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EXISTENCE AND UNIQUENESS RESULTS
FOR ORDINARY DIFFERENTIAL EQUATIONS

AFGAN ASLANOV

ABSTRACT. In this paper we give some new results con-
cerning solvability of first order singular problems. We study
mainly the differential equation z’ = f(t,z). We prove that
the existence theorem of Caratheodory remains true if f is
not defined at the given initial point and satisfies more flexi-
ble conditions. This theorem allows us to develop theorems on
the existence and uniqueness of the solution of systems of dif-
ferential equations and high order differential equations. We
introduce a more general form of the initial value problems
and try to develop this idea.

1. Introduction. In this paper we consider the problem

(1) ' = f(t, ), z(r) = ¢,

where f is singular in (¢,2) = (7,£). There are different attempts to
develop the theory of singular initial value problems. Peano [9] and
Perron [10] have considered the problem (1) when (7,&) = (0,0), with
f continuous, assume the existence of continuous functions m; (t) and
maz(t) with m1(0) = m2(0), my(t) < mo(t) and

Dimi(t) < f(t,ma(t)),  Damo(t) > f(2 ma(t)),

and prove the existence of a minimal and a maximal solution of (1)
between m (t) and mq(t). In 1931, Dragoni [6] considered systems and
allowed m;(0) < 0 < my(0). Recently, Frigon and O’Regan [7] have
considered noncontinuous mj(¢) and mgy(t). Marcelli and Rubbioni
[8] have considered the situation where m;(t) and my(t) can cross.
Cherpion and De Coster [2] have studied the situation where mq(t)
and mg(t) are not necessarily continuous nor ordered. In most cases,
authors tried to develop so-called lower and upper solution methods.
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In this work we tried to develop theory regardless of the existence of
minimal and maximal solutions.

To achieve this goal we introduce a more general concept of the initial
value problem. If the point a is a point of accumulation of the domain
of function, then we introduce the “set of values” of the function as
t — a. For example, the set of values of cos(t!) as t — 0 is the
set [-1,1]. The function cos(1/t) behaves almost like the continuous
function about the point 0, and this function can be considered roughly,
as a solution of the differential equation z’ = ¢~2sint~!, with “initial
value” (or initial condition) z(0) = [—1,1]. That is, cos(1/t) is, in fact,
a solution of the given equation such that for any ¢ € [—1,1] there
exists a sequence {t,}, with ¢, — 0 and f(¢,) — c.

Remark 1. If the function f(¢) is defined on the set I and a is an
accumulation (or limit) point of I, we use the symbol f(a) for the “set
of values” of f(t) at the point a. That is,

def

fla) =

n—a

{A A= 1tlim f(ts), for some sequence (t,) C I} .

The simplest initial value problem z’' = f(¢,z), z(ty) = o, can be
considered as a special form of the (singular) initial condition problems
of type ' = f(t,z), x(tg) = [z1, z2], where x1, x5 are real numbers.

We denote by

f{a+) ef {A: A=1lim f(t,), for some sequence (t,) C [a,a+¢€) NI}
and

f(a—) aef {A:A=1lim f(t,), for some sequence (t,) C (a —€,a]NI}.

Definition 1. A function f is s-continuous (set-continuous, sym-
metric continuous, etc.) at the point ¢ = a if fla+) = f{a—) =
f(a) = [A, B] for some real A and B. (If f(t) is continuous at a, then
flat) = f(at) = fla=) = fla—) = f(a).)

Similarly, we can define both right s-continuity and left s-continuity.
For example, function f is right s-continuous at the point t = a if
f{a+) = [A, B] for some real A and B.
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Definition 2. A function f is an inclusive s-continuous (is-
continuous) at the point z = a if f is right s-continuous and left s-
continuous and f(ay) C f(a_) or fla_) C f{a+).

Definition 3. A function f is weak s-continuous (ws-continuous)
at the point = a if f is right s-continuous and left s-continuous and

flas)n fla) # @.

Definition 4. The function f(t) is said to be an s-Lebesgue
integrable on (a,b), if f(t) is Lebesgue integrable on [a + €,b — §] for
every small enough positive ¢, § > 0 and

b—46
‘/ f(t) dt‘ <a
a+te

for some constant o (a does not depend on € and §).

Denote by

SF(t)dt = —< fim /Hf(t)dt+ lim Hf(t)dt).

a—¢ s,e—»0Ja—¢

If f(t) is an s-Lebesgue integrable on (a,b), then there exists a

sequence a,, — a+, a, > Qpy1, by, — b, b, < by41, such that the
b

sequence f;" f(t) dt converges to Sf(t) dt. Let’s explain this statement
n a

in case a = 0, and for simplicity suppose that b is a regular point. That

is,

b 1/ b b
Sf(t)dt——<1im £(t)dt + lim f(t)dt>

a 2 e—0 a+te e—=0Ja+te

<11m/ F(t) dt+11m ;f() >

for some sequences (a;,) and (8,). We may take a,, < 3, for example.
Then we have

b Br
Sf(t)dt = hm/ f(?) dt+—hm
a Brn—0 2 n—oo an

f(t) dt
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The interval (o, 3,) has a point 7,, such that
Br Bn
ft)dt=2 f(t)dt
(since the values of the integral
Bn

