
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 17, Number 2, Spring 1987 

LACUNARITY FOR AMALGAMS 

JOHN J.F. FOURNIER 

A B S T R A C T . Amalgams are spaces of functions on locally-
compact groups; the condition for membership of a function 
in an amalgam is a mixture of local and global conditions 
on the function. This paper concerns the extent to which the 
classical theory of thin sets in discrete abelian groups transfers 
to the context of amalgams on noncompact, locally compact, 
abelian groups. The classes of thin sets considered here are 
the A(p) sets and the p-Sidon sets. The transference is quite 
satisfactory for A(p) sets, while the results for p-Sidon sets 
are less complete. In both cases, the transference yields con­
clusions about pseudodilation of thin sets in discrete groups. 

1. Introduction. Denote the unit circle by T and the real line 
by R. It is well known that if a function in Ll{T) has its Fourier 
coefficients supported by a sufficiently thin set, then the function also 
belongs to the smaller spaces LP(T) for all indices p in the intervals 
(l,oo). The analogous statement also holds for functions in LX{R) 
with thinly supported Fourier transforms [7, Theorem 3], but this 
conclusion is less satisfying, because the spaces LP(R), for 1 < p < oo, 
are merely different from LX(R) rather than being smaller than the 
latter space. The point of the present paper is that replacing the Lp-
spaces by amalgams based on them leads to more satisfactory results 
for certain types of thin sets in R and other nondiscrete, noncompact, 
locally compact, abelian groups. These results include new conclusions 
about lacunarity and Lp-spaces on such groups. Moreover, they also 
lead to new examples of thin sets in discrete abelian groups. 

We will discuss the case of the group R in this section, and deal with 
the general situation in §2 and §3. Denote the integer lattice in R by 
Z. Let / be the half-open interval [0,1), and for each integer n, let 
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In — n + I- Given a measurable function f on R and indices p and q 
in the interval (0, oo], let 

a) ii/iu = ( £ « / \\f\n1,p)q)1/9, 

provided that p and q are both finite, and make the appropriate changes 
for infinite indices. In other words, the quantity | | / | | M is computed by 
taking the Lp-norm of / over each of the intervals 7n, thereby getting 
a sequence of extended-real numbers, and then taking the ^a-norm of 
this sequence. Say that / belongs to the amalgam (Lp,lq)(R) if | | / | |p ,g 

is finite. This amalgam becomes a Banach space with the norm || • \\Piq 

provided that the indices p and q are both at least 1, and functions 
that agree almost everywhere are identified. We require henceforth 
that p > 1 and q > 1. The amalgams (LP,£P)(R) coincide isometrically 
with the spaces LP(R)\ since our goal in this paper is to discuss relations 
between amalgams, we will usually view the Lp-spaces as amalgams. 

Given a subset E of Z, and a function / in ^ 1 (T) , call / an E-
function if the Fourier coefficients f(n) vanish for all integers n outside 
E. Given an index p in the interval (l,oo), call E a A(p)set if every 
E-function, which must a priori belong to Ll(T), belongs to LP(T). 
Much is known, and much is still not known about A(p) sets in discrete 
abelian groups like Z\ see [15] and [11] and the references cited therein. 

Similarly, we will call a measurable subset F of R a Lambda(p)set if 
every F-function belongs to LP(R). We initially define an F-function 
to be an element / , say, of LX(R) whose Fourier transform / vanishes 
off the set F; because / must be continuous in this case, the notion of 
F-function, and therefore the notion of A(p) subset of i?, is mainly of 
interest when F has nonempty interior. In this paper, we will mostly 
consider subsets of R having the form E + I, where E is a subset of 
the lattice Z, and J is the interval [0,1) used above in the definition of 
amalgam. We will prove the following assertion in the next section. 

THEOREM 1. Fix an index p in the interval (l,oo). Let E be a subset 
of Z, and let F = E-\-I. Then the following statements are equivalent. 

(i) The set E is a A(p) set. 
(ii) The set F is a A(p) set. 
(iii) For each index q in the interval [l,oo], it is the case that if a 

function f belongs to the amalgam (L1,iq)(R)y and if f vanishes off F, 
then f also belongs to the amalgam (Lp,£q)(R). 
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In part (iii) above, the object / and the condition that it vanish off F 
should in general be interpreted in the sense of distributions. To this 
end, note that, for fixed p, the amalgams {Lp,£q){R) become larger as 
q increases, while, for fixed q, these amalgams become larger as p de­
creases. So, the smallest amalgam that we consider here is {L°°, £1){R); 
the set of all continuous functions in this amalgam has received special 
attention under the name of Wiener algebra [12, 39.33]. The largest 
amalgam is (L1

i£°°)(R); every function in this space can be regarded 
as a tempered distribution. Although we will not use this fact, we note 
that (L1

i£
2)(R) is the largest amalgam with the property that every 

function in it has a Fourier transform that is also a function [18]. In the 
rest of this section we use the term F-function to mean any function in 
(l1,£00)(R) whose Fourier transform is a distribution that annihilates 
all test functions supported by the complement of the set F. 

