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THE SMALLEST AMOUNT OF CHAOS

ALEJO BARRIO BLAYA AND VICTOR JIMENEZ LOPEZ

ABSTRACT. In this paper we argue that the property that
all nonapproximately periodic points form asymptotic pairs
can be used to characterize those among chaotic dynamical
systems having the least complicated behavior. Here, for
a dynamical system (X,T,®), we say that a point ¢ € X
is approzimately periodic if, for every € > 0, there is a
periodic point p such that limsup,_, . d(®(¢, z), ®(t,p)) < ¢,
and we say that points z,y € X form an asymptotic pair if
lim¢ oo d(®(¢, 2), (¢,y)) = 0. In support of this thesis we
introduce a preorder in the class of properties of dynamical
systems and show that, under certain conditions, this property
is “smaller” than several other notions naturally related to the
idea of chaotic behavior.

1. Introduction. Sometimes (see, e.g., [5, page 8]) a dynamical
system (shortly, DS) is defined as a triplet (X,T, ®) consisting of an
additive semi-group T of R (the set of times), a set X (the phase space)
and amap ® : T'x X — X (the flow) satisfying ®(0,z) = z for every
xz € X and ®(t, ®(s,x)) = ®(t+s,x) for every t,s € T and every = € X.
Depending on the point of view we are interested in, it is customary to
establish some minimal requirements for both X and ®. For instance,
in the probabilistic setting X is a measure space and ® is measurable.
In this paper we adhere to the purely topological approach; hence, we
assume that X is a topological space and @ is continuous.

As it is, there is nothing wrong with the map ® but one immediately
sees that some additional restrictions must still be imposed both on T’
and X. For instance, since we aim to investigate the behavior of the
orbits @, (t) := ®(¢,z) (we also use the word “orbit” to refer to the set
®,.(T)) of the system in the far future, 7' must accumulate at co, that is,
sets of times like Z~U{0} or R~U{0} should not be considered. Besides,
as a minimum technical requirement (see for instance Lemma 3.2), one
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would expect some additional topological structure on 7', say 7" must
be closed. Furthermore, recall that a periodic orbit is defined by the
property ®,(r) = x for some r > 0 (when all points of the orbit are
called periodic points and the number r is called a period of the orbit
and its points; in the particular case when all numbers r are periods
of the orbit, that is, the orbit consists of just the point z, then we also
call it a stationary point). It is natural to expect that if y is a point
of this periodic orbit, say y = ®,(t) with nr <t < (n + 1)r for some
integer n, then y should return to the starting point = after the time
(n+1)r —t. In other words, T' must satisfy s —¢ € T whenever ¢t,s € T
and ¢t < s. This, together with the rest of the properties of T, easily
implies that 7" is one of the sets RT U{0}, R (when we say that the DS
is continuous) or k(Z* U {0}), kZ for some k > 0 (when we say that
the DS is discrete). We use the notation CDS and DDS to shortly refer
to, respectively, a continuous or a discrete DS.

In the latter case all the information we need is comprised in the
map f(z) = ®r(z) := ®(k,z) (which becomes a homeomorphism in
the case T' = kZ) for then ®(kn,z) = f™(z) for every x € X and
every n belonging to, respectively, Z* U {0} or Z. Thus, when dealing
with discrete dynamics, one can assume without loss of generality that
T = Z*U{0} or T = Z and referring to them as, respectively, the
dynamics of continuous maps and homeomorphisms from the space X
into itself. Notice in passing that every CDS can be “discretized” via
the maps ®;(z). Less trivially, if f : X — X is a continuous map
(respectively, a homeomorphism), then there is a DS (Y,R* U {0}, ®)
(respectively, (Y,R,®)) such that the DDS generated by f can be
embedded into that generated by the one-time map g(y) = @4 (y), that
is, there is a continuous one-to-one map ¢ : X — Y such that gi = if
[1, page 4]. Here both X and Y are compact metric spaces.

Assuming that the phase space of a DS is compact and metrizable
is pretty natural and very convenient from the technical point of view,
and so we will do it in the sequel (when d(-,-) will denote a fixed
distance in X). Indeed, this is the standard assumption in discrete
dynamics. A minor problem arises when dealing with flows generated
by ordinary differential equations (say, defined in open subsets of the
Euclidean space R™) since the phase space X is no longer compact and,
moreover, the flow may be defined in just an open subset of R x X.
Yet it is well known (see, e.g., [9, Lemma 2.3]) that if X is a locally
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compact subspace of a compact metric space Y (a paradigmatic case
occurs when Y is the one-point compactification of X), then, after
reparametrizing time, we get a full-defined flow on R x Y, all points
from Y \ X becoming stationary points (or singular points, as they
are usually called in this context) of the new flow. Hence, even in
the continuous setting, our standing assumption does not involve an
essential loss of generality.

In the theory of DSs the dialectics of order and chaos is a fundamental
one and there is a vast literature concerning what “order” and “chaos”
exactly mean. However, to the best of our knowledge, the question of
finding the property characterizing those among nonregular DSs that
are the “least chaotic” of all has never been addressed. Ideally such a
property should be full-range, equally meaningful regardless the type
of dynamical system one is dealing with. This is the aim of the present

paper.

