ON A THEOREM OF BERNSTEIN

M. A. MALIK

1. Let $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree n and P'(z) denote its derivative. Concerning the estimate of |P'(z)| the following result is well known:

THEOREM A. If P(z) is a polynomial of degree n and $\max_{|z|=1} |P(z)| = 1$ then for $|z| \le 1$

$$(1) |P'(z)| \leq n.$$

There is equality in (1) if and only if $P(z) \equiv \alpha z^n$, $|\alpha| = 1$.

Theorem A is known as Bernstein's Theorem. It can be deduced from a result (also known as Bernstein's Theorem) on the derivative of a trigonometric polynomial which can be proved following an interpolation formula obtained by M. Riesz [3]; from where it is also verified that equality in (1) holds only if $P(z) \equiv \alpha z^n$, $|\alpha| = 1$. In [1], S. Bernstein proved the following generalization of Theorem A by the use of Gauss-Lucas Theorem; see also N. G. De Bruijn [2]:

THEOREM B. Let P(z) and Q(z) be polynomials satisfying the conditions that Q(z) has all its zeros in $|z| \le 1$ and the degree of P(z) does not exceed that of Q(z). If

(2)
$$|P(z)| \le |Q(z)|$$
 on $|z| = 1$

then

(3)
$$|P'(z)| \le |Q'(z)|$$
 on $|z| = 1$.

2. In this paper, we study the case when there is equality in (3). In fact, we prove:

THEOREM 1. Let the hypothesis of Theorem B be satisfied. If there is equality in (3) at any point μ on |z| = 1 where $Q(\mu) \neq 0$ then $P(z) \equiv \alpha Q(z)$, $|\alpha| = 1$.

Research supported by NSERC, Canada.

¹⁹⁸⁰ subject classification 30A10; 30C10.

Keywords: Polynomials, derivative, inequality, etc.

Received by the editors on March 21 1984.

766 M.A. MALIK

REMARK 1. If P(z) has all its zeros in $|z| \ge 1$ and P(1) = 0, then $Q(z) = z^n \overline{P(1/\overline{z})}$ has all its zeros in $|z| \le 1$ and Q(1) = 0. Further, |P(z)| = |Q(z)| on |z| = 1 and |P'(1)| = |Q'(1)| whereas $P(z) \ne \alpha Q(z)$ for any $|\alpha| = 1$. Hence, the condition that $Q(\mu) \ne 0$ cannot be dropped.

PROOF OF THEOREM 1. Let P(z) and Q(z) be polynomials of degree $\leq n$ and of degree n respectively satisfying the hypothesis of Theorem 1; $n \geq 1$. Let μ be a point on |z| = 1 where $|P'(\mu)| = |Q'(\mu)|$ and choose a complex number α with absolute value one such that $P'(\mu) - \alpha Q'(\mu) = 0$. Since Q(z) has no zeros in |z| > 1 and (2) holds, it follows by the Maximum Modulus Theorem that $P(z) - \alpha Q(z)$ has all its zeros in $|z| \leq 1$. Further, from the Gauss-Lucas Theorem, $P'(z) - \alpha Q'(z)$ has all its zeros in the convex hull of the zeros of $P(z) - \alpha Q(z)$ which is entirely contained in the unit disc $|z| \leq 1$. Since μ , $|\mu| = 1$, is a zero of $P'(z) - \alpha Q'(z)$ and the unit disc is strictly convex, μ must also be a zero of $P(z) - \alpha Q(z)$. This implies that $P(z) - \alpha Q(z)$ has a double zero at μ . Let $z = e^{i\theta}$ and consider the real trigonometric polynomials $T(\theta) = \text{Re}P(e^{i\theta})$, $T^*(\theta) = \text{Im } P(e^{i\theta})$, $S(\theta) = \text{Re}\{\alpha Q(e^{i\theta})\}$ and $S^*(\theta) = \text{Im}\{\alpha Q(e^{i\theta})\}$.

(4)
$$P(e^{i\theta}) - \alpha Q(e^{i\theta}) = f(\theta) + i f^*(\theta)$$

We obviously have

where $f(\theta) = T(\theta) - S(\theta)$ and $f^*(\theta) = T^*(\theta) - S^*(\theta)$, and both the trigonometric polynomials are of degree at most n and have a double zero at $\varphi = \arg \mu$.

Without any loss of generality, we can assume that Q(z) has all its zeros in |z| < 1. In fact, if Q(z) has a zero of order m at $z = \lambda$, $|\lambda| = 1$, then λ is also a zero of order at least m of P(z) and these two polynomials can be written as $P(z) = (z - \lambda)^m \tilde{P}(z)$ and $Q(z) = (z - \lambda)^m \tilde{Q}(z)$. Further, if there holds $|P'(\mu)| = |Q'(\mu)|$, $\mu \neq \lambda$, $|\mu| = 1$, then for some $|\alpha| = 1$, $P(z) - \alpha Q(z) = (z - \lambda)^m (\tilde{P}(z) - \alpha \tilde{Q}(z))$ has a double zero at $\mu \neq \lambda$. Hence $|\tilde{P}'(\mu)| = |\tilde{Q}'(\mu)|$. Thus, to arrive at the conclusion, we can work with $\tilde{P}(z)$ and $\tilde{Q}(z)$ where $\tilde{Q}(z)$ has all its zeros in |z| < 1.