£(t) dt

T

assume all values between 0 and ff” f(t)dt as T € [ap,Br])- So we

have
b
Sf( = lim / f(?)
a Tn~>0

And let’s note that if am(t) < f(t) < bm(t) on (0, 1] for two positive a
and b, and

b b b
,gm(t) dt = % < lim / m(t) dt + lim m(t) dt>
n Brn

anp—0 « Br—0

where the sequences (a,,) and (3,,) correspond to upper and lower limits
for the s-Lebesgue integral of m(t); then f(t) is s-Lebesgue integrable,
and

$7(t)dt = (hm/ £ dt + Jim, bf() i)

0

for the same sequences () and (8,). Indeed, for example,

b
lim / F(t) dt
a,—0 an

goes to the supremum since

/Tanf(t)dtgb/jnm(t)dt<5

for any small enough positive £ as 7 changes between 0 and «,.
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Definition 5. The s-Lebesgue integral of the s-Lebesgue integrable
on the (a,b) function is the number

SF(t) dt.

a

b
It is clear that, for the integrable on [a, b] functions, we have Sf(t) dt =
J? £(¢) dt, and the function

is continuous on a < 7 < b. Further, F(7) is right s-continuous at a
and left s-continuous at b.
For example,

b
§t72 sint 'dt =cosbl.

(It is easily seen that the function ¢ 2 sin¢~! is not Lebesgue integrable
in the normal sense).

Let’s note a few interesting properties of ws-continuous and s-
Lebesgue integrable functions. Here we consider the functions having
at most a countable and nowhere dense set of points of discontinuity.

1) ws-continuous on the [a, b] function “assumes” (tends to) all values
between f(a) and f(b): More exactly, for each real number A € f(a)
and B € f(by and C € (A, B) (or (B, A)) there exists a ¢ € (a,b) such
that f{c) > C, (that is, there exists the sequence {z,} C (a,b), such
that f(z,) = C).

2) If g(x) is ws-continuous and bounded, then g(z) is integrable and

f;g(:v) dx = C(b — a), where C € g(c) (or C = g(c), if ¢ is not a point
of discontinuity).

3) If g(z) is ws-continuous and bounded, then g(z) has a continuous
antiderivative defined by the formula G(x) = [ g(t) dt.
4) If f(t) is s-Lebesgue integrable on (a,b), then

(sr0 ) =s@)

almost everywhere.
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5) If f(¢) is s-Lebesgue integrable on (a,b), then the function

is right s-continuous at a and left s-continuous at b, and F' is bounded
and continuous on (a,b).

For the proof of the first property, it is enough to note that if
C ¢ {f(z)}, then the sets M, = {z : f is continuous and f(z) > C)}
and M_ = {z : f is continuous and f(z) < C'} have no common points,
but My UM_ US = [a,b], where S is a countable and nowhere dense
set; that is, we have the sequences {z,} C My and {y,} C M_ such
that lim x,, = limy,, = ¢. Then, by the definition of continuity or ws-
continuity at the point ¢, we have that f(¢) = C or f{c) > C. For the
proof of the second and third properties of the ws-continuous functions,
we need to apply Riemann criteria for the integrability of the function
(see, for example [12, Theorem 8.15 or 8.16]). The fourth property
can be obtained immediately, since f(t) is integrable on [a + §,b — €]
for any small enough § and €. The fifth property can be received from
the definition of s-Lebesgue integrability. (Note that ws-continuous
functions and s-Lebesgue integrable functions have a lot of elegant
properties and may play an important role in different fields. If the
process seems extreme, but “controllable” changes regularly, then the
corresponding mathematical model may have the ws-continuous and
s-Lebesgue integrable types of functions.)

In a similar manner, we can define an s-Lebesgue integrable on the
(a,b) function for the function having “controllable discontinuity” at
the finite or countable number points b,, € (a,b). For simplicity, let’s
consider just the case by < by < --- < b, < bpy1 <---, by = b. Now
we’ll define

b by © by
Sf(tydt = Sf(t)dt+ > S f(t)dt.
a 1 bk

a

That is, if f(t) is s-Lebesgue integrable on (a,b;) and (b, bg+1) for
every fixed k, and the summation on the righthand side is finite, then
we say that f(t) is s-Lebesgue integrable on (a,b). We’'ll use the term
Lebesgue-defect points of f(t) or simply L-defect points of f(t) for the
points of type by.
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The central problem of the theory of ordinary differential equations
may be phrased as follows:

Problem (Initial-value problem). Let D be a domain in the (t, )
plane, and suppose f is a real-valued function with domain D and (1,§)
is a given point in D. To find a function ¢ defined on a real interval I
such that (t,¢(t)) € D, and

and

This problem is denoted by

(2) x' = f(t z), z(r) =¢

and is equivalent to the integral equation
t
®) o) =€+ [ fls.a(s)ds

Clearly the integral in (3) makes sense for many functions f which
are not continuous. Let f be a real valued (not necessarily continuous)
function defined in some set D of the (¢, z) space. Then one can extend
the notion of the differential equation as follows:

Problem. 7o find a function ¢ defined on a real interval I such that
(t,¢(t)) € D, and

o'(t) = f(t,p(t)) forall tel,
except on a set of Lebesque measure zero.