2. Statement and discussion of the results. We have a threefold
task ahead. Firstly we need to define what a “property” is. This is
pretty simple.

Definition 2.1. We say that a family P of DSs is a (dynamical
systems) property if whenever a DS X = (X, T, ®) belongs to P and
Y = (Y, T,9) is topologically conjugate to X, then ) also belongs to
P.

If X € P, then we also say that X has the property P or X is a
P-system.

Here we say that X and Y are topologically conjugate if there is a
homeomorphism h : X — Y such that h®; = ¥,h for every t € T, that
is, the dynamics of X and ) are exactly the same up to a topological
deformation.

Secondly we must find a way to compare two properties in order to
say which of two, if any, involves a larger dynamical complexity. Our
approach, while somewhat complicated, will prove its usefulness later.

Definition 2.2. Let X = (X,T,®) and Y = (Y, W, ¥) be DSs. We
say that ) enriches X if there are DSs P = (P,U,T") and Q = (Q,V, T),
continuous one-to-one maps i : X — @ and j : P — Y, and continuous
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FIGURE 1. (Y, W, V) enriches (X, T, ®).

ontomaps p: P — X and q:Y — @, such that T C U,V C W and
all squares commute in Figure 1 whenever ¢ makes sense.

In the particular case when P =X, Q =), p = Ildx, ¢ = Idy, and
i = j (respectively, P =Y, Q = X, i = Idx, j = Idy, and p = q) we
say that ) extends (respectively, blows up) X.

Remark 2.3. Notice that “Y extends (respectively, blows up) X” just
means that i®; = W;i (respectively, p¥; = ®;p) for every t € T. Also,
observe that if in Definition 2.2 all involved DSs are discrete, then we
can replace ®;, ¥;, I'y and Y; by the maps f, g, u, and v generating,
respectively, the systems X', ), P and Q.

Roughly speaking, enriching a DS consists of two steps. First we
embed it into a larger one. Then we blow up each of the points of
the new phase space into a compact set and define a flow on the union
of these sets, taking care that points belonging to the same set are
transported by the flow into the same set at every given time t. The
set of times, by the way, may also increase in the process.

Clearly, if ) enriches X, then its dynamics is, at the very least, as
complicated as that of X. Hence, the following way to compare the
“dynamical complexity” of two properties P and Q suggests itself:

Definition 2.4. We say that the property P involves less dynamical
complezity than the property Q (written P = Q) if every P-system can
be enriched to a Q-system.
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Recall that every DDS can be extended to a CDS. Thus, P = Q
for the properties P and Q of being, respectively, a discrete and a
continuous DS. Notice that we are not claiming that every CDS has a
more complicated dynamics than that every DDS, which is of course
nonsense, but only that the dynamics of CDSs are, potentially, more
complex than those of DDSs, which is pretty reasonable. Also, observe
that if P C Q for some properties P and Q, that is, every DS having
the property P also has the property Q (shortly, P = Q in the usual
sense), then P = Q. This, again, is in accord with intuition.

While it is clearly unrealistic to expect that the relation “=” (or,
for that matter, any plausible relation) totally orders the class of all
properties, it should at least induce a preorder in it. As our first result
shows, this is fortunately the case.

Proposition A. If P= Q and Q = R, then P = R.

The last stage of our construction involves finding a plausible def-
inition of “minimal chaos,” which of course requires a definition of
“nonchaoticity” in advance. Our source of inspiration comes from dis-
crete interval dynamics, but the key notions can be formulated in full
generality:

Definition 2.5. Let (X,T,®) be a DS, and let z € X. We say that
x is approximately periodic if for every € > 0 there is a periodic point
p such that

limsup d(®(¢, z), ®(¢,p)) < .

t— o0

Let z,y € X. We say that {z,y} is an asymptotic (respectively,
distal) pair if
Jim d(@(t,2), ®(t,)) =0
(respectively,
lim inf d(®(t, z), ®(t,y)) > 0).

t—o0

We say that {x,y} is a Li-Yorke pair if it is neither asymptotic nor
distal.
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Approximate periodicity was introduced by Smital in [11]. There he
proves (see also [6]) that if f : [0,1] — [0, 1] is continuous, then either
all points are approximately periodic, or there is an uncountable set S
such that each pair of points in S is Li-Yorke (sets S with this property
are called scrambled). Scrambled sets were famously brought to the
fore by Li and Yorke in their paper, Period three implies chaos, [7]
where, among other things, they proved that if a continuous interval
map has a periodic point of (minimal) period three, then it possesses
an uncountable scrambled set.

It is worth noticing that the properties described above (full approx-
imate periodicity and existence of an uncountable scrambled set) can-
not be simultaneously satisfied by any continuous map regardless of
the compact metric space it is defined in. The reason is that no pair of
approximately periodic points can be Li-Yorke. This was first noticed
in [8, pages 117-118] and [3, pages 144-145]. As a second result of this
paper (Proposition B) emphasizes, the nonexistence of Li-Yorke pairs
of approximately periodic points is a general feature of DSs. Hence,
although the dichotomy order-chaos just explained only works in the
interval setting, we may reasonably identify regular DSs with those
just consisting of approximately periodic points. To stress the asymp-
totical simplicity of an approximately periodic point, we also prove in
Proposition B that either it is asymptotically periodic, that is, there is
a periodic point p such that lim;_, ., d(®(¢, z), ®(¢t,p)) = 0, or the re-
stricted flow to the set wg(x) of limit points of its orbit as t goes to 0o
can be discretized, up to a topological conjugacy, to an adding machine
map. We next introduce this notion and give a simple description of
the dynamics of this type of map.