Since Q(z) has all its zeros in |z| < 1, it follows from the principle of argument that the image curve $Q(e^{i\theta})$ in the w-plane winds around the origin n times (without ever passing through the origin) as θ varies from 0 to 2π . Hence $S(\theta)$ as well as $S^*(\theta)$ have exactly 2n simple zeros in $[0, 2\pi)$. Let the zeros of $S(\theta)$ be $\sigma_1, \sigma_2, \ldots, \sigma_{2n}$ and the zeros of $S^*(\theta)$ be $\sigma_1, \sigma_2, \ldots, \sigma_{2n}$ and the zeros of $S^*(\theta)$ be $\sigma_1, \sigma_2, \ldots, \sigma_{2n}$ and at any two consecutive zeros σ_k and σ_{k+1} of σ_k of σ_k of σ_k and σ_{k+1} of σ_k of σ_k of σ_k would have to have more than σ_k zeros in order that the image curve σ_k of σ_k would around the origin σ_k times implying σ_k of σ_k and σ_k or educing σ_k or σ_k or σ_k and σ_k or σ_k or

zeros σ_k and σ_{k+1} of $S(\theta)$, sgn $S^*(\sigma_k) = -\operatorname{sgn} S^*(\sigma_{k+1})$, $k = 1, 2, \ldots, 2n$; $\sigma_{2n+1} = \sigma_1$. Moreover, from (2) one has

$$|T(\tau_b)| \le |T(\tau_b) + i \ T^*(\tau_b)| \le |S(\tau_b)|$$

and

$$(6) |T^*(\sigma_k)| \le |T(\sigma_k) + i T^*(\sigma_k)| \le |S^*(\sigma_k)|$$

from which

(7)
$$\operatorname{sgn}\{T(\tau_k) - S(\tau_k)\} = -\operatorname{sgn}\{T(\tau_{k+1}) - S(\tau_{k+1})\}\$$

provided $T(\tau_i) \neq S(\tau_i)$; j = k, k + 1 and

(8)
$$\operatorname{sgn}\{T^*(\sigma_k) - S^*(\sigma_k)\} = -\operatorname{sgn}\{T^*(\sigma_k) - S^*(\sigma_{k+1})\}$$

provided $T^*(\sigma_i) \neq S^*(\sigma_i)$; j = k, k + 1 for k = 1, 2, ..., 2n.

Now, we show that $f(\theta)$ has at least 2n zeros, one in each of the 2n intervals $[\tau_k, \tau_{k+1}], k = 1, 2, \ldots, 2n$. The observation relies on geometrical consideration. If $f(\tau_k) \neq 0$, then from (7), $f(\theta)$ has a zero in $[\tau_{k-1}, \tau_k]$ and another zero in $[\tau_k, \tau_{k+1}]$. Next, when τ_k is a simple zero of $f(\theta)$, the graph of $T(\theta)$ meets the graph of $S(\theta)$ either from below or from above at $\theta = \tau_k$. In this case, if $S(\tau_k) > 0$ and the graph of $T(\theta)$ meets the graph of $S(\theta)$ from below (above), then $f(\theta)$ must have a zero in $[\tau_{k-1}, \tau_k) < (\tau_k, \tau_{k+1}] >$ similarly, if $S(\tau_k) < 0$, $f(\theta)$ must have a zero either in $[\tau_{k-1}, \tau_k)$ or $(\tau_k, \tau_{k+1}]$. In consequence, whenever τ_k is a simple zero of $f(\theta)$, we note that $f(\theta)$ has at least two zeros in $[\tau_{k-1}, \tau_{k+1}]$, one in $[\tau_{k-1}, \tau_k]$ and the other in $[\tau_k, \tau_{k+1}]$. If τ_k is a double (or multiple) zero of $f(\theta)$, out of these one may be regarded in $[\tau_{k-1}, \tau_k]$ and the other in $[\tau_k, \tau_{k+1}]$. We repeat the above argument for each k and establish the claim.

Similarly, we can show that $f^*(\theta)$ has at least 2n zeros, one in each of the 2n intervals $[\sigma_k, \sigma_{k+1}], k = 1, 2, ..., 2n$.

Let us suppose that $\varphi \neq \tau_k$ for any k. Since $\varphi = \arg \mu$ is a double zero of $f(\theta)$, we conclude that $f(\theta)$ has at least 2n + 1 zeros in $[0, 2\pi)$. Hence $f(\theta) \equiv 0$. This conclusion and (2) further implies that $|T^*(\theta)| \leq |S^*(\theta)|$ for all θ in $[0, 2\pi)$. So the 2n simple zeros of $S^*(\theta)$ are also the zeros of $f^*(\theta)$. Since φ is a double zero of $f^*(\theta)$ there are at least 2n + 1 zeros of $f^*(\theta)$. Thus $f^*(\theta) \equiv 0$.

If $\varphi = \tau_k$ for some k, then $\varphi \neq \sigma_k$ for any k and we begin with $f^*(\theta)$ to arrive at the same conclusion $f^*(\theta) \equiv f(\theta) \equiv 0$.

Consequently, $P(z) \equiv \alpha Q(z)$.

As an immediate consequence of Theorem 1, we observe that equality in (1) holds only if $P(z) \equiv \alpha z^n$, $|\alpha| = 1$; and also have the following variation of Theorem A.

THEOREM 2. Let P(z) be a polynomial of degree n and $\max_{|z|=1} |P(z)| = 1$.

768 M.A. MALIK

if for some α with $|\alpha| = 1$, $P(z) - \alpha z^n$ has a double zero on |z| = 1, then $P(z) \equiv \alpha z^n$.

REFERENCES

- 1. S. N. Bernstein, Sur la limitation des derivées des polynômes, C. R. Acad. S. Paris, 190 (1930), 338-340.
- 2. N. G. DeBruijn, *Inequalities Concerning polynomials in complex domian*, Indag. Math. 9 (1947), 591-598.
- 3. M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichung für polynôme, Jahresbericht der Deutschen Mathematiker-Vereinigung, 23 (1914), 354–368.

CONCORDIA UNIVERSITY, MONTREAL, CANADA