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ON A THEOREM OF BERNSTEIN 

M. A. MALIK 

1. Let P(z) = £v=o avzV be a polynomial of degree n and P'(z) denote 
its derivative. Concerning the estimate of \P'(z)\ the following result is 
well known: 

THEOREM A. If P(z) is a polynomial of degree n and max,2|=1 \P(z)\ = 1 
then for \z\ ^ 1 

(1) \P'(z)\ è n. 

There is equality in (1) if and only if P(z) = azn, \a\ = 1. 

Theorem A is known as Bernstein's Theorem. It can be deduced from a 
result (also known as Bernstein's Theorem) on the derivative of a tri­
gonometric polynomial which can be proved following an interpolation 
formula obtained by M. Riesz [3]; from where it is also verified that 
equality in (1) holds only if P(z) = azn, \a\ = 1. In [1], S. Bernstein 
proved the following generalization of Theorem A by the use of Gauss-
Lucas Theorem; see also N. G. De Bruijn [2]: 

THEOREM B. Let P(z) and Q(z) be polynomials satisfying the conditions 
that Q(z) has all its zeros in \z\ ^ 1 and the degree of P(z) does not exceed 
thatofQ(z).If 

(2) \P(z)\ ^ \Q(z)\ on \z\ = 1 

then 

(3) \P\z)\ è \Q'(z)\ on \z\ = 1. 

2. In this paper, we study the case when there is equality in (3). In fact, 
we prove: 

THEOREM 1. Let the hypothesis of Theorem B be satisfied. If there is 
equality in (3) at any point p, on \z\ = 1 where Q(p) # 0 then P(z) = 
ocQ(z\ \a\ = 1. 
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REMARK 1. If P(z) has all its zeros in \z\ ^ 1 and P(l) = 0, then Q(z) = 
zn P(\/z) has all its zeros in \z\ ^ 1 and g(l) = 0. Further, \P(z)\ = 
\Q(z)\ on \z\ = 1 and \P'(\)\ = |ß '( l) | whereas P(z) =É aQ(z) for any 
\a\ = 1. Hence, the condition that Q([À) # 0 cannot be dropped. 

PROOF OF THEOREM 1. Let P(z) and Q(z) be polynomials of degree ^ n 
and of degree n respectively satisfying the hypothesis of Theorem 1 ; 
n ^ 1. Let ju be a point on \z\ = 1 where \P'(JJ)\ = |Q\[x)I and choose 
a complex number a with absolute value one such that P'(fj) — aQ{p) = 
0. Since Q(z) has no zeros in \z\ > 1 and (2) holds, it follows by the 
Maximum Modulus Theorem that P(z) — aQ(z) has all its zeros in \z\ ^ 
1. Further, from the Gauss-Lucas Theorem, P'{z) — aQ\z) has all 
its zeros in the convex hull of the zeros of P(z) — aQ(z) which is en­
tirely contained in the unit disc \z\ ^ 1. Since fi, \ju\ = 1, is a zero of 
P\z) — aQ'{z)a.n& the unit disc is strictly convex, ju must also be a zero 
of P(z) - ccQ(z). This implies that P{z) - aQ(z) has a double zero at ju. 

Let z = eid and consider the real trigonometric polynomials T(d) = 
ReP(^) , r*(ö) = Im P(eie), 5(Ö) = Re{aß(^)} and S*(0) = \m{aQ(eid)}. 
We obviously have 

(4) P(e*) - aQ(e<°) = f(0) + i/*(0) 

where f(d) = T{0) - S(d) and f*(0) = T*(d) - S*(0), and both the 
trigonometric polynomials are of degree at most n and have a double zero 
at(p = arg fi. 

Without any loss of generality, we can assume that Q(z) has all its 
zeros in \z\ < 1. In fact, if Q(z) has a zero of order m at z = A, U| = 1, 
then A is also a zero of order at least m of P(z) and these two polynomials 
can be written as P(z) = (z - A)m P(z) and g(z) = (z - A)m g(z). Fur­
ther, if there holds |P'(//)I = \Q'({JL)1 ft i=- X, \ju\ = 1, then for some \a\ = 
1, P(z) - aQ(z) =Jz - A)M(P(z) - aQ{z)) has a double zero at p, # A. 
Hence |P;(/^)I = lô'(/^)l- Thus, to arrive at the conclusion, we can work 
with P(z) and Q(z) where g(z) has all its zeros in \z\ < 1. 