For a sequence of integers @ = (p;,,)_, such that p,, > 2 for every
m, the a-adic adding machine A, is the set of sequences (z,,) such
that z; € {0,1,... ,p, — 1} for every m. We use the product topology
in A, and define the adding machine map f, : Ay — A, by writing
0,...,0,zm + 1, Zmt1,.-.)

ifx, <pm—1landz; =p; —1
fa((zm)) = " " ! !

for every j < m;
(0,0,...) if £, = pm — 1 for every m.

Let X be an infinite compact metric space, and let A : X — X be
a continuous map. It is well known that h is topologically conjugate
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FIGURE 2. Some relations between the properties introduced below.

to an adding machine map if and only if, for every ¢ > 0, X can
be decomposed into finitely many pairwise disjoint compact sets with
diameters less than ¢ which are cyclically permuted by h [4]. Moreover,
it is easy to show that X is in fact a Cantor set, h is a homeomorphism
and there are a decreasing sequence X = Xy D Xy D --- D X,;, D ---
of Cantor sets and an increasing sequence (r,,) of positive integers such
that r,, divides rp, 41 for every m, h™(X,,) = X, X is the disjoint
union of the sets Cy,, ... ,h™ 1(C,,) and the diameters of these sets
tend uniformly to zero as m goes to co.

Proposition B. Let (X, T, ®) be a DS. Then the following statements
hold:

(i) If x € X is approxzimately periodic, then either x is asymptotically
periodic or there is anr € T such that the restriction of f = ®, to wy(x)
1s topologically conjugate to an adding machine map.

(i) If z,y € X are approzimately periodic and

lim inf d(®(t, ), &(t, y)) = 0,
then
lim d(®(t,z), ®(t,y)) = 0.

t— o0

In particular, {z,y} cannot be a Li-Yorke pair.

Let X = (X,T,®) be a DS, and denote by R(X) its set of approxi-
mately periodic points. We say that X" has the property Rif R(X) = X.
We say that X' has the property A (respectively, S, D) if R(X) # X and
every pair of points in X \ R(X) is asymptotic (respectively, Li-Yorke,
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distal). Properties ASD, AS, SD and AD are defined in a similar
vein: for instance, X’ has the property SD if R(X) # X and every pair
of points in X \ R(X) is Li-Yorke or distal.

It can be checked that the implications from Figure 2 hold. Indeed
all of them are trivial except R = A, R = S and R = D. To prove
any of these last implications assume that (X, T, ®) has the property
R. Take a DS (Z, R, ©) having the corresponding property A, S or D
and preserving it when seen as a DS with a set of times T' (those in the
proof of Theorem D, for instance, have this feature). Now it suffices
to extend (X, T, ®) to a system (Y, T, ¥) where Y is the disjoint union
of X and Z and V is defined in the obvious way. Notice that we have
used the symbol R to denote simultaneously the property R and the
set R of real numbers. This should not lead to confusion.

Thus, in accordance with expectation, R involves the least amount of
complexity; the rest of the properties imply chaos up to some extent,
with the incompatible properties A, S and D being the “least chaotic”
at all. If one of them implied the other two, then it could be rightly
used as the indicator of “minimal chaos” we are looking for.

To begin with, A, S, D % R, thus consolidating the lowest place of R
at the complexity scale. We also have S,D % A and D % S. Indeed
all these “nonimplications” (except those with the property D at the
left side) are the strongest possible, in the sense that no DS having
the left-side property can be enriched to a DS having the right-side
property.

These statements easily follow from Proposition C below. We empha-
size that the additional condition in (iii) (satisfied, for instance, for all
points of the discrete irrational rotation in the circle or the continuous
irrational rotation in the torus) cannot be, unfortunately, disposed of.
A simple counterexample is provided by any adding machine map h.
Clearly, for such a map h all pairs of points are distal and no point is
approximately periodic (because there are not periodic points at all).
Hence h has the property D. Notice, by the way, that the sequence
(h"())2%, (but not the sequence (A" *1(x))3°,) accumulates at z for
every point x and every positive integer 7. It is well known that h can be
realized, up to a homeomorphism, as a subsystem X of the interval map
f(z) = az(1 — z) for an appropriate parameter . Moreover, with the
notation before Proposition B, f admits a family (P,,) of periodic orbits
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of respective minimal periods r,, such that X' = X UU,, P, is compact
and all points of X’ become approximately periodic for the restriction
of f to X'. See [10, Theorem 4.1, page 118 and Proposition 4.5, page
242] for details. We have shown that the system generated by h can be
extended to an R-system.

Proposition C. Let (X,T,®) be a DS, and let € X be a non-
approzimately periodic point of X. Assume that (Y,W,¥) enriches
(X,T,®) and, with the notation of Definition 2.2, let y € Y be such

that q(y) = i(z). Also, assume that one of the following statements
holds:

(i) all pairs of points of the orbit of x are asymptotic;
(ii) all pairs of points of the orbit of = are Li-Yorke;

(iii) all pair of points of the orbit of x are distal and for every positive
r € T the sequence (®(rn+ 1,2))52, accumulates at x.

