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EIGENVALUE PROBLEMS OF A
DEGENERATE QUASILINEAR ELLIPTIC EQUATION

C.V. PAO

ABSTRACT. This paper is concerned with positive eigen-
values and positive eigenfunctions of a class of degenerate and
nondegenerate quasilinear elliptic equations. The degenerate
property of the quasilinear operator can lead to a very dif-
ferent positive eigenvalue distribution when compared with
classical linear eigenvalue problems.

1. Introduction. In the eigenvalue problem
(1.0) —V - (D(¢)Vp) =Xpin Q, ¢(z) =0 on 99,

where Q is a bounded domain in R™ with boundary 0%; if D(¢) = Dy
is a positive constant, then the problem has a countable number
of eigenvalues and a positive eigenfunction only associated with the
smallest eigenvalue. However, the eigenvalue distribution can be rather
different if D(¢) depends on ¢, especially in the degenerate case where
D(0) = 0. In this note we investigate the eigenvalue problem for a
slightly more general equation of the form

wy V@D +ea)- (D6)V6) = 36 i 2
¢(z) = 0 on 09,
where a(z) is a strictly positive function in @ = Q U 99, c(z) =
(c1(z),...,cn(x)) is a smooth function in 2, and D(¢) is a positive
function in (0, c0) with either D(0) = 0 or D(0) > 0. We assume that
Q is of class C**, a(z) and c¢;(x), i = 1,...,n, are in C*(Q), and
D(¢) satisfies hypothesis (H) in Section 2, where o € (0,1). Our aim is
to show that, under the above condition, every A > 0 is an eigenvalue
of (1.1), and corresponding to it there is a positive eigenfunction ¢(z).
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Moreover, the positive eigenfunction is unique if ¢ = 0 and D(¢) is
monotonic. The same conclusions hold true for every A > poD(0) if
the condition D(0) = 0 in hypothesis (H) is replaced by D(0) > 0,
where pg is the smallest eigenvalue of the linear eigenvalue problem

(1.2) =V -(a(x)VY)+c(z) VY =pp in Q, (x) =0 on 0.

Nonlinear eigenvalue problems have been investigated by many re-
searchers, and some of the earlier works can be found in [2-7, 10]. In
these papers, the equation under consideration involves either a con-
stant D(¢) = Dy and a nonlinear function f(¢) instead of ¢, cf. [2-6,
10] or with D(¢) depending on ¢ but with D(0) > 0, cf. [2, 3]. The
work in [7] is concerned with the existence of a positive solution for a
degenerate elliptic system of a slightly different form using the method
of upper and lower solutions. In this paper we use the same method of
upper and lower solutions as that in [9] to study the eigenvalue prob-
lem for a class of functions D(¢#) with either D(0) = 0 or D(0) > 0.
This class of functions for the degenerate case D(0) = 0 includes the
elementary functions

(1.3)  ¢%, sinh(a@), cosh(ag) — 1, In(1 + ag), e*? —1, a >0,

and the products or linear combinations (with positive coefficients) of
these functions such as

p(¢) = a1¢™ +--- +am¢™™,  sinh(ag)p(¢), etc.,

where a; and oy, ¢ = 1,...,m, are positive constants. Some of the
constants a; can be negative so long as p(¢) > 0 for ¢ > 0 (see Remark
2.1).

2. The main theorems. To ensure that problem (1.1) has a
positive solution for every A > 0, we impose the following conditions
on D(¢).

(H) D(¢) is a continuous function of ¢ € R such that D(¢) > 0 for
¢ >0, D(0) =0, and lim D(¢) = 0o as ¢ — oo.

The following theorems give our main results.

Theorem 1. Let D(¢) satisfy hypothesis (H). Then, for every A > 0,
problem (1.1) has a positive solution ¢(x). Moreover, the positive
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solution ¢(z) is unique if c(z) = 0 and D(@) is either increasing or
decreasing in ¢ > 0.

Theorem 2. Let D(¢) satisfy hypothesis (H) except with the con-
dition D(0) = 0 replaced by D(0) > 0. Then all the conclusions in
Theorem 1 hold true for every A > poD(0), where ug is the smallest
eigenvalue of (1.2).

Remark 2.1. (a) It is easy to verify that if D;(¢) and Ds(¢)
satisfy the conditions in hypothesis (H), then D(¢) = D1 (¢)D2(¢) and
D(¢) = a1D1(¢) + aaD2(¢), where a; and ay are positive constants,
also satisfy hypothesis (H). Moreover, D(¢) is increasing or decreasing
in ¢ if both D1(¢) and Dy(¢) are increasing or decreasing in ¢. This
implies that the elementary functions in (1.3) and their products or
linear combinations all satisfy hypothesis (H). Hence, Theorem 1 is
applicable to this class of functions D(¢). Similar elementary functions
can be found for the case D(0) > 0.

(b) If D(¢) < 0 for ¢ > 0, then the conclusions in Theorem 1 and
Theorem 2 hold true for A < 0 and A < —poD(0), respectively.

3. Proof of main theorems. We prove Theorem 1 and Theorem
2 by the method of upper and lower solutions. We say that ¢ €
C?(2) N C() is an upper solution of (1.1) if

~V - (aD(¢)V

(3.1) ;r (D($)V$) = A$ in Q

b)
) on 0f.