If such an interval I and the function ¢ exist, then ¢ is said to be a
solution of (1) in the extended sense on I.
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Caratheodory [1] has proved the following quite general theorem
under the assumption that f is bounded by a Lebesgue integrable
function of ¢:

Theorem 1 (Caratheodory). Let f be defined on the rectangle
Rilt—7|<a, e —¢ <b,

and suppose that for all v € [§ — b,& 4+ b] it is measurable in t, and
fort € [t —a,T + a] it is continuous in x. If there exists a Lebesgue
integrable function m on the interval |t — 7| < a such that

(4) [f(t,2)| <m(t), ((t ) € R),

then there exists a solution ¢ of (2) in the extended sense on some
interval |t — 7| < B8, 8 > 0.

We’ll generalize this theorem to the case when f is not defined at the
point (7,£). We suppose that f is defined on the set

D:0<|t—7|<a, 0<|z—¢ <b

At the same time, we’ll generalize condition (4) as follows:

Let
(5) cama(t) < f(t,z) < coma(t), ((¢,2) € D)

for some integrable on [T — a, 7 — §] U [T + §, T + a] functions m;(¢), for
any small enough positive §, where ¢; and co are fixed real numbers.
It is clear that (5) is a strict extension of (4), for example, f(t,z) =
t~2cos(t™!) satisfies (5) but not (4) at some neighborhood of (0,0)
and m;(t) = (1/t?)cos(1/t) is integrable on [—a,—6] U [§,a] for any
positive §.

2. The generalization of Caratheodory’s theorem. We
begin with the definition of the bounded and continuous set on (a,b]
functions.

Let BC(4,) be a set of all bounded and continuous functions x(t) on
the set (a,b], with norm ||z(t)|| = sup;c (4,5 [#(t)]- It is clear that every
x(t) € BC(qp) is right s-continuous at a.
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Lemma. BC(4y) 1s complete.

Proof. Let {z,(t)} be a Cauchy sequence in BC(, ;. That is, for any
€ > 0, there exists an integer NV such that

[|zn(t) — zp(t)|| = sup [za(t) —ap(t)] <€
te(a,b]

for all n,p > N. For any positive 8, the sequence {z,(t)} considered
as a sequence in Cl,ys5p converges to a continuous function z(t) on
[a + 6,b] (since the set Cly5p is complete). That is, for any fixed
t € (a,b], the limiting function x(¢) is continuous at ¢ and therefore
is bounded on every interval [a + 6,b]. If z(t) is unbounded at any
right neighborhood of a, then there exists a sequence t, € (a,b] such
that |z(t;)| > r, t, — a+. Then there exists a positive integer n,
such that |z, (t-)] > r — 1 and so limp, 00 (SUPe(q p) [Tn, (t)]) — 0.
That is, for any fixed n, it is possible to find a number n, such that
SUDP¢e(a,5] |Tn, (£) = Tn, ()] > 1, and therefore the sequence {zy, (t)} is
not a Cauchy sequence. But the subsequence of every Cauchy sequence
must be a Cauchy sequence, and this contradiction shows that x(¢) is
bounded function.

In a similar manner, we can prove that the space BC(, 3 of continuous
and bounded functions on (a,b) is complete.

Now we generalize the initial value problem:
Problem A.. Let f(t,x) be defined on the set
D,:0<t—7<a, 0<|z—-¢ <0
Find a continuous function ¢ defined on (r,7 + B], with 8 < a, such

that (t,¢(t)) € Dy and ¢'(t) = f(t,¢(t)) for allt € (7,7 + ) except
on a set of Lebesgue measure zero, and o{T+) 3 &.

Theorem 2. Let f be defined on D, and suppose for all x €
[ — b,& + b] it is measurable in t, and for all t € (7,7 + a], it is
continuous in x. Let

eymy(t) < f(t,z) < cama(t)
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for two fized real numbers ¢y and ca, where m;(t) is s-Lebesgue inte-
grable on (7,7 + a] (with only L-defect point T)and satisfies the next
conditions

1) there exists a positive B < a such that

T+0
(6) alg/ mi(t)dt < ag, forall c>6>0, 7+05<p
T+

and —b < ciay < coag < b,
2)

T+0o
(7) lim. lim (‘/ ma(t) dt> 0.
=050 T+6

Then there exists a solution ¢ of the problem A in the extended sense
on some interval |t — 7| < B satisfying o(T+) > &.

Proof. First of all, let’s note that conditions 1), 2) are not very
strong and any integrable on the [r,7 + a] function in fact satisfies
these conditions. The function ¢~2sin(1/t) satisfies (6) and (7) but is
not integrable on (0,1], since

1
1
/t_QSin(l/t)dt:cosl—cosg, 0> 0.
)

(It is possible to prove another theorem on the existence of the solution
without condition 2), if this limit is a number d # 0. Then the initial
condition will be “perturbed” by d units, that is, instead of p(7+) > &,
we’ll have to take p(r+) 3 € +d.)