Then y is not approzimately periodic for (Y, W, V). If, moreover, (ii),
respectively (iii), holds, then no pair of points of the orbit of y can be
asymptotic, respectively asymptotic or Li-Yorke.

At this point one realizes why we must retort to enrichments, rather
than just extensions or blow-ups, to implement our preorder relation.
Extensions are simply not operative enough: it is obvious that no
system having exactly one of the properties A, S or D can be extended
to a system having exactly one of the other two. In general, blow-ups
fare better than extensions (compare to Theorem D) but they just fall
short of working: a system consisting of a two-point periodic orbit is a
trivial R-system that cannot be blown up to an A-system.

After Proposition C only A = S = D remains as a feasible
alternative, leading to A as the characterization of “minimal chaoticity”
which we aimed for. Notice that, contrary to initial expectations,
distality promises more complexity than the mere existence of Li-Yorke
pairs.

Proving these implications remains beyond our present capabilities
but we conjecture that both of them are true. Next, we explain why
this is a reasonable conjecture.

Among all nontrivial DSs, those generated by interval maps and of
the type (X,R,®), with X a compact surface, are by far the most
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FIGURE 3. (Y, W, ¥) enriches (X, T, ®) (via (P,U,T') and (Q,V,T)) and (Z, K, ©)
enriches (Y, W, ¥) (via (R,I,X) and (S, J, A)).

accessible and best known. In the first setting our discussion is void
of content because in Smital’s papers [6, 11] we mentioned earlier
is implicitly proved that either a continuous map f : [0,1] — [0,1]
has the property A, or not only possesses uncountably Li-Yorke pairs,
but also uncountable asymptotic and distal pairs outside the set of
approximately periodic points, that is, f has the property ASD.

Thus, we are naturally led to surface flows. Although we are unable to
prove, even in this favorable setting, that every A-system (respectively
S-system) can be enriched to an S-system (respectively a D-system),
we can at least provide some examples supporting this view. Such is
the content of our last theorem, the main result of the paper:

Theorem D. Let X be a compact surface. Then there is an A-system
(respectively, an A-system, an S-system) (X, R, ®) that can be blown
up to a D-system (respectively, an S-system, a D-system).

Admittedly this may seem a rather unambitious effort. Yet, besides
some obvious and nonnegligible technical difficulties, we very much
expect that the ideas we employ will essentially suffice to prove the
validity of our conjecture, at least in the surface setting.
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3. Proofs.

Proof of Proposition A. The statement is a trivial consequence of the
following fact: if ) enriches X and Z enriches ), then Z enriches X.

To prove the latter fact we use the same notational conventions as in
Definition 2.2 to generate the diagram in Figure 3, where all squares
commute.

Now we complete the diagram as follows. Let M = r=1(j(P)), and
let ¢: M — R be the inclusion map. Also, we define a surjective map
m : M — P by m(x) = z, where if x € M, then z is the only element of
P such that j(z) = r(x). Clearly m is continuous. Finally, if U is the
set of times for the DS (P,U,T"), then we define a flow A : Ux M — M
by A(t,z) = 3(t,z) for every (t,z) € U x M. Notice that A is well
defined. In fact, if t € U and x € M, then

(rAs)(z) = (r3)(z) = (¥or)(z) = (¥15)(2) = (4T4)(2) € §(P);

hence, A(t,z) € M.

Next we define in S an equivalence relation by writing « ~ y if
either z = y or there is a 2z € Q such that z,y € k(¢ 1({z})). Since the
equivalence class [z] of every x € S is compact, the quotient space N =
S/ ~ inherits in the natural way the compact metric space structure of
S. Let n: S — N be the projection map, and define a one-to-one map
d: @Q — N by putting d(z) = k(¢ 1({z})). It is easy to check that d
is continuous. Now, if V is the set of times for the DS (Q,V, T), then
we construct a flow Q : V x N — N by writing Q(¢, [z]) = [A(¢, z)].
This definition makes sense because if z ~ y, then A(t,z) ~ A(t,y).
Indeed, say z,y € k(¢g~*({z})) for some z € Q, and let a,b € ¢~ *({z})
such that k(a) = z, k(b) = y. Then (k¥;)(a) = (Aik)(a) = Ai(z)
and analogously (k%.)(b) = As(y). Since ¢(a) = ¢(b) = z, we have
that (T¢q)(a) = (T:q)(b) = YTi(2) € Q. Since (¢¥4)(a) = (Yiq)(a) and
(q¥:)(b) = (T¢q)(b), we get ¥y(a), Uy(b) € ¢~ 1({Y¢(2)}). Hence, both
Ay(z) = (k¥;)(a) and A(y) = (k¥,)(b) belong to k(g 1({Y:(2)})),
that iS, At(x) ~ At(y)

Now it is routine to check that all squares and rectangles in Figure 4
commute. This implies that Z enriches X as we desired to prove. ]

“ 7
~



38 ALEJO BARRIO BLAYA AND VICTOR JIMENEZ LOPEZ

N M - R y Z
/m /,_ /
ZI ®r
M c R 4 VA s
r s
m P Y =S
)4
Ar
P Y =S n
q
n
P X ) d N
@, q
Y, Q
X ! 0 N

FIGURE 4. All squares and rectangles commute here.