For special sets F , conclusions that are stronger in some ways than as­
sertion (iii) above can be deduced from the properties of the Littlewood-
Paley square-function; see the discussion after the proof of Theorem 1 
in §2. It was also proved in another way [7] for special sets F that if 
/ G L2(R), and if / vanishes off F , then / G LP{R) for all p in the 
interval (2, oo); it then followed [7] by an argument [15, p.55] based on 
Holder's inequality that the latter conclusion also holds if / G Lr(R), 
for some r in the interval [1,2), and / vanishes off F. 

On the other hand, it was not possible using the methods in [7] to 
deduce much from the assumption that / is an F-function in the space 
Lr(R) for some index r in the interval (2, oo), the problem being that 
it does not follow from this assumption that / G L2(R). Matters are 
simpler with assertion (iii) of the theorem in hand. The space Lr(R) 
coincides with the amalgam (Lr

i£
r)(R), which is included in the larger 

amalgam (L1
i£

r)(R); so every F-function / in Lr(R) is an F-function 
in (L1

ì£
r)(R)ì and by the theorem / G (Lp,£r)(R), which is a proper 

subamalgam of LP(R) when p > r. Moreover, although the notion of 
amalgam is not needed to state conditions (i) and (ii), this notion is 
needed in our proof that these conditions are equivalent, because the 
proof runs via statement (iii). 

According to assertion (iii), the condition that / vanish off the set 
F forces / to belong locally to LP{R), which is locally a smaller space 
than LX(R). It is natural to ask if this restriction on the support of / 
also forces an improvement on the index q controlling the global size of 
/ . We will see in the next section that no such improvement is possible 
if F has nonempty interior. 
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Next, recall that a subset E of Z is called a p-Sidon set, where 
p G [1,2), if every E'-function / in L°°(T) has the property that 
/ G £P{Z); this definition also makes sense when p > 2, but is un­
interesting in that case because / G (?{Z) for all / in L°°(T). A set 
that is 1-Sidon is usually just called a Sidon set; the class of Sidon 
sets has been much studied [15]. See [3] for current knowledge about 
p-Sidon sets, with p > 1, in discrete abelian groups. We will prove the 
following statement in 3. 

THEOREM 2. Fix an index p in the interval [1,2). Let E be a subset 
of Z, and let F = E + I. Then the following statements are equivalent. 

(a) The set E is a p-Sidon set. 
(b) Every F-function f in the amalgam (L°°i£

1)(R) has the property 
that f G LP (R). 

This theorem poses more questions than it answers. There is a 
Hausdorff-Young theorem for amalgams [13], which in particular as­
serts that if / € {L2,t>){R), then / e {L°°J2)(R). This suggests that 
the conclusion in part (b) above ought to be that / € {L°°,£V){R). 
Similarly, it seems plausible that if E is a p-Sidon set, and if / is an 
F-function in (L°°,£q)(R) where q is some index in the interval (1,2], 
then / G (Lq,$?){R)', here q denotes the index conjugate to q. 

Finally, we will end §3 by applying our results about thin sets in 
nondiscrete groups to obtain interesting conclusions about pseudodila-
tion of thin sets in discrete groups. For instance, given a subset E of 
Z, let u7rür be the subset of Z obtained by first forming the set nE 
in i?, and then replacing each element of TTE by the integer nearest to 
it. It follows easily from our work here that "TTE" is a A(p) set if E is, 
and that the same is true for p-Sidonicity. 

2. A(p) sets. We define amalgams on a locally compact abelian 
group G using a disjoint cover of G by sets Ia obtained via the structure 
theorem [12; Theorem 24.30] for such groups. We summarize the 
procedure here, and refer to [17] or [8] for more details. We write all 
group operations additively. The main difficulties in the proofs of our 
theorems all arise when G = RN for some integer N > 1. Any reader 
who is only interested in this case can skip the paragraphs concerning 
other cases. 

In general, the group G can be identified with a direct product RN x J , 
where H is a locally compact group with at least one compact open 
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subgroup. Fix such a subgroup, say if, of J , and let Jo = [0,1)^ x H. 
Choose a subset M of J consisting of one representative from each coset 
of the subgroup H, and let A — ZN x M; then the sets Ia given by 
letting Ia = Io + a, for all a in A, form the desired cover of G. There is 
a similar cover {Iß}ß€B of the dual group G of G. The results in this 
paper are only of interest when the groups G, and hence their duals G, 
are noncompact and nondiscrete. We suppose in the rest of this paper 
that G and G have these properties; this means that each of the sets 
Ia and Iß is infinite, as are the index sets A and B. Amalgams on G 
are then defined as in formula (1) of the previous section by computing 
Lp-norms over each of the sets 7a , and then taking the i n o r a i of the 
resulting function on the set A; the procedure on G is similar. 