Since 2(z) has all its zeros in \z\ < 1, it follows from the principle of 
argument that the image curve Q(eie) in the w-plane winds around the 
origin n times (without ever passing through the origin) as 6 varies from 
0 to 2%. Hence S(d) as well as S*(6) have exactly In simple zeros in [0, 
2%). Let the zeros of S(d) be ah o2, • • -, #2« and the zeros of S*(ö) be 
n , T2, . . -, r2w. It is easily seen that o\ < z\ < a2 < T2 < • • • < ^2«< 
r2n < o\ and at any two consecutive zeros zk and zk+1 of 5*(0), sgn *S(rÄ) = 
— sgn S(zk+i), k = 1, 2, . . ., 2n and r2M+i = ^l- If it were not so, S*(0) 
would have to have more than 2n zeros in order that the image curve 
Q(e*d) wind around the origin n times implying S*(0) = 0 and so reducing 
Q(z) to a constant; a contradiction. Similarly, at any two consecutive 
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zeros ok and ak+\ of S(0), sgn S*(Gk) = — sgn S*(ak+i), k = 1, 2, . . ., 2n; 
a2n+i = G\- Moreover, from (2) one has 

(5) |7Xr*)| è \T(zk) + i T*(zk)\ ^ \S(zk)\ 

and 

(6) \T*(ak)\ è \T(ak) + / T*{ak)\ è \S*(ak)\ 

from which 

(7) sgn{T(zk) - S(zk)} = -sgn{T(zk+l) - S(zk+l)} 

provided T(zj) ^ S(zj);j = k, k + 1 and 

(8) sgn{r*(a*) - S*(a\)} = -sgn{r*(a*) - S*(*m)} 

provided T*(aj) # S*(aj);j = k, k + I for k = \,2, . . ., 2n. 
Now, we show that /(0) has at least In zeros, one in each of the In 

intervals [zk, rÄ+i], A- = 1, 2, . . ., In. The observation relies on geometrical 
consideration. If f(zk) ^ 0, then from (7),/(0) has a zero in|V*_i, 7J and 
another zero in [zk, Tk+ii- Next, when zk is a simple zero of/(0), the graph of 
7\0) meets the graph of S(0) either from below or from above at 0 = zk. 
In this case, if S(zk) > 0 and the graph of T(0) meets the graph of 5(0) 
from below (above), then/(0) must have a zero in [zk-i, zk) < (Zk, Tk+i] > 
similarly, if S(zk) < O,/(0)must have a zero either in [zk-\, zk) or(zk, zk+^ 
In consequence, whenever zk is a simple zero of/(0), we note that f(d) 
has at least two zeros in [zk-\, zk+ii, one in [zk-i, Tk] and the other in 
[zk, zk+i\. If zk is a double (or multiple) zero of f(0)9 out of these one may be 
regarded in [zk-\, zk] and the other in [zk, zk+i]. We repeat the above 
argument for each k and establish the claim. 

Similarly, we can show that /*(0) has at least In zeros, one in each of the 
In intervals [ah ak+i], k = 1, 2, . . ., In. 

Let us suppose that cp ^ zk for any k. Since cp = arg/i is a double zero 
of/(0), we conclude that/(0) has at least In + 1 zeros in [0, 2%). Hence 
f(0) = 0. This conclusion and (2) further implies that |r*(0)| ^ |S*(0)| 
for all 0 in [0, 2TZT). SO the 2« simple zeros of S*(0) are also the zeros of 
f*(0). Since <p is a double zero of /*(0) there are at least 2« + 1 zeros of 
/*(0). Thus/*(0) = 0. 

If <p = zk for some A, then <p ^ ak for any k and we begin with f*(0) 
to arrive at the same conclusion/*(0) =/(0) = 0. 

Consequently, P(z) = aQ(z). 

As an immediate consequence of Theorem 1, we observe that equality 
in (1) holds only if P(z) = azn, \a\ = 1 ; and also have the following 
variation of Theorem A. 

THEOREM 2. Let P(z)be a polynomial of degree n and m3.xlz]=1\P(z)\ = 1. 
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if for some a with \a\ = 1, P(z) — azn has a double zero on \z\ = 1, then 
P(z) = azn. 
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