For the sake of simplicity, we take 7 = £ = 0. Since

B
‘/ mi(t) dt‘ < max{|a1], |as]} = a
)

for all 6 > 0, there exists a sequence (4,,), 0, — 0 such that the sequence

B
My :/ ml(t) dt
On
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B
is convergent and tends to .gmi(t) dt. We denote by

It is clear that (¢,cxM;(t)) € Dy, k=1,2,for 0 <t < 8 < a. We
define ¢;, j = 1,2,..., by

<p]-(t):0 0<t< g
(8) t ,8
p;(t) = lim : f(s,04(s)) ds 7 <t < B.

For any fixed j > 1, the first formula in (8) defines ¢; on (0, (8/4)] and,
since (¢,0) € D4 for 0 < ¢t < B/j, the second formula in (8) defines
©; as a continuous function on the interval 5/j < t < (28)/j. (Since

On
.g’mi(t) dt — 0 as n — oo, we have that the function ¢; is s-right
continuous at 3/j and 0 € ¢;(B/7).) Further, on this latter interval,

(9) c1 mi(s)ds < g;(t) < co ma(s) ds.

Then the second formula in (8) defines ¢; for (28)/5 < t < (36)/4,
and clearly ¢; satisfies (9) on this interval. Therefore, by induction,
(8) defines ¢; as a continuous function on (0, (/7)) U ((8/4),6]. If t1
and t5 are two points in the interval ((8/7), 8], then on account of (5)
and (8),

t2—(B/37)
pilta) ~ osltr) = [ O
t1— J
(10) t2—(B/37)
< cz/ ma(s)ds — 0,
t1—(B/7)

(regardless of j) for large enough j, where ¢ = max{|c1],|c2|}. Since
m;(t) is integrable on every interval [d,a], we have that M;(t) is
continuous for all ¢t € (0, a]. Thus, the set of functions {¢;(¢)} has the
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following properties: All ¢;(t) are continuous on [, 5] for any fixed,
small enough § > 0 and for large enough j, and

(11) c[M(tg - g) — M <t1 — g)] < @j(t2) — @j(t)

colu(o-) (o)

Let 0 > 0 be a fixed positive number and jj a positive integer such that
all functions {j,, @j,+1,.--} are continuous on [4,[] and B/jy < 6.
Then, on account of (11), we have that the set {p;(t)}, j > jo, is an
equicontinuous set on [§, 3]. Inequality (8) shows that the sequence
{g;(t)} is pointwise bounded. Consequently, it follows by the Ascoli
lemma [5, Section 1] that there exists a subsequence {;, (t)} which
converges uniformly on [§,3] to a continuous limit function ¢, as

k — oo. Now the sequence {9y, 2ef ©j, (t)} considered as a continuous
function on [§/2, 8] again has a subsequence {9y, }, which converges
uniformly to ¢2 on [6/2,5]. It is clear that ¢=2(t) = ¢1(t) for t € [6, ]
Continuing this process, we conclude that there exists a subsequence
{p;,.(t)}, which converges to a continuous function ¢(t) on (0,0].
Formula (6) implies that ¢(t) € BCg g. Since f(t,z) is continuous in
x, we have f(t, ;. (t)) = f(t,¢(t)) as r — oo, for any fixed t € (0, 5].
The dominated convergence theorem due to Lebesgue gives

lim f(s @, (s ds—/ f(s, (s

T™—>00 5

for any fixed d,, > 0. Then we have that

(12) lim 57(s,0;,()) ds = (s (s)) ds

r—oo 0
for any t € (0,3]. But

t

13)  e(t) = y@%xnw—Awwjm%w»w

where it is clear that the latter integral tends to zero as r — oo.
Therefore, using (12) and (13), it follows that

t

(14) plt) = §1(5,0(5)) ds.
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This relationship implies that ¢'(t9) = f(to,¢(to)) for almost all
0 < tg < B. Indeed, for any positive §,

-/ " Flsp(s)) ds

and since f(t,(t)) is measurable, by the Lebesgue theorem [11, The-
orem 6.2.1], we have that

¢'(t) = f(t,0(t)),
for all ¢ except on a set of Lebesgue measure zero. Let’s show that ¢(0)

“assumes” any value between

c—04§,—0

B = lim lim /5 f(s,p(s))ds

and

A= lim hm/ f(s, (s

c—0 6n—0

Since the sequence f; f(s,¢(s)) ds converges as n — 0o, the integrals

Om
/ F(s,0(s)) ds
On

approach zero as m — oo and for n > m.