Amalgams in this setting can also be defined without using the 
structure theorem; see the papers cited in [8; §2] concerning this point. 
We need the structure theorem, however, to describe the thin sets that 
we will study, and we will use it in the proofs of our theorems. In 
RN, the index set ZN used to define amalgams is a group, and can 
be regarded as the dual group of TN. Given a subset E of ZN let 
F = E + [0, Ì)N. Since ZN is an abelian group, it makes sense to ask 
whether E is a A(p) set. We define the notions of F-function and A(p) 
set in RN as we did for the real line. We can again use distributions 
to extend the notion of F-functions to the amalagam (L1,-£°°)(G). 

In general, it is only possible to choose the transversal set M in J 
to be a group if J is isomorphic to the direct product of H and J/H, 
and this is not always the case [12, §10]. Nevertheless, the index set 
A can be identified with a group by identifying each element m of the 
set M with the corresponding coset [m] = m + H in the group J/H-, 
similarly we identify each element a = n x m of the set A with the 
corresponding element [a] = n x [m] of the discrete group ZN x (J/H), 
and we also denote this group by [A], Identify the index set B in G 
with a discrete group [B] in a similar way. Given a subset E of [B], let 
F be the union of the sets Iß for which [ß] € E; call F a A(p) subset 
of G if every F-function in LX(G) also belongs to LP(G). Extend the 
notion of F-function to the amalgam (Ll,t°°)(G) by interpreting / as 
a distribution, for instance as a quasimeasure [10], that is [4], as an 
object in the dual space of AC(G), the space of compactly-supported 
functions in the Fourier algebra of G; alternatively, one can use a 
suitable amalgam [2, 5] as a test space for a theory of distributions 
on locally compact abelian groups. 
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THEOREM 1. Fix an index p in the interval (l,oo). Let E be a subset 
of the group [B], and let F be the corresponding subset of G. Then the 
following statements are equivalent. 

(i) The set E is a A(p) set. 
(ii) The set F is a A(p) set. 

(iii) For each index q in the interval [1, oo], it is the case that if an F-
function belongs to the amalgam (Lp,£q)(G), then the F-function also 
belongs to the amalgam (Lp,£q)(G). 

PROOF. We will first show that statement (i) implies the following 
assertion. 

(ii') Every F-function in the amalgam (L1,£1)(G) also belongs to the 
amalgam {LP,£°°)(G). 

Since LP(G) C (LP,£°°)(G), the assertion above is weaker than 
statement (ii), which is in turn obviously weaker than statement (iii). 
We will show, however, that (ii) => (iii) for sets F defined as above; 
hence the three statements (ii), (ii7), and (iii) are equivalent for such 
sets F , and statement (i) implies all three of them. Finally, we will 
show that (ii') => (i). In some of the steps in the proof we will use one 
method to prove an implication in the case where G + RN, then use a 
different method for the case where G has a compact open subgroup, 
and then deal with general groups G by combining the two methods. 

LEMMA 1. Conditions (i) implies condition (ii). 

PROOF. Suppose first that G + RN. Then A and B are just copies of 
ZN in G and G respectively. We normalize the Fourier transform by 
declaring that 

f(y) = f f(x)e~2™ydx, 
JRN 

for all integrable functions / on RN. It suffices to prove our conclusions 
for this normalization of the transform, because membership in amal­
gams is unaffected by dilation. This normalization has the advantage 
that each of the index subgroups A and B annihilates the other; that 
is *f(x) = 1 for all x in A and all 7 in B. Moreover, the sets IQ and Io 
both have mass 1, and we identify them with copies of TN, with dual 
groups B and A respectively. If an integrable function / vanishes off 
the set ioi w e c a n identify / with a function on TN using the corre-
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spondence between Jo and TN given above. Then, for each element 7 
of the Fourier tranform, 7(7) as defined above coincides with Fourier 
coefficient 7(7) obtained by regarding / as a function on TN. 

Suppose that statement (i) holds, and let / be an /-function in the 
amalgam (L1,£1)(G). For each index a in the set A, let fa be the 
restriction of / to the set Ia, and let ra be the operator of translation 
by -a; thus, Tag{x) = g(a + x) for all functions g on G and all elements 
x of G. Note that retranslates fa to a function that vanishes off the set 
J0. Since J2aeA H/oJIi = | | / | | i , i < 00, the series £ a € i 4 r a / a , regarded 
as a series of functions on Jo, converges in L1(/o); denote the sum of 
the series by go. Regard the set Io as a copy of TN with dual group B. 
Then, for all elements ß of 5 , it is the case that 

Öo{ß) =J2 rafa{x)ß{x)dx 
aeAJlo 

= E / f«(y)ß(y - <*)dy 

= E / Mvff{v)dy 

= [ f{ytf(v)dy = f{ß). 
JG 

Note that, in passing from the second line above to the third line, 
we used the normalization that each element ß of the set /?, regarded 
as a function on G, is identically equal to 1 on the set A. It follows 
from the calculation above, and the definition of the set F, that #ch 
regarded as a function on the group Jo5 is an i£-function. Since E is 
a A(p) set, the function #0 must belong to Lp(Io); moreover [15, 5.3] 
there is a constant c, determined by the set E and the index p, and 
independent of / , so that ||^o||p ^ c||0o||i- On the other hand, it is 
clear that ||0O||i < ||/||i,i> whence ||^0||p < c| | / | | i , i . 

