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A NOTE ON /3D-D 

S. BROVERMAN AND A. DOW 

A B S T R A C T . Let U(K) be the space of ultrafilters on the infinite 
regular cardinal K. and let SL* be the generalization of "Solovay's 
Lemma" SLu; to K. Our main result is to show that, assuming SL^, 
every cellular family of fewer than 2K open subsets of U(K) has 
a C*-embedded selection. Further results are provided which are 
intended to exhibit the need for assuming SL* in the above result. 

1. Introduction. In this paper we present some results concerning 
the C*-€mbedding of subsets of ßD-D. ßD-D (also denoted D*) de
notes the remainder of the Cech-Stone compactification of the discrete 
space Z), and a subset is said to be C*-embedded if every bounded con
tinuous real-valued function on the subspace can be extended to one 
on the entire space. For backgound on C*-embedding and Cech-Stone 
compactifications the reader is referred to [5,9]. 

There are many known related results. Before stating some of the 
known results, we introduce some notation. 

DEFINITION. 

(i) A cellular family of subsets of a space is a family, any two mem
bers of which are pairwise disjoint. 

(ii) A clopen subset is one that is both closed and open. 
(iii) If Ac is an infinite cardinal, then a uniform ultrafilter on a set of 

size Ac is an ultrafilter all of whose members has cardinality AC. Given a 
discrete set D of size /c, the subspace of ßD-D consisting of the imiform 
ultrafilters is denoted f/(/c). Thus, U(u) = ßN-N. 

(iv) If Ac is an infinite cardinal, then Solovay's Lemma for cardinal 
Ac(denoted SL«) is the following statement: Suppose A is an infinite 
cardinal for which A < 2*. Let {Fi}i<:\ and {Gj}j<\ be collections of 
subsets of Ac such that if j < AC and S is a subset of AC for which |S | < AC, 
then \Gj-Uizs Fi\ = «• Then there is a set B C AC such that, for any 
i < AC, \B n Fi\ < AC and \B n G{\ = AC. 

Spaces of the form U(K) have been studied in detail in [3]. Solovay's 
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Lemma (SL^-which is a consequence of Martin's Axiom -MA) is dis
cussed along with Martin's Axiom in [6,7,10]. 

We now list several known results concerning the C* -embedding in 
U(K) of unions of clopen subsets: 

(1) If K, is a regular cardinal, then any union of K, clopen subsets of 
U{K) is C*-*mbedded in U{K) [3]; 

(2) If Ac is a regular cardinal, then it is consistent that U(K) has a 
pairwise disjoint family of AC+ non-empty clopen subsets whose union is 
C*-embedded. However, if MA is true, then U(u) has no such family 
that is uncountable [8]; 

(3) In U(u>) there is (absolutely) a family of u)\ pairwise disjoint 
non-empty clopen subsets whose union is not C*-embedded - this can 
be found as an exercise in [6]; and 

(4) If K is an infinite cardinal with cofinality A, then the union of À 
pairwise disjoint clopen subsets of U(K) is C*-embedded - the proof is 
similar to that of (1) above. 

Known results concerning the C*-embedding in U(K) of discrete sub
sets are: 

(1) 2K < 2* implies that no discrete subset of size /c+ is C*-embedded 
in U(K) - this follows from a simple cardinality argument concerning 
numbers of continuous real-valued functions on U(K): 

(2) If K is any infinite cardinal, then there is a subset D C U(K) such 
that D is discrete, \D\ = u\ and D is not C*-embedded in U(K) [2]; 

(3) If K < A and 2* = 2A then /3/c can be mapped continuously 
onto {0, l } 2 . Since {0, l } 2 contains /?A, and hence a C*--embedded 
discrete subset of cardinality A, it follows that /?/c does also. Finally, 
since ßn can be embedded in E/(/c), it follows that U(K) contains a 
C*-embedded discrete subset of cardinality A. Thus, 2K = 2A if and 
only if U(K) contains a discrete C*-embedded subset of cardinality A. 

For the final result that we state, we require the following definition. 
Given the pairwise disjoint family of clopen subsets of U(K), {Aa : a < 
A}, the set D = {da : a < A} is called a selection for {Aa : a < A} if, 
for each a < A, \D n Aa\ = 1. 