Let C' be an arbitrary number from (A, B). For fixed large enough
m, we have that

Om
lim / f(s,0(8))ds = ¢(0m) — 0 as m — oo,
5n—>0 5n

that is, immediately we have 0 € [A, B] (and 0 € ¢(0)). Let’s say, for
simplicity, C > 0 and C < B. By the definition of an upper limit for
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any positive € < (B — (')/2, there exists a large enough m and A < d,

such that
A

f(s,0(s))ds = B+ex, |en| <&,
Ok
for some k£ > m. That is, as u changes from J; to A, values of the

integral
“w

f(s,(s)) ds

Ok

assume all values between 0 (= [, 5’:) and B + €, and so we can find \;

such that f;: f(s,(s))ds = C. Taking 8y, instead of §,, and continuing
this process, we can find 0, and A2 such that

Az

 (se(s)ds =G,

and so on. That is,

)\P
lim lim /5 f(s,9(s))ds =C = lim p(A,)

p—00 §,,—0 p—00

and so C' € ¢{0). The same can be established for C' < 0 and C' > A.
Thus, we have ¢(0) D (4, B), and since ¢(0) is a closed set, we conclude
that ¢(0) = [A4, B].

Remark 2. The last note allows us to rewrite the hypothesis of
Theorem 2 as follows: there exists a right s-continuous solution ¢ at
in the extended sense on some interval 0 < t — 7 < 3 satisfying

o

(15) @ (r+) = [{—i— lim lim i f(s,0(s))ds,

o—00%n—
oc—046,—0

¢ + Tm lim /5 " 15, 0(s)) ds

where the sequence (8,,) can be taken such that

t t

§f(s,0(s)) ds = lim . f(s,¢(s)) ds.
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It is clear that Theorem 2 can be established for the lefthand side of
7. Let us just write the similar problem and state the theorem:

Problem A_. Let f(t,x) be defined on the set

D_:-a<t-7<0, 0<|z—¢ <D

Find a continuous function ¢ defined on [r—a, 7) such that (¢, p(t)) €
D_ and ¢'(t) = f(¢, (t)) for all t € [T—a, T) except on a set of Lebesgue
measure zero and {t—) 3 &.

Theorem 3. Let f be defined on D_, and suppose for all x €
[€—b, £+D] it is measurable in t and for allt € [T+a,T) it is continuous
in x. Let

Cllﬁll(t) < f(t,l‘) < 0/27%2(t)7 ((t,l‘) € D—)a
for two fized real numbers ¢ and ¢, where m;(t) is s-Lebesque inte-

grable and

1) there exists a positive v < a such that

T—04
aag/ mi(t)dt <o), forall o>8>0,71—0>—y

—0

where —b < cjof < chah < b,
2)

/TT: 0 dtD —0.

Then there exists a solution ¢ of the problem A_ in the extended sense
on some interval |t — 7| < B satisfying o(T—) > &.

lim (h_m

oc—0 550

Now, combining Theorems 2 and 3, we can state a theorem on the
existence of s- and ws-continuous solutions of the differential equation.

Theorem 4. Let f be defined on

D:0<t—7|<a, 0<|z—&| <D
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and suppose that for all v € [ — b,€ + b] it is measurable in t and
for allt € [t —a,7) U (1,7 + a] it is continuous in x. Let f satisfy the
conditions of Theorems 2 and 3 on Dy and D_ (m;(t) and m;(t) satisfy
the conditions of Theorems 2 and 3, respectively). Then there exists a
ws-continuous solution of the equation ' = f(t,x) in the extended
sense on some interval |t — 7| < B satisfying p(T) > £.

It is clear that if corresponding upper and lower limits for the lefthand
side equal the upper and lower limits for the righthand side, respectively,
then ¢ s s-continuous and

o

p(r) = [E—i—hm lim f(s v(s)) ds, f-{-hm hm / f(s,p(s))ds|.

o—0 dn—0

The proof easily follows from (15) and from its analog for D_.

Example 1. Let us consider the “Cauchy problem”
' =a(t)r +b(t), =(0)=][-1,1]

where the function a(t) is continuous on [0,1] and b(¢) is continuous on

(0,1], b(0) = (—o0, 00), and

ot
b(s)ds = -1, lim Sb(s)ds = 1.

t—0 0

B
oln~+

Using Theorem 2 (if we define b(t) on the lefthand side of 0, then using
Theorems 3 and 4), we obtain a solution to this problem.

3. Uniqueness results. Now we introduce conditions which ensure
at most one Caratheodory type solution for the initial value problem.
If the function f(t,z) is continuous on the region

D:|t—r7|<a, |z —¢| <, a,b >0,

there are different types of uniqueness theorems of the solution ¢(¢)of
the equation z’ = f(t,z) satisfying ¢(7) = & We'll try to find an
analog of one of the more general theorems on the uniqueness of the
solution [5, Chapter 2, Section 2]:



EXISTENCE AND UNIQUENESS RESULTS FOR ODES 1825

Theorem 5. Let 9(t,r) be a nonnegative function defined on
S={0<t<a, r>0,a>0},

which is Lebesgue measurable in t for a fized v and continuously non-
decreasing in r for a fized t. Further, for every bounded subset B of the
set S, let there exist a function kp defined on 0 < t < a such that

(16) Y(t,7) < rp(t), (tr)€ B,

and for which kg is Lebesgue integrable on v < t < a for every v > 0.
Suppose that, for each a, 0 < a < a, the identically zero function is
the only absolutely continuous function on 0 <t < «, which satisfies

(17) p'(t) = v(t, p(t))

almost everywhere on 0 < t < «, and such that p', (0) exists, and

p(0) = p'.(0) = 0.