Similarly, for each element 7 of the set IQ, the series ^2xeA Ta il' fa) 
converges in Ll(Io) to an ^-function gli with ||<77||i < | | / | | i , i . As 
above, | | ^ | | p < c| | / | | i s i . The map 7 —• g1 is continuous from the set 
Io to the closed subspace of all E-functions in L1(/o)^ and, since E 
is a A(p) set, this map is continuous into this subspace endowed with 
the Lp-norm. Hence the integral J7 7 • g1dy converges in Lp(Io) to a 
function g with ||g||p < c| | / | | i , i . Now / , 7 • r0(7 • fo)dy = /o, because 
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7 7 = 1 and the set Io has mass 1. If a ^ 0 however, then the integral 
fi 1 ' ToJsi ' fa)d>7 is the zero function, because 7 • r a 7 = 7(a), and the 
integral, with respect to 7, of this quantity over Io is 0. So g = /o, 
whence | | /o | |p<c | | / | | i , i - The same argument with / replaced by raf 
yields that | | / a | | p < c||/ | |i,i also. Thus assertion (ii') holds in this 
case. 

Consider next the other extreme, that is the case where G = J, a 
group with a compact open subgroup H. Denote the annihilator [12, 
§23.23] of H in J by H1-. Since H1- is a compact open subgroup of J , 
we may let Io = H and Io = H1^ in defining amalgams on G and G. 
Suppose again that / is an F-function, and observe that in this case the 
function /o is just the product / • 1# of / with the indicator function 
of H. So FQ is the convolution of / and (1# ). Now if the Haar measure 
on G is suitably normalized, then (1#) = 1#±. Therefore /o is also an 
F-function, and in fact its transform is constant on each coset of Hq. 
This forces / , regarded as a function on the compact group H, to be 
an E-function. Since E is a A(p) set, there is again a constant c so that 

| | / o | | „ < c | | / o | | i < | | / | | i , i . 

Condition (ii') now follows by applying the same argument to translates 
of/. 

Finally, suppose that G = RN x J , where N > 0, and J is nontrivial 
and has a compact open subgroup. If J itself is compact, then we can 
choose Io to be the product set [0,1)^ x J . Then the index set A is 
just ZN x {e}, where e denotes the identity element in the group J, and 
the index set B can be taken to be ZN x J. With these conventions, 
the index sets A and B annihilate each other, and we can apply the 
method used earlier in the case where G = RN. 

Matters thus reduce to the case where TV > 0, and J is not compact, 
but J has a compact open subgroup H. In this case, let Io be the set 
[0, i)N x H, and let îo = [0,1) x H1-. Let k be the indicator function 
of the set RN x H; then k is the inverse transform of a measure that is 
supported by the compact subgroup {0} x H±. Given an F-function 
/ , let h = / • A, and regard / l a s a function on the group RN x H. 
Define amalgams on this smaller group using the index sets ZN x {e}, 
and ZN x H as in the previous paragraph. The original A(p) set E is a 
subset of the group ZN x H. Let F ~ be the set obtained by fattening E 
in the group RN x H. Then it follows from the properties listed above 
for the functions / , A, and h that A, regarded as a function on the group 
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RN x ÜT, is an F~-function. We have already seen that condition (ii') 
holds for this group. So, 

I | A O I I P < C | N | I , I . 

But ||/o||p = HAOIIP, and | | / i | | M < | | / | | M . Hence | | /0 | |p < c | | / | | M , and 
it follows as before that / G (LP,£°°)(G). This completes the proof of 
Lemma 1. 

LEMMA 2. Condition (ii) implies condition (Hi). 

PROOF. Suppose first that G — RN. Fix an index q in the interval 
[l,oo], and an F-function / in the amalgam (L1,£q)(G). The first step 
in showing that / belongs to the smaller amalgam (Lp,£q)(G) is to split 
/ as a sum of finitely-many functions in (L1,£q)(G) with the property 
that each of the summands has its Fourier transform supported by a 
translate of a set of the form E + K, where K is a compact subset of 
the interior of Jo- When N = 1, such a splitting can be accomplished 
as follows. Let <j> be the function in the interval [0,1] that is equal to 
0 at the points 0,2/3. and 1, equal to 1 at the point 1/3, and linear 
in the closed intervals of length 1/3 with these endpoints. Identify the 
set IQ with the circle group T, and regard IQ as the dual of the group 
Z. Then by direct calculation, or by the fact that (/> is the translate by 
1/3 of a positive-definite function, the inverse transform (j) has norm 
1 in £}{Z). Regard Z as a subset of the group R, and let /ii be the 
discrete measure supported by Z with ßi({n}) = </>(n) for all n. Then 
fii is equal to (j) extended to be periodic with period 1 on all of R. Let 
//2 and ßs be the measures obtained from fix by multiplying each mass 
/ii({n}) by e27rm/3 and by e4?rm/3 respectively. Then ß2 and /i3 are 
obtained by translating JJL\ by 1/3 and 2/3 respectively. It follows that 
the sum of the transforms of these three measures is identically equal 
to 1. Let 0i, 02, and g^ be the convolutions of / with the three discrete 
measures defined above. Then the sum of these three functions is / , 
and each of them has its Fourier transform supported by some translate 
of the set E + [1/6,5/6]. Similarly, when N > 1, the F-function / can 
be split into 3 ^ pieces with the desired property. 