Proof of Proposition B(i). We assume that x is approximately but
not asymptotically periodic.

Let (pj)$2, be a sequence of periodic points satisfying lim sup,_, ,, X
d(®(t, x), ®(t,pj)) < 1/j. Since the orbit of x does not converge to
a stationary point, we can assume that the periodic points p; are not
stationary either. Let r; be a period of the orbit I'; of p; for every j.

Observe that limsup,_, ., d(®(¢,p;), ®(t,pm)) < 1/j+1/m for every j
and m. If rp, /r; is irrational, then we easily get that d(y, z) < 1/j+1/m
for every x € I'; and y € I'y,, which in particular implies that the
diameter of both I'; and I'yy, is less than 2(1/j+1/m). Since wg () has
a positive diameter and the diameter of I'; is very close to the diameter
of wg(x) if j is large enough, we conclude that r,,/r; € Q whenever
j and m are sufficiently large. We can assume ry,/r; € Q for every j
and m. Let f = ®,,. Then all points p; are periodic for f and z is
approximately periodic for f because

limsup d(f™(z), f"(p;)) <

n—roo

(-

for every j. Let P; be the periodic orbit of p; for f and say that its
minimal period for f is s;. Let A = wy(x). Then A is clearly the limit
set of the union P = U; P;.
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Now the proof goes exactly as that of [2, Proposition 5.1], where a
similar result was obtained for interval maps. For the convenience of
the reader we repeat the argument here.

Let y € A, and fix j. Then thereis a 0 < k < s; such that y is a limit
point of the sequence (f™%t*(z)),,. Hence, if we write ¢; = f*(p;),
we get that d(f"(y), f"(g;)) < 1/j for every j. Therefore, ws(y) is also
the limit set of P, that is, ws(y) = A for every y € A. Maps with the
property that the limit set of each of the orbits of the space are the
whole space are usually called minimal; we have just proved that f|a
is minimal.

Let ¢ > 0, fix j > 2/e, rename s = s;, and let C; = wy:(f*(x)),
0 < i < s. Then f(C;) = C;q1 for every i (we mean C5 =
Co). Since each fi(z) is approximately periodic for f¢, we apply
the previous reasoning to conclude that every map f°|c, is minimal.
Let 0 < I,m < s, I # m, and assume that C; N C,, # . Then
f2(CinCy) C €N Cpy, so the minimality of f*|¢, and f*|¢,, forces
C; = Cp,. Further, observe that if y € C;, then d(y, fi(p;)) < 1/,
and hence the diameter of C; is at most 2/j. If we define C = Cj
and k is the minimal positive number satisfying f*(C) = C, then the
partition {C, f(C),...,f* 1(C)} satisfies the required properties in
the definition of adding machine for the number ¢. O

The proof of Proposition B(ii) requires two preparatory lemmas.

Lemma 3.1. Letr,s > 0 and 0 < § < s/2. Then there are sequences
(@n)22 g, (bn)S2 of positive integers such that |an,r —bps| < & for every
n, (an) is strictly increasing, and (an+1 — an) s bounded.

Proof. 1If r/s € Q, then there are positive integers ag, by such that
r/s = byp/ag. After defining a, = (n + 1)ag and b, = (n + 1)by for
n > 1 we get |apr — bys| = |(n+ 1)agsby/ao — (n + 1)bos| = 0 and the
statement trivially holds.

Suppose that r/s ¢ Q. It is sufficient to inductively define the
sequences (a,) and (b,) so that, besides

(1) lanr — bps| <6,
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we have
(2) Upt1 = ap, + a1 + aag, with a € {-1,1}
for every n.

The numbers 0 < ag < a1 and 0 < by < by are just chosen so that (1)
holds when n = 0,1, for property (2) immediately holds when n = 0
after writing o = —1.

Assume that the numbers a,, and b,, have defined for every n < k so

that (1) and (2) holds when, respectively, n < k and n < k. Since

—d < agr —bgs < 6

*6<a17'*b18<5

—6 < apr —bgs < 4,
the numbers A = (ax + a1 + ap)r — (b + by + bp + 1)s and B =
(ar + a1 —ag)r — (b + b1 —bg — 1) s satisfy —s— 35 < A < —s+ 36 and
s—35 < B < s+ 36. Moreover, A— B = 2(aor —bgs + s) > 2(s — ) >
s > 0, hence either A > 0 or B < 0. Suppose that A > 0. Then
ak+1 = ag+aj;+ag and b1 = by + by + by +1 satisfy (1) for n = k+1,
since otherwise A > § and then § < A < —s + 3§ < 4, a contradiction.
We similarly define agy1 = ar + a1 —ap and b1 =bx, +b1 —bp — 1 in
the case B < 0. O

Lemma 3.2. Let (X,T,®) be a DS, let p be a periodic point, and
let € > 0. Then there is a § > 0 such that if t,w € T, |t — w| < § and
z € ®,(T), then d(®(¢, 2), ®(w, 2)) < €.