Let f(t,x) be continuous on D : |t — 7| < a, |z — &| < b, and satisfy
there, for t # T,

(18) [f(t,2) = [t )| < P(lt =7, |z —yl).

Then there exists at most one solution (t) of the equation x'(t) =
f(t,2(t)) satisfying (1) = ¢.

For the proof, see [5, Chapter 2, Section 2, Theorem 2.2].

We'll try to get an analog of this theorem for the case when f is not
continuous at the point (7,¢) (or undefined at this point-singular case)
and when the functions kp(t) are s-Lebesgue integrable. Conditions
(16) and (18) also will be weakened.

Theorem 6. Let f(t,z) be s-continuous with respect to t for any
fized x on Dy : 0 < t—171 < a, |x — & < b, with discontinuities just
at the points {T + 8, }n=12,., 6n > 0, 8, > dpy1 — 0. Let ¢y(t,7),
Il =1,2, be a function defined on

S={0<t<a, r>0}, a>0,
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which is Lebesgue measurable in t for fired v and continuous in r for
fized t. Further, for every bounded subset B of the set S, let there exist
functions ky; defined on 0 < t < a such that

crkin(t) < it r) < cpkia(t), (t,r) € B,

l = 1,2, and for which kj; ts s-Lebesgue integrable on v < t < a for
every v > 0, and has Lebesque-defect points just at the points {6,} and
satisfies conditions

I " k(b ds|) < b
(19) 513})(51? S ki(t) SD <
and
rto
(20) lim lim (‘/ Ki(t) dt‘) =0.
e=0550 Y435

Suppose that, for each a, 0 < a < a, the identically zero function is
the only s-continuous function on 0 <t < a which satisfies

p'(t) = ult, p(t))
almost everywhere on 0 <t < a and p(0) > 0.
Let f(t,z) satisfy |t — €| <bonD;:0<t—7<a, fort#r,

¢1(t—7'793—y) < f(taw)_f(tay) §¢2(t—77$—y)

or

ba(t =72 —y) < f(t,2) — f(t,y) Sh(t -T2 —y).

Then there exists at most one s-continuous solution ¢(t) on (1,7 + a]
of the equation '(t) = f(t,z(t)) satisfying o(T+) = [§ — 201, + 2],
where 31 and o are fized positive numbers. (That is, there exists at
most one s-continuous function p(t) such that

o(t) = S£(s,0(5)) ds,

almost everywhere and ¢(T+) = [ — 31,£ + 353].)
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Proof. 1t will be assumed that 7 = £ = 0 for simplicity.

Suppose that there are two differentiable almost everywhere and s-
continuous solutions ¢; and @2 on (0, a] satisfying

(21) pi(m) =[§ =2, E+ ], j=1,2.

Let ¢1(t) — pa2(t) > 0 at some fixed o, 0 < ¢ < a, and let p(t) be the
function defined by

p(t) = 1(t) —¢2(t), 0<t<a.

(That is, o is not a Lebesgue defect point and p(o) > 0.) Let 9 (t —
me—y) < f(t,z) — f(t,y) < Y2(t — 7,2 —y) at some small enough left
neighborhood (o — ¢, 0) of 0. From Theorem 3 it follows that through
the point (o, p(c)) there exists a function p satisfying the equation

p'(t) = a(t, p(t))

on some interval to the left of o. Let’s show that there exists at least
one solution, say p(t) again, such that

(22) p(t) < p(t)

almost everywhere, as far to the left of o as p exists. First of all, let’s
consider the problem of finding a solution to

p(t) =va(t,p(t))+e, 0<e<l.

For every such ¢, there exists at least one solution p. of this problem
on some interval o —a < t < ¢ (through the point (o, p(c))). As far to
the left of o as p. exists, it satisfies the inequality

pe(t) < p(t);

otherwise, there would exist a point ¢ to the left of o, say (, where

min{pc(C-)} = min{p(¢_)} (or simply p(¢) = p(¢)) and pc(t) > p(t)
for t < ¢ (o = ¢ is not excluded). That is, there exists a sequence ()

such that pa(gn) _p(Cn) -0, Cn < Cn+17 Cn - ( and min{pa<47>} =
min{p(¢_)}. Now, since ¢; and @2 are both solutions

Cn
SOJ(C‘VL) = *gf(ta Saj(t)) dta .7 = ]-7 25
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and so

n

p(Gn) = S1f (8 e1(8)) = f(5,p2(t))]dE, 5 =1,2,

and for small enough A > 0,

p(C B =5 [ftor(®) ~ ftpa)]dr, §=1,2

Now it follows by subtraction that

29 plG) ~p(C-h) = B 7o) - Flteale))] e

< 8 ualt.p(t)) dt
Cn
¢—h
and similarly
Cn
PG =P =) 2 [ e p@)