It suffices to show that / G (Lv,ü9){G) when / is one these pieces, 
that is, when there is a compact subset k of the interior of IQ SO that / 
is supported by a translate of the set E + K. Since membership of / in 
various amalgams is unaffected by translation of / , it is enough to deal 



286 J.J.F. FOURNIER 

with the case where / is supported by E + K. In this case, choose a 
nonempty, open subset, V say, of G so that K+V C /o- As in [8, p. 132] 
there is a continuous function h supported by the set V so that \h\ > 1 
everywhere in the set IQ, and so that h G {L°°, £1)(G). For each element 
a in the index group A, let ha be the product of h with the character 
a - 1 ; then |(/ia)| > 1 everywhere on the set Ia. Let ka = f • (/ia), 
then |fca| > \ga\ on the set Ia. Moreover, ka G {L1,£1){G)Ì because 
{ha) G (L 0 0 , ^ 1 ) ^ ) and / G (Ll,tq)(G). Recall that / is supported by 
E H- K and {{ha)) by V; so fca is supported by E + K + V, which is a 
subset of £ H- 70. To summarize, fca is an F-function in the amalgam 
{LlJx){G), and |fca| > \fa\ on the set Ia. 

Our goal is to show that the function a —• | | / a | | p belongs to £q{A). 
We claim that it suffices to show that the function a —> ||&a||i belongs 
to £q{A). To see this, observe first that the space of all F-functions 
in {L1

1£
1){G) is a closed subspace of (L1,^1)(G), and that the space 

of all F-functions in {LP,£°°){G) is a closed subspace of {LPJ°°){G). 
Moreover the former subspace imbeds into the latter subspace, by 
assertion (ii'). Since convergence in either of the amalgams {L1

i£
1){G) 

or {Lp
i£

oc){G) implies convergence in (L1,£°°)(G), this imbedding has 
a closed graph, and is therefore continuous. Thus, there is a constant 
c so that ||g||p,oo < c||(7||i,i for all F-functions g. In particular, this is 
so with the function g replaced by ka; on the other hand, \fa\ < \ka\ 
on the set Ia. Thus, 

| | / a | | P < | | f c a | | p < c | | M | l , 

and our claim is proved. 

Define functions b and d on the group A by letting 6(a) = H/alli, 
and d{x) = \\ka\\i for all a in A. Also let c{a) be the supremum of 
the restriction of the function h to the set Ia. Consider, too, for each 
element a' of A, the supremum of the restriction of {ha) to the set 
Ia>\ since {ha) is simply h translated by a, the latter supremum is just 
c{a' — a). Now, 

d{a) = \\ka\U = £ / |M 
a'€AJl<* 

< J2 b(((a')c(a'-a). 
a'eA 

In other words, the nonnegative function d is majorized by the con­
volution, on the group A, of the function 6 and the flipped function: 

file:////ka/U
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a —> c(-a). By Young's inequality for convolution, 

IWU < IHUIklli-

Our assumptions that / G (L 1 ,^)(G) and that h G {L°°.^{G) 
guarantee that the two norms on the right above are finite, and hence 
that d G £q(A) as required. 

Suppose next that G is isomorphic to RN x J , where J has a compact 
subgroup, say H. Let Io — [0,1) x H. Since H is compact, the 
procedure used when G = RN can be applied in the general case 
to split any F-function into 3N pieces with the properties specified 
above. The only obstruction to transferring the rest of the argument 
for RN to the general context is that the index set A might not be a 
group. The functions 6, c, and d on the set A can be transferred to 
the quotient group [A], however, and then matters reduce as before to 
Young's inequality for convolution on the group [A], see [8, pp. 132-
133] for a special case of this. 

LEMMA 3. Condition (iï) implies condition (i). 