Proof. Since the periodic orbit P = ®,(T") is compact, the restriction
of @ to ([—r, 2r]NT) x P is uniformly continuous (here r denotes a period
of P). In particular, thereis a 0 < § < r such that if ¢/, w’ € [—r, 2r]NT,
|t/ —w'| < 8, and z € P, then d(®(¢', 2), (w', z)) < e. Now, if t,w € T,
|t — w| < ¢, then there is a ¢ € [0,7] (and hence w’ € [—r,2r]) such
that |t/ — w'| = |t — w| and ®(¢',2) = D(¢,2), ®(w',2) = ®(w,2) for
every z € P. Thus, d(®(¢,2), ®(w, z)) < € for every z € P. o

Proof of Proposition B(ii). Let € > 0. Then there are periodic points
p, q of respective periods r and s such that

lim sup d(®(¢, z), ®(t,p)) <
t—o0

)

ot m ot ™

limsupd(®(t,y), (¢, q)) <

t—o0



THE SMALLEST AMOUNT OF CHAOS 41

According to Lemma 3.2 there is a number § > 0 such that if |t —w| < §,
then d(®(t,z2),®(w,2)) < €/5 for every z € ®,(T) U @4(T). We
can assume 6 < s/2 to apply Lemma 3.1 to r, s and 4, and find
corresponding sequences (a,) and (b,) such that, if we write (¢,) =
(anr), then

D(ty,u) =u

and
d(®(tn,v),v) = d(P(anr,v), ®(bys,v)) <

ol ™

for every n and every u € ®,(T), v € ®,(T).

Recall that the sequence (t,41 — t5,) is bounded, say by . Let §' > 0
be such that if d(u,v) < ¢, then d(®(¢,u), ®(¢,v)) < &/5 for every
t € [0,5]NT. Since liminf;_, o d(®(¢, z), (¢,y)) = 0, there is a ¢’ such
that d(®(¢',x), ®(t',y)) < ¢’. Further, we can assume

d(®(t,z), D(t,p)) <

d(®(t,y), ®(t,q)) <

)

Ot ™M Ot ™

for every t > t'.

Let t > t'. Then t = t' +t, +{ for some integer n and some t € [0, x].
Hence,

< d(®(t, x), ®(t,p)) + d(®(t, p), ®(t' +t,p))
+d(®(t' +t,p), @t +t,2)+d(@Ft +1t,2), 2t +1,v))
+d(®(t +t,y), 2t +1t,4q))+d(®(t +1t,q),2(tq))
+d(@(t, q), ®(t,v))

<fhori4S4E4C
5 5 5 5 5

= €.

We have shown that lim;_, ., d(®(t, z), ®(¢,y)) = 0 as we desired to
prove. O

Proof of Proposition C. Let x € X be a nonapproximately periodic
point of X for @, and assume that y € Y is such that ¢(y) = i(x) and
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it is an approximately periodic point of Y for . Since the diagram in
Figure 1 commutes, ¢ maps periodic points of Y to periodic points of
Q@ for Y. Thus, since ¢ is continuous and y is approximately periodic,
the point z = ¢(y) = i(z) is approximately periodic. We emphasize
that, if ¢t # s, then Y(¢,2) # Y(s, z); otherwise, z would be periodic
and x would be periodic as well.

Assume that condition (i) holds, i.e., all pairs of points of the orbit
of x are asymptotic. Then all pairs of points of the orbit of z are
asymptotic. Clearly, wy(z) is then a continuum of stationary points.
Since z is approximately periodic, Proposition B(i) implies that, in
fact, wy(z) consists of just one point, that is, T,(¢) converges to a
stationary point. Hence, ®,(t) also converges to a stationary point, a
contradiction.

Now we assume that condition (ii) holds, i.e., all pairs of points of
the orbit of x are Li-Yorke. Then the same happens to the orbit of z,
which contradicts Proposition B(ii).

Finally, assume that condition (iii) holds. Then all pairs of points
of the orbit of z are distal and, for every positive r € T', the sequence
(Y(rn + 1,2))22, accumulates at z. Since z # Y(1,z), the distality
hypothesis applies and we get

liminf d(Y(t, 2), (¢ + 1,2)) = 6 > 0.

Now we use the approximate periodicity of z to find a periodic point p
such that
limsupd(Y (¢, z), T(¢,p)) < 6/4.
t—o0
Let r be a period of p. Then limsup,,_,., d(T(rn,z),p)) < §/4 so, if ng
is large enough and we write 2z’ = Y(rng, z), we have

d(T(rn,2"),2")) < /2

for every nonnegative integer n. According to the hypothesis (Y(rn +
1,2"))22 , accumulates at z’ and hence there is a number m as large as
required such that

d(T(rm+1,2"),2") < §/4.

We conclude that d(Y(r(m+ng), ), T(r(m+ne)+1,2)) = d(Y(rm, 2’),
T(rm+1,2")) < 3§/4, thus arriving at the desired contradiction.
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FIGURE 5. The phase portrait of (D, R, ®).

To conclude the proof of Proposition C, notice that if condition (ii)
is satisfied, then the orbit of y cannot contain an asymptotic pair of
points, for then their image by ¢ would also be an asymptotic pair of
distinct points and then the orbit of x would contain an asymptotic
pair. Similarly, if (iii) is satisfied, then every pair of points in the
orbit of y must be distal, since otherwise we would be able to locate a
nondistal pair of points in the orbit of z. o

Proof of Theorem D. We begin by constructing an A-system (D, R, @)
that can be blown up to a D-system. Here D denotes the unit disk
{(z,y) € R? : 22 + y? < 1} (later we explain how to construct a
similar example for an arbitrary compact surface). We also write
D* ={(z,y) e R?: 0 <22 +y> < 1}.