(4) From (1) it follows that if 2* < 2K + , then U(K) has no 
C*-embedded selections of cardinality AC"1". However, in t/(/c), every 
selection of size cf(/c) is C*-embedded [3] ( in fact, in U(u) every count
able subset is C*-embedded [9]). 

The main results of this paper concern the relationship between Solo-
vay's Lemma and the C*-€mbedding of selections from cellular families 
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of clopen sets in U(K). 

2. The main results. We begin this section with a result linking 
Solovay's Lemma and C*-embedding of selections from cellular families 
in U{K). 

THEOREM 2.1. Suppose that K is an infinite regular cardinal number, 
and assume that SLK is true. If X is a cardinal, K, < X and X less than 
2K, and if {Ai : i < X} is a cellular family of non-empty clopen subsets 
of U(K), then there is a selection D for {Ai : i < X) such that D is 
C*-embedded in U(K). 

PROOF. Let {Fi : i < X} be the family of subsets of the discrete space 
of size K such that, for each i < A,cZjglc(Ft) fif/(/c) = Ai. Since the AS s 
are pairwise disjoint, it follows that any pair of F^s intersect in a set 
of size less than K. 

Let {Kt}t<2\ be an enumeration of all subsets of À. It was shown 
in [7], that under the assumed conditions, we have 2A = 2*. We will 
define by induction on 2A, for each t < 2A, a sequence {S*}Ì<A

 s u c n 

that: 
(i) For each t < 2A and i < A, B\ is a family of subsets of K closed 

under finite intersections (i.e., if S C B\ and S is finite, then C\S G S/) 
and every member of B\ has cardinality AC; 

(ii) If i Ï j and C G S/, D G B), then \C D D\ < /c; 
(iii) If i < X and t < u < 2A, then B\ C St

u; 
(iv) For each i < X and t < 2A, |S / | < 2A. 

For each i < A, let Sf = {Fi}. Suppose that t < 2A and {Bt
s}l<x,s<t 

has been defined satisfying conditions (i)-(iv). We define sets Ut and Vt 

as follows: Ut = U{JBf :ieKus< t} and Vt = U{Bf :i(£Kus< t). 
If C G lit and D G Vt, then |C fi Z?| < /c. Since 2^ = 2A is a regular 
cardinal (this is a consequence of SL* and Konig's Theorem), since 
|A - Kt\ < 2*, \Kt\ < 2", |t| < 2*, and for each t < A, s < t, \B?\ < 2*, 
it follows that \Ut\ < 2" and \Vt\ < 2 \ Thus, Zit and V« satisfy the 
requirements of SLK, and it follows that there is a set Xt C /c such that 
for each C G Zit, |X t H C\ = /c, and for each £> G Vt, |X t Ci D\ < K. If 
t ^ üft, we define B\ to be B/ = Us<tBf. If f € üft, we define B\ to 
be {Xt fi C : C G Us< tB*} U U s < t B/ . The family {Bl}l<K satisfies (i)-
(iv). This completes the induction, and provides the desired sequence 
of families of subsets of /c, {B/}i<A,t<2"-

Since, for each i < A,Ut<2«S' is a family of subsets of K such 
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that any finite subfamily intersects in a set of size /c, it follows that 
n{cl/j/c(C) : C G U*<2"B/} H U(K) = Gi is a non-empty, compact 
subset of U(K) contained in A{. We show that any selection for the 
family {Gi : i < X} is C*-embedded in U(K). 

Suppose that D = {di : i < X} is a selection for the GVs. Then D is 
a discrete subset of U{K). In order to show that D is C*-embedded in 
C/(/c), since D is discrete, then Urysohn Extension Theorem for compact 
zero-dimensional spaces shows that it is sufficient to verify that, for 
any subset Z C D, there is a clopen set M = U(K) D c\ßK(M0) in 
U{K) such that Z C M and (D - Z) fl M = </>. But since Z C D, 
there is a £ < 2A = 2* such that Z = {dt : i 6 i f t } , and hence 
D — Z = {d,; : i' $. Kt}. It follows from the construction of the family 
{BD that if i e Ku then d C C/(/c) n dßK(Xt), and if « g /ft, then 
Gi D C/(/c) n dßK{Xt) = (j>. Therefore, with M0 = Xt,Z C M and 
(£> - Z) fl M = 0, showing that £> is C*-embedded in f/(/c). This 
completes the proof of the theorem. 

