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FUNCTIONS DEFINED BY CONTINUED FRACTIONS 
MEROMORPHIC CONTINUATION 

LISA JACOBSEN 

1. Introduction. A continued fraction 

K\ On\ _ ^ L <*2_ _^3_ _ a \ 
bj bx + b2 + b3 + 

*i + 
#2 

(1.0 , ^ "3 

b3 -f 
64 + 

where an, 6„ 6 C, tf„ ^ 0 for all n, is an infinite process resembling a 
series in many ways. Corresponding to the partial sums of a series, we 
have the approximants of K (tf„/6„), 

(1.2) fn= k (4*) = £- ¥ -£-, for « > 0. 

(Here K%=l(ajbm) = 0.) Further, we say that K(ajbn) converges to a 
value/, or that K(ajbn) = / , if l i m ^ ^ exists and is equal to / . (We permit 
convergence to oo.) 

Still in analogy with series, the elements an and bn may be functions of 
a complex variable z. K(an(z)/bn(z)) then defines a function of z in the 
subset £ c C where K(an(z)/bn(z)) converges. (Another way of defining 
functions by continued fractions, K(an(z)/b„(z)), is by correspondence 
[3, §5.1]. In this paper, though, we shall use /(z) = \\mn^fn(z) pointwise, 
for all z such that this limit exists.) 

Finally, we also have modified approximants /„* ofK(aJbn). They arise 
if we replace the nth tail 

( L 3 ) I f^\ = ^ <h>±2 
,»=„+! \bml bn^i + bn+2 + • •. 

of K(ajbn), not by 0 as in the ordinary approximants (1.2), but by a 
modifying factor wn. That is,/0* = H'0 and 

Received by the editors on March 16, 1983. 
Copyright © 1985 Rocky Mountain Mathematics Consortium 

685 



686 L. JACOBSEN 

<"> / * = t + . . . + f c + 7 r f ^ - ' forn-1,2,3,.... 

As in [2], we introduce the linear fractional transformations 

(1.5) S^>( w )=£3±l ?m±nz± am+n for n = 1,2,3,... 

and S&m)(w) = w, for m = 0, 1, 2, . . . . We also use the shorter notation 
S f = Sn if m = 0. Then we have /„ = Sn(0) and / * = Sn(wn) for all /i. 
If K(ajbn) converges, then its tails, (1.3), also converge for all n. Their 
values are denoted by f{n) = K£Ln+l(aJbm). Hence, in that case we have 
/<»> = IimM_>oo5^)(0) = S^(f^+n)). If an and bn are functions of z, 5^w) 

will, in general, also depend on z. We shall emphasize this by the notation 

(1.6) 5^(vv,z) = ^ ± 4 ^ ajp^\ , V : ( Z ) , x. y J n bm+l(z) + 6m+2(z) + + 6W+M(z) + w{zy 

for n = 1, 2, 3, . . . , >S(Sm)(w, z) = w(z), for all m ^ 0. Furthermore, 
5^0)(w, z) is also written Sn(w, z), for all n. 

In this paper we shall use modified approximants to obtain analytic 
continuation of a function defined by a continued fraction. The idea of 
this application originated with Waadeland [6, 7]. He observed that the 
1-periodic 7-fraction K{zj{\ — z)) converges to z for \z\ < 1 and to — 1 
for \z\ > 1, but that its modified approximants {Sn(z)} converge to z in 
the whole complex plane (they are all identically z), and {S„(— 1)} con­
verges to — 1 in C. Hence, in this simple example, the right modifying 
factor provides us with an analytic continuation of K(zj{\ — z)) from 
\z\ < I t o Cor from \z\ > l t o C . 

As Waadeland himself pointed out, this example is not so interesting in 
itself, but it can be extended to limit-periodic Infractions K(Fnzj(\ + G„z)), 
where Fn -* F ^ 0 and Gn-+ G fast enough. Then, using the "wrong tail 
value" of the continued fraction K(Fz/(\ + Gz)) as a modifying factor, 
gives us analytic continuations of K(F„z/(\ + Gnz)). 