Let o(r,0) = (rcosf,rsinf). Clearly,

F(s,p) = ¢ <
maps continuously and bijectively R x (0, 1] onto D*; moreover, it can
be continuously extended to an onto map from R x [0, 1] to D*.

Now we define @ : R x D — D by

_ [ F(F(z,y) + (t,0) if (z,y) € D,
o(t, (z,9)) = { (z,y) if (z,y) € D\ D*.

1 j_ el 2mpt/ 1+ 4 loglog(1 + es)>
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In this way we construct a flow on D for which (0,0) and all points
from the unit circle S = {(z,y) € R? : 22 + y? = 1} are singular
points. The rest of the orbits are the spirals E,, = {F(s,u) : s € R},
p € (0,1]. They go to (0,0) as t — —oo, and accumulate at S! as
t — oo. Notice that all pairs of points from D* are asymptotic (which,
incidentally, ensures the continuity of ® at S!) because

lim —— =1,
s—oo 1 + e
lim 27pt/0Fe) = or

S§—00

for every p € (0,1], and
Jlim loglog(1 +¢**) — loglog(1 +¢***) = 0
— o0

for every s,s’ € R. Hence, (D, R, ®) is an A-system. See Figure 5.
Let Y C R? be defined by

Y ={(z,y,2): 2 € [0,1], (z,y) € E:} U ({(0,0)} x [0,1])(S" x [0,1])

(here we mean Ey := E;). Thus Y is the compact set arising after
lifting every spiral E, to the height z and adding the vertical line
{(0,0)} x [0,1] and the cylinder S! x [0,1]. See Figure 6.

After defining V(¢ (z,y,2)) = (®(¢(z,y)),z) we get a system
(Y,R, ) blowing up (X,R,®). Apart from the singular points at
the vertical line and the cylinder, the only orbits of the new system
are the liftings S, of the corresponding spirals F,, accumulating at the
point (0,0, z) and the circle S! x {2z} as t — +oo. Notice that if two
points belong to the same orbit S, then they form an asymptotic pair;
otherwise, they are distal. Hence (Y, R, ) is an AD-system.

Finally, we blow up (Y, R, ¥) to a D-system as follows. Let (4,R,T)
be an R-system such that, for some p € A, each pair of points
{Tp(t),Tp(s)}, s # t, is distal. (An example of such a system is the
map f : X’ — X’ described before the statement of Proposition C in
Section 2—a discrete R-system having the required property—after being
canonically extended to a CDS.) Observe that every spiral S, contains
exactly one point p, = (x,y,2) such that 2 + y?> = 1/4. Now, after
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FIGURE 6. The set Y.

defining B, CY x A = {(¥(s,p.),[(s,p)) : s € R} for every 2z € [0,1],
we easily see that

Z = ({(0,0)} x [0,1] x A) U (S" x [0,1] x A)u| J B:

is a compact subset of Y x A.

Let © : R X Z — Z be defined by O(¢t,u) = (¥(¢,v),I'(¢t,w)) for
every u = (v,w) € Z. The system (Z,R,©) so constructed blows up
every singular point of (Y, R, ¥) to a subsystem topologically conjugate
o (4,R,T), hence consisting of approximately periodic orbits. Every
orbit S, is blown up to the orbit B, which, due to the way it has
been defined, just contains distal pairs of points. Since pairs of points
belonging to different B,, B,/ keep being distal, all asymptotic pairs
have been eliminated: (Z,R,0) is a D-system blowing up (Y, R, ¥),
and hence the A-system (D, R, ®).

If the surface X we are dealing with is other than the disk D, then
we proceed in exactly the same fashion, just using a topological disk
inside X instead of D and defining the initial A-system (X, R, ®) so
that all points outside the topological disk are also singular points of
the flow ®. We have completed the proof of the part of Theorem D
regarding the blow-up of an A-system to a D-system.
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Our next task is constructing an S-system (X, R, T) for every given
compact surface X that can be blown up to a D-system. There is again
no loss of generality in assuming X = D.

The flow on D we are going to define will have the singular point (0, 0)
and the same orbits E, as the previous one. The circle St will consist
now of the singular point (—1,0) and a homoclinic orbit starting from
and ending at (—1,0). (By the way, when carrying on our construction
to another surface X, we must first add similar pairs of orbits to each
circle {(z,y) : > + y? = r?}, 1 < r < 2, the flow being slower as r
increases, and then a circle {(z,y) : @® + y? = 4} of singular points.
This larger disk is what we embed in X.)

Although we used a different method earlier, the standard way to
generate a continuous-time plane flow ¥ is by defining a vector field
f(z,y) = (P(z,y),Q(z,y)) so that Y(¢,(zo,yo)) is the solution of
z' = P(z,y), ¥ = Q(z,y) with initial condition z(0) = zo, y(0) =
yYo. We already know what the orbits look like, so we only need to
specify, at every point p = (z,y), the orientation of the vector f(p)
(counterclockwise) and its modulus ||f(p)]|.

