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ON A THEOREM OF BERNSTEIN

M. A. MALIK

1. Let P(z) = X2 a,z’ be a polynomial of degree n and P’(z) denote
its derivative. Concerning the estimate of |P’(z)| the following result is
well known:

THEOREM A. If P(z) is a polynomial of degree n and max -, |P(z)| =1
then for |z| = 1

)] [P'(2)| = n.
There is equality in (1) if and only if P(z) = az*, |a| = 1.

Theorem A is known as Bernstein’s Theorem. It can be deduced from a
result (also known as Bernstein’s Theorem) on the derivative of a tri-
gonometric polynomial which can be proved following an interpolation
formula obtained by M. Riesz [3]; from where it is also verified that
equality in (1) holds only if P(z) = az”, |a] = 1. In [1], S. Bernstein
proved the following generalization of Theorem A by the use of Gauss-
Lucas Theorem; see also N. G. De Bruijn [2]:

THEOREM B. Let P(z) and Q(z) be polynomials satisfying the conditions
that Q(z) has all its zeros in |z| < | and the degree of P(z) does not exceed

that of Q(z). If

2 [P(z)] = 1Q(2)] on |z] =1
then
3) [P'(2) £1Q'(z) on |[z] = 1.

2. In this paper, we study the case when there is equality in (3). In fact,
we prove:

THEOREM 1. Let the hypothesis of Theorem B be satisfied. If there is
equality in (3) at any point y on |z| = 1 where Q(r) # 0 then P(z) =
aQ(z), la| = 1.
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REMARK 1. If P(z) has all its zeros in |z| = 1 and P(1) = 0, then Q(z) =
z# P(1/2) has all its zeros in |z| < | and Q(1) = 0. Further, |P(z)| =
|Q(2)] on |z| =1 and |P'(1)| = |Q'(1)] whereas P(z) £ aQ(z) for any
|a| = 1. Hence, the condition that Q(x) # 0 cannot be dropped.

PROOF OF THEOREM 1. Let P(z) and Q(z) be polynomials of degree < n
and of degree n respectively satisfying the hypothesis of Theorem 1;
n z 1. Let y be a point on |z| = | where |P'(x)| = |Q'(»)| and choose
a complex number « with absolute value one such that P'(y) — aQ'(r) =
0. Since @(z) has no zeros in |z] > 1 and (2) holds, it follows by the
Maximum Modulus Theorem that P(z) — aQ(z) has all its zeros in |z| <
1. Further, from the Gauss-Lucas Theorem, P’(z) — aQ’(z) has all
its zeros in the convex hull of the zeros of P(z) — aQ(z) which is en-
tirely contained in the unit disc |z] < 1. Since g, |gl = 1, is a zero of
P’(z) — «Q’(z) and the unit disc is strictly convex, p must also be a zero
of P(z) — aQ(z). This implies that P(z) — aQ(z) has a double zero at y.

Let z = ¢ and consider the real trigonometric polynomials 7(f) =
ReP(e?), T*(f)=1Im P(e'?), S(0)=Re{aQ(e??)} and S*(0) = Im{aQ(e?)}.
We obviously have

4 P(e?) — aQ(e?) = f(0) + i f*(0)

where f(0) = T(0) — S(0) and [f*(0) = T*(0) — S*(f), and both the
trigonometric polynomials are of degree at most #» and have a double zero
at ¢ = arg u.

Without any loss of generality, we can assume that Q(z) has all its
zeros in |z| < 1. In fact, if Q(z) has a zero of order m at z = A, |A| = 1,
then 4 is also a zero of order at least m of P(z) and these two polynomials
can be written as P(z) = (z — )" P(z) and Q(2) = (z — A)” O(z). Fur-
ther, if there holds |P'(x)| = [Q'(w], ¢ # A, |pl = 1, then for some |a| =
I, P(z) — aQ(2) = (z — A)™(P(z) — aQ(z)) has a double zero at y # A.
Hence |P'(1)| = |Q'(#)|. Thus, to arrive at the conclusion, we can work
with P(z) and 0(z) where Q(z) has all its zeros in [z]| < 1.

