (mod 2*~1), i.e., if and only if M7—¢ =1
(mod 2*~1). Since M has multiplicative order 2¥=3 modulo 2*~1, this
occurs exactly when 2¥=3 | j —i. It follows that v,,(d,2*) = 2 when
d = ws M for some i.

Now, suppose that & > m. Then woM’ = woM’ (mod 2¥) for
exponents i and j satisfying 0 < i < j < 272 if and only if M* = M’
(mod 2F=™). This occurs precisely when 2¥=™~2 | j — 4 and it follows
that v, (d, 2%) = 2™ when d = wyM' for some i.

Finally consider the odd terms. Let ¢ € {1,2,4,5}. Since w; is odd,
the subset w;Hy, is a left coset of the subgroup Hy in Gy, and hence
the elements of w; H}, are distinct modulo 2*. Since the cosets of Hj,
partition G, any two of these cosets are either identical or disjoint.

Moreover, since [G}, : Hg] = 2, there are exactly two cosets, Hj, and
—Hy,. Clearly, w;Hy = Hj, if and only if w; = M® (mod 2*) for some
a, and w;H, = —Hy if and only if w; = —M* (mod 2F) for some

a. It is now easy to show that if w;Hy = Hy, then w;H, = H; for
all £ > k, and similarly, if w;Hy = —Hp, then w;H, = —Hy for all
{ > k. It follows that the multiplicity of each coset Hy and —Hjy
among {wy Hy, woHy, wyHy,wsHy } is constant as a function of k, and
hence v,,(d, 2F) is constant as a function of k& whenever d is odd.

Combining our observations for odd and even terms of w(a,b), we
conclude that w(a,b) is 2-stable if and only if w; # 0 for all 4, as
desired. O
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