(since k; has just a finite number Lebesgue-defect points on v < ¢t < a
for every v > 0, h, and (, can be taken such that the interval
[ — h,(,] contains no point from the set of Lebesgue-defect points
from the sequence (d,)). From the definition of p., one has, since

pe(Cn) — p(¢n) = 0, p(Cn) > p(Cn), the lefthand derivative p’ ({,)
exists, and

p’,((n) = QDII(Cn) - ‘Pg((n)
= f(Gnr1(Cn)) = £(Cnyp2(Cn))
< Y2(Cnyp(Cn)) < B2(Cny pe(Cn)) + & = pL(Cn)-

Therefore, for h sufficiently small,

pe(¢ —h) <p(¢—h),



EXISTENCE AND UNIQUENESS RESULTS FOR ODES 1829

which contradicts the definition of ¢. In the same way (taking p instead
of p) we have that

and so
lim (sup p(t)) < p(t)

for every solution of p'(t) = ¥a(t, p(t)). Since

p(9) = pelt) = §lwalt, pe(8)) + €] dt = Sua(t. pe(®) dt + (7 1)

ono—a<t<o,the set {p.} is an equicontinuous uniformly bounded
set of functions on some small left neighborhood (¢ — ag,o) of o.
Therefore, there exists a subsequence {p.,} that tends to a function
p, where p satisfies p'(t) = ¥2(t, p(t)). That is, there exists at least one
solution p(t) to p'(t) = ¥=2(t, p(t)) such that

p(t) < p(t).

Now p(t) > 0on 0 < ¢t < o, as far as it exists. Otherwise, p(6) =0
for some &, 0 < & < o, and the function defined by
() = 0
pt) = p(t)

would be a function on 0 < t < ¢ not identically zero, which satisfies
(20). This contradicts the hypothesis of the theorem. Therefore,

o
AN
q @

t
t

Qv
IAIA

(24) 0 < p(t) < p(t)

almost everywhere, as far to the left of o as p exists. (That is, p(t) >0
and 1/11(15—771”—?/) < f(t,il?) _f(tvy) < ¢2(t—T,I—y) on (O’U)') But,
by the application of Theorem 4, it follows that p can be continued
as a solution, call it p again, on the whole interval 0 < ¢ < o. (If
0 — «p is the Lebesgue defect point, again at the lefthand side of this
point there exists a “normal” point ¢’ such that |p(¢’)| > 0....) Let’s
show that p(0) 3 0. Otherwise, ¢;1(t) — p2(t) > d > 0 in some right
neighborhood of 0. Since ¢1(t) and ¢2(t) are s-continuous, we have
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that ¢1(t) — p2(t) > d or v2(t) — ¢1(t) > d in some interval (0, §), say
©1(t) — p2(t) > d. Then it is clear that

min{p; (0+)} > min{p, (0+)} + d,

and this contradicts the condition ¢;(0+) = [—2a,20), j = 1,2. That
is, we have p(0+) > 0, and so p(0+) > 0. This contradicts the
hypothesis of the theorem, for p is an s-continuous solution of (17)
but is not identically zero. Therefore, p(c) # 0 for any o, 0 < § < a,
almost everywhere, and this proves the theorem.

Example 2. The problem

1
a:'::c+t—2sin?—cos?, z'(0) 30

has a unique solution, z = cos1/t.

Here we may take ¢; and 12 as 91 (t,7) = ¥a(t,7) = r, and it is clear
that ¢1(t,z — y) = f(t,z) — f(t,y) = ¢¥a2(t, — y). The role of the
functions ky;(t) may play the constant functions. (The problem 7’ = r,
r(0) = 0 has a unique solution r = 0.)

Note that the ideas developed here can be applied to prove different
types of generalization theorems in terms of the reciprocal problem
[3, 4]. (That is, the roles of t and = sometimes may be interchanged
and restriction conditions of f(¢,x) may be phrased, for example, as

it —p,z =) < ft,2) — f(p,x) < ot —pyz — 1))

4. Systems of differential equations and nth order equations.
All the theorems in Section 2 are valid for the system of differential
equations

25) e

T = folt,z1,T2,. .. ,Tn).

Let’s formulate the problem in case of systems:

Problem S+. Let fx(t,x1,...,2,) be defined on the set

D,:0<t—7<a, 0§|xk—£k|§bk,
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k=1,2,... ,n. Find the continuous functions p1,p2,... @, defined
on the set (1,7 + a] such that (¢, p1(t), p2(t),... ,on(t)) € Dy, and

‘P;c(t) = fk(tv‘Pl(t)’<P2(t)v e ’<Pn(t)) forall te (T’T+ a’)a

except on a set of Lebesgue measure zero, and ¢y (t+) > &, k =
1,2,...,n.

The problem S— for the lefthand side of 7 can be formulated similarly.

Theorem 7. Let fr, k=1,2,... ,n, be defined on D, and suppose
it is measurable in t (for fived x1, 2, ... ,x,), continuous in xj. Let
Cklmkl(t) < fk(t7 L1, T2y - 7mn) < ckak2(t)7
for two fized real numbers cky and cpa, where my;(t) satisfies the newt
conditions

1) functions my;(t) are integrable on the set § <t — 1 < a for any
positive § < a,

2) there exists a positive v < a such that
T+o
aklg/ mgi(t) dt < age, foral oc>6>0, 7+0<n,
T+
and —by < cprary < cpoape < bg, k=1,2,...,n.
3)

T+0o
lim ( lim ‘ / My (t) dt‘ =0.
o—0 <m T+9 )

Then there exists a solution ¢ = (¢1,p2,-.. ,on) of the problem S, in
the extended sense on some interval |t — 7| < B satisfying or(T+) 3 &k.