To do this, we proceed as follows. Clearly, there are a segment
Soin S = {(z,0) : 0 < z < 1} and a increasing homeomorphism
h :[0,1) — Sy such that p, := h(p) € E, for every p. In fact, if
(pZ);’fzfoo is the sequence of consecutive intersection points of E,, with
the segment S (pg = py), then h can be extended to a homeomorphism
h:R — S so that h(u+n) = p), for every p € (0,1] and n € Z. Let aj,
denote the intersection point of E, with {(—x,0) : 0 < z < 1} between

p,, and pﬁ*l .

We are ready to define ||f(p)]| for every p. To begin with, || f(p)|| = z
if p = (z,0) € S. Now we define ||f(p)|| for all points of an arbitrary
arc T in E,, between p); and pﬁ*l. Namely, if « : [0,27] — T is the
angle homeomorphism mapping 0 to pj; and 27 to pﬁ“, then we put

7@ = "= + L@@
whenever 6 € [0, 7], and
1£@@)] = =2 sl + =T a2m)

™ ™
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whenever 6 € [m,27]. Of course the definition of || f|| at the point
aj; = a(m) is still pending. We fix it so that the time needed by the
flow to travel from pj; to pZ‘H is 1+ |p + n|. Observe that, since the
time required to travel from p), to p,’j‘“ goes to 0o as n — oo, the
vector field so defined can be extended to a continuous vector field on
D whose only singular points are (0,0) and (—1,0).

We show that (D, R, T) is an S-system. Fix a small neighborhood U
of (—1,0) and recall that S'\ {(—1,0)} is an orbit of the system. Due
to the continuity of ® there is a number ¢ > 0 such that if p € D* and
t is large enough, then Y(t+s,p) € U for every s € [0,24]. This implies
liminf; o d(Y(¢,p), Y(¢,p")) = 0 for every p,p’ € D*.

If p # p’ belong to the same orbit E,, then limsup,_, . d(Y(¢,p),
Y(t,p')) > 0 is obvious. Let p € E, and p’ € E,,, with p # p/ and as-
sume that lim;_, ., d(Y (¢, p), Y(¢,p")) = 0. Then there are a smalle > 0
and large positive integers n, n’ such that sup,. o d(Y(t,p},), Y(t, pﬁi)) <
¢. This, in particular, means that the difference of times required to
travel from pj; to pﬁ*k, and from p;f’ to pZ:+k, remains bounded re-
gardless how large is the number k. But these times are, respectively,
E(14+p+n)+k(k+1)/2 and k(1 + ¢’ +n') + k(k + 1)/2. We have

arrived at a contradiction.

We have proved that (D,R,YT) is an S-system. It can be blown up
to a D-system in exactly the same way we did before.

Finally we show how the A-system (D, R, ®) we constructed at the
beginning of the proof of Theorem D can be blown up to an S-system
(a similar example for a general compact surface X can be easily
derived from this one). To do this, the S-system (D,R,T) we have
just constructed will prove very useful. We keep using the notation E,,
and p,, for every u € [0,1] (of course we mean p; = pj) and also write
qu = Puj2-

Let Y’ C R? be defined by

V' ={(z,9,2): (z,9) = ®(5,pp), 2
—pt(L—pe/(l+e’), seR, pel01]}
U ({(0,0)} x [0,1]) U (S* x {1})

and write ¥'(¢t, (z,y,2)) = (®(t, (z,y)), 2'), where if (z,y) = ®(s,p,)
1+e€f),

and z = p+ (1 —p)e’/(1+e€®), then 2/ = pu+ (1 —p)est*/(1+e51t). In
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this way we get a blow-up (Y’,R,¥’) of (D,R,®) where, in contrast
to the blow-up (Y, R, ¥) from the first construction, the spirals E,, are
not lifted to the horizontal spirals S, but they go up as time increases
to reach the level z =1 as ¢ — oo and the level p as ¢ -+ —oo. Thus
(Y',R,¥') is still an A-system, the only difference being that Ey = Ey
has been blown up to two different orbits.

For every pp € [0,1],let A, C Y'xD = {(¥'(s,pu), Y(s,q.)) : s € R}
Then

7" = ({(0,0)} x [0,1] x {(0,0)}) U (8* x {1} x ") U J 4,

is a compact subset of Y’ x D.

Let Q : R x Z' — Z' be defined by Q(t,u) = (¥'(¢,v), Y (¢, w))
for every v = (v,w) € Z'. Realize that all points of the segment
{(0,0)} x [0,1] x {(0,0)} are singular for the flow 2, while every orbit
of the invariant torus S! x {1} x S! converges both in positive and
negative time to some singular point (z, 1, (0,—1)). As for the rest of
orbits, notice that if 4 # p’ or s # s, then Y(s, q,) and Y(s', g,/) form
a Li-Yorke pair (observe that this may not be true if we replace g, and
g by po and py; this is the reason why we use the points g, = p,/2)-
Since all pairs ¥'(s,p,) and ¥'(s’,p,/) are asymptotic, we conclude
that (Z',R, Q) is an S-system blowing up the A-system (D, R, ®).

Acknowledgments. We are grateful to J.L. Garcia Guirao for his
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