There are two comments to make on Theorem 2.1. The union of the 
C*-€mbedded selections for the family {Ai}i<\ is dense in U^xAi. 
Also, note that when Solovay's Lemma was applied at stage t(< 2A) 
to the families Ut and Vti we had that if C E Ut and D G Vt then 
| C n / } | < /c, whereas Solovay's Lemma only requires that \C — US| = K 
for C G Ut and S C Vt with | 5 | < /c. 

In contrast to Theorem 2.1, it can be shown that it is consistent with 
the negation of SLK for K regular that every cellular family of less than 
2K non-empty clopen subsets of U(K) has a C*-embedded selection. 
For the case K = CÜ, the comments above show that we used Solovay's 
Lemma at stage t to find a set Xt such that, for each C G Ut,Xf C\C* is 
non-empty and, for each D G VtìD*-X^ is non-empty. In the model 
obtained by adding more than 2W Cohen reals, Solovay's Lemma is 
destroyed. However, given fewer than 2W clopen subsets of a;*, there 
is a Cohen real generic over this family, satisfying the requirements of 

xt. 
The requirement in Theorem 2.1 that the family of clopen sets must 

be pairwise disjoint can be dropped subject to a cardinality restriction 
on A. This is shown by means of a "disjoint refinement" result. This 
next result also follows easily from 1.5 of [2]. 

THEOREM 2.2. If X+ < C(U(K)) (cellularity number O}U{K)), and 
if {Ai : i < X} is a family of clopen subsets o/C/(/c), then U{K) has a 
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cellular family of non-empty clopen subsets {Bi : i < X} such that, for 
each i < \,Bi C Ai (i.e., the B{ 's form a pairwise disjoint refinement 
of the Ai 's). 

PROOF. Since AQ is non-empty and clopen in U(K), it is homeomor-
phic to f/(/c), and hence AQ admits a family of A+ pairwise disjoint 
non-empty clopen subsets, say {Boj : j < A+ = IQ}. Let j ^ be the 
first j < A+ such that B0tjo D Ax ^ <\>. Let {B\j : j < A+ = / / } be 
a pairwise disjoint family of non-empty clopen subsets of B0jo D A\ 
and let IQ = X*-{Ji}. If none of the i?o,y's meet A\ in a non-empty 
set, let the # i , / s be a pairwise disjoint family of subsets of Ai, and let 
IQ = A+. In either case, any B0j(j e IQ) is disjoint from any Bij. Our 
objective is to inductively find, for each t < A, a family of A+ pairwise 
disjoint clopen subsets of At such that any member of the family found 
for to will be disjoint from any member of the family found for t\. 

Suppose that t < A, and suppose that, for each s < t and r < s there 
is a family {Br 3 : j E I?} such that 

( i ) | / ; i = A+: 
(ii) For r fixed, the Brj's form a pairwise disjoint family of subsets 

(iii) If sx < s2 < t and'r is fixed, then Jr
Sl D 7r

S2 and |/ r
Sl-/ r

S2 | < A; 
and 

(iv) If ri < r2 < s < t, then any Brij is disjoint from any BT2^>. 
We wish to construct the family of Btj's and the sets I\ for all r < t. 
Let r0 be the first r < t such that some Bro j meets At in a non-empty 
set. Let this index j be j$Q. Let {Btj : j < A+ = / ' } be a pairwise 
disjoint family of non-empty clopen subsets of Brojt D Au and let 
Jtro = nr0<*<t/;o-{#o}- For all r ? r0, let J* = n r<J<,/ r

s . If BrJ is 
disjoint from A* for all r < t, and j , then let the Btj's be any pair-
wise disjoint family of A+ non-empty clopen subsets of At. Also, let 
II = r\r<s<tl? for each r < t and I\ = A+. In either case it can be 
clearly seen that the families {Brj : j G I?} for r < s < £ (extended to 
s = £) satisfy conditions (i) to (iv) above. Therefore we can construct 
by induction sets /* for r < t < A, satisfying conditions (i) to (iv) 
above. Since, for each r < A, C\r<t<\Il ¥" 4> ( m fact the intersection has 
cardinality A+), let ir be any element of that intersection. Then the 
family {Bir : r < A} is the disjoint refinement of the A^s mentioned in 
the statement of this theorem. 