We can state a similar theorem for the case D_ and, combining these
theorems, we can state the theorem on the existence of the s- or ws-
continuous solution. Let’s just write an analog of the theorem

Theorem 8. Let fi(t,z1,...,2,) be defined on

D:0<t—7|<a, 0<]|zg—&]<bg,
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and suppose it is measurable in t, continuous in xx, k = 1,2,... ,n.

Let fr(t,z1,... ,2,) satisfy the conditions of Theorem 7 on D, and

similar conditions on D_ : —a <t —7 <0, 0 < |z — &| < bg:
eimik(t) < fe(t, o1, o, ... ,2pn) < Cpomar(t), ((t,z) €D.)

=8
agﬂg/ mii(t)dt < ajy, 0>86>0, T—0>—7,

—0

where —by, < ¢ja, < oty < bp, k=1,2,...,n, and
T—4
lim (h_m‘/ i () dtD = 0.
=03\ 520 T—0
Then there exists a ws-continuous function at (T,&1,8€2,. .. , &) solution
© = (1,92, ,0n) of the system of equations (25) in the extended
sense on some interval [t—7| < B such that pr(T) 3 &, k=1,2,... ,n.

Additionally, we can write conditions for the s-continuity of the
functions @g.

Now let’s consider the nth order equation
d"z dx d"lx
2 —=flte,—, ..., ——
(26) o f< % ,dtn_l)

where f is a real continuous function defined in a domain D of real
(t,21,...x,) space. Since equation (26) can be reduced to the theory
of a system of n first order differential equations

ZL':L = f(t,il,'l, . ,:Un),

the analog of the existence theorem for the nth order equation can be
obtained in a similar way:

Theorem 9. Consider the differential equation

@ f,  de dla
dtn T
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where f satisfies the next conditions on

D, ={r<t<a, [t—&| <b, |2/ —&]
<bg,..., |z Y ¢, <b,} Cc R,

a) f is measurable in t (for fived z1,xa,... ,2,), continuous in xy.

b) There exists a function m;(t) integrable on the set T+ <t < a
for any positive small enough § such that

cima(t) < f(t,z1,22,... ,2n) < coma(t),
(t,z1,22,... ,2,) € DY),

for two fized real numbers c1 and c2.

c) There exists a positive v < a such that

T+o
alg/ mi(t)dt < ag, forall 0>6§>0, 74+0<7
T+6§

and —b, < cray < caay < by,.
d)

T+0
lim, (‘lim ‘/ mi(t) dt‘) — 0.
=0 \570 ! Jrts

Conclusion. There exists a solution ¢ of equation (26) defined on
some interval (7,7 + (], such that

o(r) =&1,..., 0" () = €nr, 0" (1) 3 L.

Similarly, we can state theorems on the existence of solutions ¢ such
that o(*~1) is s- or ws-continuous at 7. For example, if f satisfies
similar conditions on the set D = {a’ < t < 7, |z — &| < by,
|o" — & < boy..n, |27 — ¢, < b,} € R*!, and there exists a
majoring function m!(t) satisfying similar conditions, then ¢ will be
ws-continuous at 7.

Again we can write conditions for the s-continuity of function ¢ at 7.

The corresponding upper and lower limits for the lefthand side must
be equal to the upper and lower limits for the righthand side.
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Example 3. Let’s consider the motion of a mass on a vibrating
spring. If there exists an external force F'(t) acting proportionally to
(1/t?)sin(1/t) as t tends to 0, (that is, F(t) is an impulsive type of
force and becomes maximum over the given time sequence), then we
have a differential equation of the form

mz" + vz’ + kx = F(t).

Since F(t) is “quasi” integrable about point 0, that is, there exist
integrals [ F(t) dt for any positive § > 0 and

‘ / Ft) dt‘ <
5
we have that the problem
mz" +~z' +kx=F(), z(0)=0, z'(0)>50

has a right s-continuous at the 0 solution. (More exactly, z'(0) = [a, b],
where

t
F(t)dt, b=lim SF(t)dt.)
t—00

S

I

E.
oln~

Example 4. This example demonstrates that, even in the solutions
of traditional differential equations, the scope of problems can be
improved. Consider the “initial value problem” corresponding to the
FEuler equation

2" —ta' + 20 =0, x(0)=0, z'(0)=[-V2,V2.

It is not difficult to show that z = tsin(Int) (and z = tcos(Int))
satisfies this initial value problem. But, if we use the substitution
t = e“, then we get an equation with constant coefficients

" =2z + 20 =0, (—00) =0, z'(—00)=[-V2,V?2]
which has no solution, since the general solution of the last problem is
r = (Cre*cosu + Cre*sinu

and ' — 0 as u — —oo. That is, z'(—00) = 0 # [—v/2,V/2].
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