Since Q(z) has all its zeros in |z| < 1, it follows from the principle of
argument that the image curve Q(e?) in the w-plane winds around the
origin n times (without ever passing through the origin) as § varies from
0 to 2z. Hence S(0) as well as S*(0) have exactly 2n simple zeros in [0,
27). Let the zeros of S(0) be oy, 03, - . ., 09, and the zeros of S*(#) be
Ti, Tos - - -» Ton It 15 easily seen that g1 < 71 < 03 < 75 < -+ < 09,<
T2, <01 and at any two consecutive zeros 7, and 7,4 of S*(0), sgn S(z,) =
—sgn S(zpr1), k=1, 2, ..., 2n and 7,,+; = 7. If it were not so, S*(0)
would have to have more than 2n zeros in order that the image curve
Q(e*?) wind around the origin » times implying S*(6) = 0 and so reducing
Q(z) to a constant; a contradiction. Similarly, at any two consecutive
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zeros ¢, and g, of S(0), sgn S*(g,) = —sgn S*(o,41), k = 1,2, ..., 2n;
Oant1 = 071. Moreover, from (2) one has

) IT(zo)| = [T(zp) + 1 T*(zp)l = |S(z)

and

(6) IT*(op)| £ |T(0p) + i T*(0p)| £ [S*(op)
from which

(M sgn{T(z,) — S(zp)} = —sgn{T(z41) — S(tss1)}
provided T(z;) # S(z;);j = k, k + 1 and

®) sgn{T*(0,) — S*(o)} = —sgn{T*(0x) — S*(o11)}

provided T*(¢g;) # S*(0,);j =k, k + I fork =1,2,..., 2n.

Now, we show that f(0) has at least 2n zeros, one in each of the 2n
intervals [z, 7,1], K = 1, 2, ..., 2n. The observation relies on geometrical
consideration. If f(z,) # 0, then from (7), f(0) has a zero in[7,_;, 7,]and
another zero in[z,, 7,41]- Next, when ¢, is a simple zero of f(6), the graph of
T(0) meets the graph of S(0) either from below or from above at § = z,.
In this case, if S(z,) > 0 and the graph of T(f) meets the graph of S(8)
from below (above), then f() must have a zero in [7,_1, 7,) < (74, Tpr1] >
similarly, if S(z,) < 0, f(0) must have a zero either in [z,_1, 7) OT (¢4 Tps1)-
In consequence, whenever 7, is a simple zero of f(6), we note that f(6)
has at least two zeros in [z, 1, 7,41], one in [z,_1, 7,] and the other in
[z, Tp+1]- If 7, 1s @ double (or multiple) zero of f(§), out of these one may be
regarded in [z,_y, 7,) and the other in [z, 7,41]. We repeat the above
argument for each k and establish the claim.

Similarly, we can show that f*() has at least 2n zeros, one in each of the
2n intervals [oy, 041l kK = 1,2, ..., 2n.

Let us suppose that ¢ # , for any k. Since ¢ = argu is a double zero
of f(6), we conclude that f(f#) has at least 2n + 1 zeros in [0, 27). Hence
f(0) = 0. This conclusion and (2) further implies that |T*(0)| £ |S*(9)|
for all ¢ in [0, 27). So the 2n simple zeros of S*(f) are also the zeros of
S*(0). Since ¢ is a double zero of f*(0) there are at least 2n + 1 zeros of
f¥(0). Thus f*(0) = 0.

If ¢ = 7, for some k, then ¢ # ¢, for any k and we begin with f*(0)
to arrive at the same conclusion f*() = f(0) = 0.

Consequently, P(z) = aQ(2).

As an immediate consequence of Theorem 1, we observe that equality
in (1) holds only if P(z) = az?, |a| = 1; and also have the following
variation of Theorem A.

THEOREM 2. Let P(z) be a polynomial of degree n and max,, -, |P(z)| = 1.
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if for some a with || = 1, P(z) — az® has a double zero on |z| = 1, then
P(z) = az".
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