Theorems 2.1 and 2.2 relate to the C*-embedding of selections 
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for families of clopen subsets of U{K). Relating to the question of 
G*-embedding of unions of clopen subsets of U(K), it is shown in [4] 
that, for any singular cardinal /c, U(K) contains a family of fewer than 
K pairwise disjoint clopen subsets whose union is not G*-embedded 
in U(K). This contrasts with what was called known result (1) in the 
introduction, which pointed out that if K is regular then the union of 
K clopen subsets of U(K) is G*-embedded in U(K). 

For completeness we present a proof of the result obtained in [4] for 
the case K = CJW. Let us write u;w as a disjoint union UÌ<WJ4Ì, where, 
for each i < u>, \A{\ = u>{. Let F be any subset of u. Define GF to be 
the subset of ww : GF = UÌZFAÌ. AS pointed out in the introduction to 
this paper (known result (3) concerning the G*-embedding of unions of 
clopen sets) it is an exercise of [6] to show that U{UJ) has a family of u)\ 
disjoint clopen subsets whose union is not G*-embedded. Let this fam
ily be {K{ : i < UJI}. For each i <wi,Ki is of the form Ki = clp^Fi-uj. 
The family G — {clß(JJuGFt C\U(UJU) : i < u>i} = {KQÌ : i < ^ i } , a pair
wise disjoint family of non-empty clopen subsets of U(u)u) (since the 
Ki's are pairwise disjoint, the F»'s have pairwise finite intersections, and 
hence the GFÌ 'S have pairwise intersections with cardinality strictly less 
than ÜJU). We claim that the union of the members of the family G 
is not C*-embedded in C/"(u;w). This can be seen in the following way. 
Suppose that UG is C*-embedded in U(uu). Let M be any subset of 
CUI- We will show that U{K{ : i G M} and U{Ki : i G UJ\ — M) can 
be separated by a clopen subset of U(w). Since UG is G*-embedded 
in £/(u;w), it follows that there is a set W C Mu such that if i € M, 
then \GFi - W\ < u>u and if i & M, then \GFi H W\ < ww. Define 
the set UM C U as follows: n G UM if and only if \An —W\ < un. 
Then, for each i G M, Fi - UM is finite, and, for each i £ M, UM H F» 
is finite. Thus, CIQ^UM contains U{Kt; : i G M} and is disjoint from 
ö{K{ : i £ M}. Since this is true for any M C ui, it implies that 
U{K{ : i < CJI} is G*-embedded in ßu, which is a contradiction. Thus, 
UG cannot be G*-embedded in Ufa^). 

We complete this section of the paper by posing the following ques
tion: is it true in Theorem 2.1, that any selection for the family of A^s 
is G*-embedded in U(K)? 

In the next section we address a problem which should, perhaps, be 
discussed in conjunction with Theorem 2.1. However, several results 
are obtained that are interesting in their own right, and it seems ap
propriate to mention them in a distinct part of this paper. 
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3. Clopen families for which no selections are C*-embed
ded. In contrast to Theorem 2.1, it can be shown that it is consistent 
with 2W = 2Wl that there is a family of u\ pairwise disjoint non-empty 
clopen subsets of Ufa for which no selection is C*-embedded. It 
follows from Exercise AIO on page 289 of [6] that it is consistent with 
2W = 2Wl that there is a P-point x, with character u\ in Ufa. This 
point has, therefore, a descending neighborhood base of clopen sets of 
cardinality CJI, say {Bi : i < ui}. For each i < CUI, let Ax — B{- Bi+\. 
Then no selection for the A^s can be C*-embedded in Ufa (any 
selection for the Ai s converges to x). 

In the remainder of this section we are concerned with the following 
question: is it consistent with 2Wl = 2"2 that there is a sequence of UJ2 

pairwise disjoint clopen subsets of U(u\) such that no selection for this 
sequence is C*-embedded in Ufa)? This is the generalization to ui 
of the result discussed in the preceding paragraph. 

More specifically, we consider the question: is there a point x G Ufa) 
and a sequence of clopen sets {Ai : i < u^} in U(u\) such that if, for 
each i < u;2, Xi ^ yi and {x^, t/J C A t, then x G c\{xi : i < u^} C\c\{yi : 
i < u;2}? 