PROOF. Suppose that the set F satisfies condition (ii'), and recall 
that, as in the proof of the implication (ii')=> (iii), there must then 
be a constant c so that ||^||p,oo < cIMIi.i f° r a ^ ^-function g. Again 
consider first the case where G = RN. Let / be an ^-polynomial, in 
other words an E-function for which the support of / is finite, and let 
/i be the discrete measure on G with the property that y({y}) = f{y) 
if y € B, and ß({y}) = 0 otherwise. Then /i|io> the restriction of 
the inverse transform of the measure /i to the set 1$, coincides with 
/ . Moreover, fi(x + a) = (i{x) for all x in G and all a in A; hence, 
||A||I,OO

 = ll/lli- As above, choose a function h supported by the set 
Jo, with \h\ > 1 on the set I0, and with h G (L°°, l1){G). Let g = h • fi; 
then g G {L1^1) {G) with 

I M | l , l < l | Ä | | o o l l | | / Ä | | l , o o = | | Ä | | o o , l l l / l l l -

On the other hand, g is the convolution of the function h with the 
measure /i. So g vanishes off the set IQ + E\ that is, g is an F-
function. As noted above, ||<;||p,oo < cll#lli,i Finally, \g\ > \f\ on 
the set J05 so that | | / | | p < ||ôi|p,oo' Combining these inequalities yields 
that | |/ | |p < cllÄlloo.ill/Hi for all ^-polynomials / ; it follows that E is 
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a A(p) set as required. 
Next, if G has a compact open subgroup, H say, we can let IQ = H 

and Io = H1-. Then the group [B] is the dual group of H. Given any 
^-polynomial / on H, let / ~ be the function / extended to be 0 on 
G\H. Then / ~ is an F-function, and it follows that 

ii/iiP = i i r i i p , o o < c i i n i M = C|i/iii. 
Hence E is a A(p) set. 

Finally, let g be isomorphic to RN x J , where N > 0 and J is 
noncompact but has a compact open subgroup H. Arrange matters so 
that [B] is the dual group of TN x if, and let / be any ^-polynomial on 
TN x H. Let F ~ be the fattened version of the set E in the dual group 
of RN x H. Argue as in the case where G = RN to get an F~-function, 
say 0~, with \g~\ > | / | on TN x H, and with ||#~||i,i < c | | / | | i . Let 
g be the function g~ extended to be 0 on G\(RN x H). Then g is an 
F-function, and it follows as before that 

ll/llP < IMIp,oo < CIMU,! < CH/ML 

This completes the proof of the lemma and the proof of the theorem. 

The proof of our main implication (i) ==> (iii) is much easier in the 
case where G has a compact open subgroup than it is in the other cases. 
Indeed if the compact open subgroup H is used as above in defining 
amalgams on G and Ô, and if / is an F-function on G, then each of the 
functions fa is also an /-function, and | | /a | |p <: c||/a| |i f° r aU a- We 
do not know whether this inequality also holds when G = RN. All that 
our methods yield for the latter group are estimates for | | / a | | p in terms 
of the L1-norm of the F-function / over the whole group G. Moreover, 
in this case, no function fa can be an F-function unless it is trivial, 
because its transform fa is the restriction to RN of an entire function 
of N variables. 

Previous proofs of versions of statement (iii) for sets F of the form 
E + 7o have dealt only with special classes of A(p) sets F , and only 
with the case of statement (iii) where q = 2. For instance, it is shown 
in [8] for g = R and E = {4 n }^ = 1 that 

every F-function in L2(R) belongs to 

LP(R) for all p in the interval (2, oo). 
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Some of the ingredients in our proof that (ii') =>» (iii) were used in 
[8] to deduce for such sets F that every F-function in (L2,£2)(R) 
belongs to all the amalgams (LP,£2)(R) with 2 < p < oo. A duality 
argument shows that a set F has property (2) above if and only if it 
has the property that, for each index p' in the interval (1,2) and every 
function / in £p(fi), the restriction f\F of the Fourier transform of 
f to F belongs to L2(F). Suppose that E determines a Littlewood-
Paley decomposition of fi, as in [9]. Then it follows from Minkowski's 
inequality and the Hausdorff-Young theorem that f\F € L2(F) for all 
functions / that belong to LP (R) for some index p' with 1 < p' < 2; the 
argument in [8] then shows that statement (iii) holds for the set F , in 
the special case where q = 2. Every set that determines a Littlewood-
Paley decomposition of R is a A(p) set for all p < oo, but there are 
many other A(p) sets. Theorem 1 applies to the full class of A(p) sets, 
and also yields the cases of statement (iii) where q ^ 2. 

These results can be summaraized by saying that whenever a function 
in a suitable amalgam (Lp,£q)(G) has a Fourier transform with a 
sufficiently thin support, then the index p controlling the local size 
of the function can be improved to a larger value. We now consider 
whether it is also possible in this situation to improve the index q 
controlling the global size of the function, that is to replace g by a 
smaller number. If, like the sets considered above, the set F has a 
nonempty interior, then no such global improvement is possible. To 
see this in the case where G = i£, suppose without loss of generality 
that F includes an open interval, U say, containing the origin. Let / 
be the inverse transform of some nontrivial C°° -function supported by 
the interval U. The fact that / is smooth and has compact support 
implies that / G (L°°,t,q){G) for all q > 0, and that the same is true 
for every dilate of / . For each fixed number t > 0, let ft be the 
dilate given by letting ft{x) = f{x/t) for all x. When t > 1, these 
dilates are F-functions too. Fix indices p, #, r, and s with s < q. 
If it were the case that every F-function in (Lp,^g)(G) belonged to 
(L r ,^s)(G), then the closed-graph theorem would yield a constant k so 
that ||^||r,5 < &IMIp,<? f° r all s u c n F-functions g. It is easy to verify, 
however, that ||/t||r,s/||/t||p,g —• oo as t —» oo. Much as in [7], a similar 
argument works for any nondiscrete abelian group G. 