Similarly, qg is called a lower solution if it satisfies the inequalities in
(3.1) in reversed order. The pair ¢, ¢ are said to be ordered if ¢ > ¢ in

Q. For a given pair of ordered upper and lower solutions qS, ¢, we set

(3:2) S={peCQ); d<b<g})

Define

(3.3) w=1(¢ / D(s ¢ > 0.
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Since dw/d¢ = D(¢) > 0 for ¢ > 0, the inverse function, denoted by
¢ = q(w), exists and is an increasing function of w > 0. In view of
Vw = D(¢)V¢, problem (1.1) is equivalent to

(3.4) —V - (aVw)+c-Vw=Ag(w) inQ, w=0onadQ.

It is easy to see that if (]3 and qs are a pair of ordered upper and lower
solutions of (1.1), then the pair @ = I(¢), @ = I($) are ordered upper
and lower solutions of (3.4). Since ¢(w) is a monotone nondecreasing
function of w for w > 0 (but not necessarily Lipschitz continuous)
the well-known existence theorem for elliptic boundary value problems
ensures that problem (3.4) has a maximal solution @ and a minimal
solution w such that W < w < w < w (cf. [1, 8]). This implies that
¢ = q(w) and ¢ = q(w) are the maximal and minimal solutions of (1.1)
in S. Moreover, if ¢ = ¢ (= ¢*), then ¢* is the unique solution of
(1.1) in S. Hence, our goal is to find a pair of ordered upper and lower
solutions of (1.1).

Proof of Theorem 1. We first seek a lower solution in the form QAS =
q(6%) for a sufficiently small constant § > 0, where 1) is the (normalized)
positive eigenfunction corresponding to the smallest eigenvalue pg of
(1.2). Indeed, from I(¢) = d4 and V(I($)) = D(¢)Vé we see that ¢
satisfies all the reversed inequalities in (3.1) if

~V - (aV(89)) + ¢~ V(50) < Aq(64) in Q.
In view of (1.2) the above inequality is equivalent to

(3.5) 1o(8%) < Ag(8%).

Since D(0) = ¢(0) = 0 and by the L’Hopital rule,

. Q(77) . / : 1
1 - =1 =1 — =
i Ty T )= B gy =
we see that given any A > 0 there exists a dp > 0 such that
q(0v)/(6v¢) > po/A for all § < §y. With this choice of §, ¢ = q(dv) is

a lower solution.

To find a positive upper solution q; we let py and ¢’ be the smallest
eigenvalues and its corresponding positive eigenfunction of (1.2) in a
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larger domain €V containing , and we seek ¢ in the form q(py’)
for a sufficiently large p > 0. The consideration of ' containing
ensures that ¢’ is strictly positive in Q. In view of I(¢) = py¢' and
D(¢)V = V(I(§)) = V(py'), ¢ satisfies all the inequalities in (3.1) if

V- (aV(py")) +c- V(o) > Ag(py') in Q.

This leads to the requirement

o(p") > Ag(py).

Since, by (H),

i 400

=7 = lim ¢'(n) = lim —— =0,

we see that for any A > 0, there exists a py > 0 such that

a(py")/(py') < po/A  for all p > po.

solution. The ordering relation ¢ > ¢ follows by taking either p large
or § small. The above construction implies that problem (1.1) has a
maximal solution ¢ and a minimal solution ¢ such that

This shows that, for any p > po, ¢ = q(py') is a positive upper

(3.6) 0<q(dy) <p<d<q(py), ze

To show the uniqueness of the solution, we observe from the hypoth-
esis ¢ = 0 that the functions w = I(¢) and w = I(¢) satisfy the
equations B

V- (aVw) =X inQ, w=0ondN
—V-(aVw) =Xpin Q, w =0 on Q.

Multiplication of the first equation by w, the second equation by w,
subtraction and followed by integration over €2, yield

/ [wV - (aVw) — WV - (aVw)]dz = A / (we — we) da.
Q Q
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By Green’s theorem, we obtain

(3.7) 0=\ [ [Wp—we|de =\ 59(

Since

.~ [ / ") D) ds],

the increasing or decreasing property of D(¢) implies that I(¢)/¢ is a
strictly increasing or strictly decreasing function of ¢. It follows from
the positive property of ¢¢ that relation (3.7) can hold only if ¢ = ¢.
Since § > 0 can be chosen arbitrarily small and p arbitrarily large, we
conclude that ¢ (or ¢) is the unique positive solution. This completes
the proof of the theorem. a

Proof of Theorem 2. 1t is seen from the proof of Theorem 1 that
¢ = q(pY') remains to be an upper solution. Moreover, ¢ = g(d7)) is
a lower solution if relation (3.5) holds for some § > 0. Since, by the
mean-value theorem and ¢(0) = 0,

q9(0¢) = ¢'(§)(69) = (6¢)/D(n),

where ¢ is an intermediate value between 0 and §¢ and n = ¢(£), we
see that (3.5) holds if o < A\/D(n). In view of D(n) — D(0) asn — 0
this requirement is clearly fulfilled by a sufficiently small § > 0 when
A > poD(0). With this choice of §, ¢ = g(d¢) is a lower solution which
ensures the existence of a positive solution. The uniqueness of the
positive solution follows from the same proof as that in Theorem 1. O
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