It is interesting to note that we cannot have a situation exactly 
analogous to that for U(u). Indeed, in U(u) we were able to obtain 
a point x E U{u>) and clopen sets {Ai : i < UJI} such that the A^s 
were disjoint and each neighborhood of x contained all but countably 
many of the A^s. We will show that this behaviour is not exhibited by 
Ufa). 

LEMMA 3.1. There is a family {Bn : n < u>} of clopen subsets of 
U(u>i) such that, for each non-empty clopen subset B ofU(ui), there 
is ann<(jj such that Bn n B ^ <j) and B- Bn ^ 0 (i.e., the Bn 's form 
a splitting family; the minimum size of a splitting family for U(u) is 
uj\, and it varies with the model assumed). 

PROOF. Let / be a one-to-one map of UJ\ into the unit interval. Let 
B = {/*~~([r, s\) : r, s rational numbers }, and let {Bn : n < UJ} be an 
enumeration of { c l / ^ B D Ufa) : B G B}. 

COROLLARY 3.2. U(<JJ\) can be partitioned into T3 nowhere dense 
zero sets. Furthermore, if the reals contain a Luzin set, then countably 
many of these zero sets may have dense union in U(uj\). 
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PROOF. The map / in the proof of Lemma 3.1 can be extended to 
a continuous map from ßu\ to the unit interval. The restriction to 
U(u{), say g, of this extension is a continuous map. The range of g is 
a separable space, and U(u\) = U{g*~(x) : x G g[U(ui)}}. It suffices to 
show that g*~{x) is nowhere dense for each x in the unit interval. 

If int(<7*~(x)) 7̂  </>, then there is set A C ui such that \A\ = u\ and 
clßUJlAr\U(uJi) C g*~(x). This is impossible since Bn splits this set for 
some n < u. 

If the unit interval contains a Luzin set, say X, then / can be chosen 
to map one-to-one into X. In this case, if S is a countable dense subset 
of X, then U3es9^~(s) is dense in U(u\). Indeed, if A is an uncountable 
subset of a;i, then intx(/[^]) i1 <t> and therefore there is an s G S such 
that s is a complete accumulation point of f[A]. It follows that if we 
extend {/*~[(s — £, s + £)] : n < ÜJ} to a uniform ultrafilter on CJI, say 
p, then p G c\ßUlAn g*~{s). 

This result is again in contrast to the situation for U(OJ). First of all, 
each zero set of U(UJ) has dense interior and any countable union of 
nowhere dense subsets of U(u>) is again nowhere dense. Furthermore, 
it has been shown in [1] that MA implies that fewer than 2^ nowhere 
dense subsets of U(u) has nowhere dense union, and that U(u) cannot 
be covered by 2W nowhere dense subsets. 

PROPOSITION 3.3. If p e U(ui) and {Ai : % < u2} is a family of 
pairwise disjoint clopen subsets ofU{u)\), then, for some neighborhood 
U of p, \{i < uj2 : Ai - U / <j)}\ = u)2. 

PROOF. Let {Bn ; n < u} be chosen as in Lemma 3.1. For each 
i < U2, there is an n < UJ such that Ai — Bn ^ (j> and A{ n Bn ^ <f>. 
It follows that there is a set S C u>2 with \S\ = u>2 such that, for 
some fixed n < UJ,AÌ — Bn ^ <j> and Ai D Bn ^ <\> for all i G S. Since 
p G Bn U {U(ui) — Bn) we see that p has a neighborhood U as desired. 

In continuing our discussion of C*-embedded selections, we will 
require the following definition. 

DEFINITION 3.4. d\ — min{/c : there is a family F C Ului with 
|F | = K, such that, for every g G Wlu;i, there is an / G F such that 
| { * : / ( a ) < 0 ( a ) } | < u ; i } . 
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It is not difficult to see that d\ > U2 and that SLWl implies that 
di = 2Wl (in fact see Exercise VIII A3 of [6]). 

LEMMA 3.5. If d\ = 2Ul, then there is a point p E U(u\) and a family 
of pairwise disjoint clopen subsets ofU{u\), say {Ai : i E 2Ul}, such 
that, for each neighborhood U of p, \{i G2Wl : A{ C U}\ = 2UJl. 