Let us briefly consider F-functions when the interior of F is empty but 
F has positive measure. Suppose first that p € [2, oo); then there are 
no indices q and s with s < q for which every F-function in (Lp, £P)(G) 
belongs to (LP,£S)(G). Indeed, let K be a compact subset of F having 
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positive measure, and let p* be the index conjugate to p; then p' < 2, 
since p > 2. It is shown in [7] that, for each index r > p, there is a 
function / in Lp (G) for which the restriction of / to K does not belong 
to Lr(K). Regard Lp (K) as the subspace of functions in Lp (G) that 
vanish off K. It follows by duality that there is a function g in Lp (K) 
for which g £ U (G). On the other hand, by [8] or the references 
cited in [8, p. 123], for each index u in the interval [1,2] the inverse 
transform maps LU{K) into {L°° ,£)(G). Using complex interpolation 
as in [8, p. 129], we see that, for each index t > 0, there must in fact be 
a function g in U (K) with the property that g £ (L*, £P)(G). Applying 
the Baire category theorem as in [7] yields that there is a function g in 
Lp (K) for which g belongs to none of the amalagams (Lt

1£
r)(G) with 

r < p. Clearly, g is an F-function, and as noted above it belongs to 
(L°°,tP)(G). 

Now let p € [1,2). It is shown in [14] and [6] that there are subsets 
S of Ô, having positive measure, so that the only 5-function in LV(G) 
is the trivial function. It is easy to verify that these sets S also have 
the property that the only 5-function in (L1,£P)(G) is 0. Of course, 
every such trivial function belongs to all amalgams. We do not know 
any example of a set F of positive measure for which, for some indices 
p and ç, the set of F-functions in (Fp, £q){G) is nontrivial and included 
in some amalgam (Lr,£9)(G) with s < q. 

3. p-Sidon sets. Fix an index p in the interval [1,2), and call a 
subset E of the discrete group B a p-Sidon set if every F-function in 
L°°(IQ) has the property that / G ^(B). This condition is equivalent 
to the existence of a constant c so that | | / | |p < c||/||oo for all F -
polynomials / . 

THEOREM. Let E be a subset of B, and let F = E + î0. Then the 
following statements are equivalent. 

(a) The set E is a p-Sidon set. 
(b) Every F-function in the amalgam (Loc

i£
1)(G) has the property 

that its transform belongs to LP(G). 

PROOF. Suppose first that statement (a) holds, and that G = RN. 
Given an F-function / in the amalgam (L°°, £1)(G)1 from the functions 
rafa and their sum go exactly as in the proof of Theorem 1. Regard 
^o as a function on the group Io; then <7o is an F-function with 
I N loo < l l / I U i . Moreover, g0{ß) = f(ß) for all ß in B. On 
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the other hand, since E is a p-Sidon set, there is a constant c so 
that \\go\\p < c|l^oI|oo for all ^-functions g on the group Jo- Hence, 
(£/?€B \flß)\p)1/p < cll/lloo,i. For each element 7 of the set J0, form 
the functions r a (7 • fa) and their sum glt Then gK

1(ß) = f(ß H- 7) for 
all ß in B. Therefore g1 is also an E-function with ||^||oo,i < ||/||oo,i, 
and 

£ \Hß + l)\P < (c|l/lloc,i)P for all 7 in J0. 
ß€B 

Recall that the set Jo was normalized to have total mass 1. Integrating 
the inequality above over this set, with respect to 7, yields that 
( | | / | |P)P < (c||/||oo,i)p. So, (a) => (b) in this case. 

The same argument works when G has the form RN xH, where H is 
compact. Finally, suppose that G = RN x J , where J has a compact 
open subgroup H. Given an F-function / , let / ~ be its restriction to 
the subgroup RN x H, and let g be the function that coincides with 
/ on this subgroup and vanishes on the rest of G. We already know 
that (a) => (b) for the group RN x H. So the function (/~) on the 
dual group RN x [J/H-1] has the property that | | ( /~ ) | | p < c||/~||oo,i-
It follows that IKSÓIIP < clIg'Hoo.iî too. Applying the same argument 
to translates of / yields that, if g' coincides with / on some coset of 
RN xH and vanishes on the rest of G, then IKôOllp ^ cll^'Hoo,!- Index 
the cosets of RN x H in RN x J as {Cs}seAi and for each index 6, let 
gs be the function that coincides with / on the coset Cg and vanishes 
on the rest of G. For each finite subset D of A, 

E Hwlloo.1 ^ II/II00.I. 