PROOF. We shall prove the result for U{UJ\ X UJ\) which will be 
equivalent to the stated result. For any a E OJI and any g E Wlu;i, 
let Sai9 = {< /?,7 >: ß > a and 7 > #(/?)}. Let p be any ultrafilter 
which extends the filter generated by {SQ,g : a E u\,g E Wlo;i}. It is 
not difficult to verify that if g E WICJI is given and U is any element 
of p, then there is an A G UIUJI such that U fi Sai9 - Sa,h i1 <t> for 
any a. Let p = {Ui : i E 2UJl} be an indexing of the ultrafilter 
such that each member of the ultrafilter appears 2UJl times. Choose 
go E Uluj! such that U0 n 5a,^0 # 0 for each a. Suppose that ß < 2Ul 

and we have chosen recursively {g1 : 7 < /?} C u;^ such that (i) 
7 < f < ß implies \{a : g1(a) > gç(at)}\ < ui and (ii) 7 -h 1 < ß 
implies U1 H Sa^ - 5 a , ^ + 1 ^ <j) for each a. 

We wish to find gß satisfying conditions (i) and (ii). If ß is a limit 
ordinal, we can choose gß satisfying (i), since d\ = 2Wl. In the case 
that ß = 7 -f 1, by the above fact, we may choose g'ß such that 
U1 n SQ,gi — Saig> ^ <t> for each a. It follows trivially that if we set 
9ß = 9ß + 9~i-> t n e n (i) ^^d (ii) are satisfied. 

When we have found {gß : ß E 2Ul}, we let 

Aß = u{ui * u>i) ndß^xuiAUßns0ig/n„lXul) - s 0 , ^ + 1 ) . 

This completes the proof since each element of p was listed 2Ul times 
and the Aß's are pairwise disjoint. 

COROLLARY 3.6. 2Ul = LJ2 implies that there is a point p E U(uji) 
and a sequence {Ai : i E LO2} of clopen subsets ofU{uj\) such that if 
{x^ x]} C M for i ^ U2, then p E cl{x\ : i E V2} for t = 0,1. 

To remove the assumption 2Ul = u>2 from Corollary 3.6, one might 
start with a model of 2 ^ > U2 and introduce a sequence of clopen sets 
so that there is an ultrafilter satisfying the relationship in the corollary, 
or start with A's constructed ana "blow up" 2Wl without destroying 
the closure property. We know, however, that adding Cohen subsets 
will not work. Also, the existence of a family such as in Lemma 3.1 
seems to complicate the possibility of introducing a sequence with no 
C*-embedded selection. 



430 S. BROVERMAN AND A. DOW 

REFERENCES 

1. B. Balcar, J. Pelant and P. Simon, The space ofuttraßters on N covered by nowhere 
dense sets, Fundamenta Mathematica 110 (1980), 11-24. 

2. , P. Simon and P. Vojtas, Refinement properties and extensions of ßters in 
Boolean algebras, IVansactions of the American Mathematical Society 267 (1981), 
265-283. 

3. W.W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer-Verlag, 
New York, 1974. 

4. E.K. van Douwen, Transfer of information about ßN — N via open remainder maps, 
Preprint. 

5. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Prince
ton, N.J., 1960. 

6. K. Kunen, Set Theory, Studies in Logic, Volume 102, North Holland, New York, 
1980. 

7. D.A. Martin and R.M. Solovay, Internal Cohen extensions, Annals of Mathemat
ical Logic, 2, No. 2 (1970) 143-178. 

8. J. Steprans, Strong-Q-sequences and variations on Martin's Axiom, Can. J. Math., 
XXXVII 4 Aug. 1985, 730-746. 

9. R.C. Walker, The Stone-Cech Compactification, Springer-Verlag, New York, 1974. 
10. W.A.R. Weiss, Versions of Martin's Axiom, Handbook of Set Theoretic Topology, K. 

Kunen and J. Vaughan Editors, North Holland, 1984, New York. 

D E P A R T M E N T O F S T A T I S T I C S , U N I V E R S I T Y O F T O R O N T O , T O R O N T O , O N T A R 
IO, M5S 1A7, C A N A D A . 

D E P A R M E N T O F M A T H E M A T I C S , Y O R K U N I V E R S I T Y , T O R O N T O O N T - A R I O , 
M3T 1P3, C A N A D A . 