Therefore there are only count ably-many indices 6 for which ||^||oo,i > 
0. The series JZseA Halloo,1 converges to ||/||oo,i and the series 
Y^ëeAOê converges in the space (Loc,£1)(G) to / . By the Hausdorff-
Young theorem for amalgams, the series ]T^€ A g§ converges in the 
space (L°°,^2)(G) to / . On the other hand, our estimate ||gs||oo,i < 
c||^||oo,i guarantees that the series YlôeA 9s converges in LP(G) to 
a function with Lp-norm at most c ^ € A Halloo,i- Hence | | / | |p < 
c||/||oo,i as required. 

The proof that {b)=> (a) is much like the proof in the previous 
section that (ii')=>(i). If statement (b) holds, then by the closed-
graph theorem there must be a constant k so that ||^|| < A^H^Hoo,! 
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for all F-functions g. Suppose that G = RN. Given an ü?-polynomial 
/ , form the discrete measure // as in the proof that (ii;) => (i), and 
observe that ||/i||oo,oo = ll/lloo- Choose the function h as before, 
and again let g = h • fi\ then g is an £-function in (L°°,€1)(G) with 
IM|oo,i < Pl|oo,ill/lloo, As noted above, \\g\\v < ^H^Hoo,!. On the 
other hand, \\g\\v = IMIp||/Hp> so that | | / | |p is majorized by the 
quantity (ft||^||i,oo/IHIp)||/l|oo- Therefore, E is a p-Sidon set in this 
case. 

Again, the same argument works when G = RN x H, where H is 
compact. Finally, if G = RN x J , where J is noncompact but has a 
compact open subgroup, proceed as above to get a function g on the 
open subgroup RN x H, and simply extend g to be 0 on the rest of G. 
This completes the proof of the theorem. 

As mentioned in the introduction, the Hausdorff-Young Theorem for 
amalgams suggests that the two statements in Theorem 2 ought to 
imply that / G (L°°,F)(G). Moreover, there ought to be a version 
of the theorem with statement (b) replaced by the assertion that if / 
is an F-function in the amalgam (L°°,^P)(G), where q is an index in 
the interval (1,2], then / G (LP,£P)(G). Perhaps the problem is our 
method of proof, which seems better adapted to reverse amalgams, as 
explained below, than to amalgams. 

Suppose in the rest of this discussion that G = RN. Given a 
measurable function / on G, and finite indices p and q, let 

\\mP=([io((j:\f(x+a)\<)i/'>)pdXy/p. 
and make the appropriate changes for infinite indices p and q. Say that 
/ belongs to the reverse amalgam, (^,LP)(G), if the norm ||/||J7P is 
finite. Our proof that (a)=>(b) above actually shows that condition (a) 
implies that 

(b') ll/ll^oo < cll/Hî:» for allF-functions/. 

Statement (b) follows from (b;), because | | / | | p < ||/||p~oo an(^ 
H/llî7=o<ll/lloo,l-

Statement (b;) above is an appropriate complement to the Hausdorff-
Young theorem for reverse amalgams, which asserts that ||/||p7g < 
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C||/IIM
 f o r a11 f u n c t i o n s / i n (^>£p)(G), provided that 1 < q,p < 2. 

This theorem does not seem to have been noticed before, although there 
is some precedent for it in the proof of [1; §12, Theorem 1] and in [16, 
§2]. To prove it, first consider four special cases. When q = p = 1 
the theorem simply says that ||/||oo < ll/lliî when q = p = 2 it is the 
Parseval theorem. The case where q = 1 and p = 2 follows by Pois­
son summation, as in our proof above that (a)=4>(b); the case where 
q = 2 and p = 1 follows by duality from the validity of the previous 
case for the inverse transform. The other cases then follow by complex 
interpolation between these four endpoint cases. All this suggests that 
statement (a) should imply that if / is an F-function in the reverse 
amalgam (£9, L°°)(G), where the index q lies in the interval (1,2], then 
fe{(P,L*')(G). 

Translation and dilation, provided that the latter operation makes 
sense on the group G, do not affect the membership of a function in a 
given amalgam. It follows that if a set F has property (b), then so does 
every set obtained from F by translation and dilation; the same is true 
for properties (ii) and (iii). This has interesting consequences for the 
sets in certain discrete groups. We illustrate this point for the group Z. 
Given a subset E of Z, let u7rJ£" be the subset of Z obtained by forming 
the set irE in R and replacing each element of TTE by the element of 
Z closest to it. If E is a A(p) set, then so is the set F = E + [0,1), 
and so is TTF. But "irET+fal) is a subset of TTF - 1/2; hence "TTJE" 

+[0,1) is a A(p) set. It then follows from Theorem 1 that u7ri£" is a 
A(p) set. Similarly, Theorem 2 and the argument above show that if E 
is a p-Sidon set, then so is u7ri£". 
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