In 1980-1981, Thron and Waadeland [4, 5] published sufficient condi­
tions for a limit 1-periodic continued fraction K(an(z)/bn(z)) to be con­
tinued analytically by this method. [4] is based on continued fractions 
corresponding to Laurent series or meromorphic functions; [5] is based 
on continued fractions converging to meromorphic functions in some 
domains. 

In this paper we shall use an extension of their idea [8]. Let K(an(z)j 
bn(z)) be a continued fraction which converges to a holomorphic function 
f(z) in a domain QJ0. Let, furthermore, K(än(z)/bn(z)) be an auxiliary 
continued fraction with holomorphic tails fin)(z) in @0, which can be con­
tinued analytically to a larger domain Q). Loosely described, it follows 
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that if an and bn can be continued analytically to ^ , S„(f(n), z) is holomor-
phic on compact Subsets of Qi from a certain n on, and {Sn(f

(n\z)} con­
verges uniformly on compact subsets of 3), then FCz) = lim Sn{f{n\z) 
is holomorphic in 0 . Since lim Sn(f

(n\ z) = f(z) = K(an(z)/bn(z)) in 
@o under mild conditions, F(z) is the analytic continuation of/(z) to Q. 

This method does not depend on the modifying factors f{n)(z) being 
the tails of an auxiliary continued fraction. We could use any wn(z) as 
long as Sn(wn, z) is holomorphic from some n on, converges uniformly 
on compact subsets of Q), and converges to/(z) in a subset of ^*0 with at 
least one point of accumulation. However, to find useful and sufficient 
conditions for this to happen is considerably more difficult in that more 
general situation. 

We shall generalize the approach of Thron and Waadeland [5]. To 
emphasize the similarities and differences, we shall use the same form of 
presentation as in [5]. 

If we had based the definition of the function K(an(z)/bn(z)) on cor­
respondence instead of convergence, we could have used the approach 
of [4] to the same problem. This is, however, beyond the scope of this 
paper, and an extension of [4] will be presented separately. 

2. Modified approximants. In this section we are, for convenience, look­
ing at continued fractions K(ajb„) with constant elements. To construct 
modified approximants we use an auxiliary continued fraction K(âjbn), 
where 

(2.1) §n = an - an and 7jn = bn - bn 

converge to 0 "fast enough". (We assume that such an auxiliary continued 
fraction can be found. "Fast enough" will be defined later.) The modifying 
factors shall be a sequence {wn} of complex numbers such that w„ + bn ^ 
0, for all« ^ l,and 

(2.2) w„_1(5ff + wH) = ä„ for n = 1, 2, 3, . . . 

(H>„ is not necessarily the nth tail / ( n ) of K(äjbn)9 although, if K{äjbn) 
converges, wn = f(rt) for all n ^ 0 is an example of a sequence satisfy­
ing (2.2).) Since än and bn e C, and since we have added the condition 
bn + wn # 0 for all n, we see by (2.2) that w„ ^ co for all n. 

The definition of our continued fractions contains the condition an =£ 
0 for all n ^ 1. However, if we turn to the case where än, an are functions 
of z, it is often unnatural to avoid values of z where a„(z) = 0 or än(z) = 
0 for one or more values of n. Therefore we shall allow an = 0 and ân = 0 
in this and the following sections. If äN = 0, then wN_x = 0. This means 
that all sequences {w„}, satisfying our conditions, will coincide for n <; 
N - 1. 
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We want to look at Sn(wn). For any continued fraction K(ajbn) we have 

(2.3) Sn(x) An + An_xx for all n ^ 0, 

where An, Bn are given by the following recursion relations: 

(2.4a) A_x = 1, AQ = 0, B_x = 0, B0 = 1, 

(2.4b) /f„ = M « - i + M * - 2 , Bn = bnBn_x + anBn_2 for/i = 1,2,3,.... 

(This notation is in accordance with [3]. We shall also use A{
n
N\ 

B^N) to denote the corresponding expressions related to the Nth tail 
K^^iaJbJ. Statements (2.3) and (2.4) are also valid if an = 0 for one 
or more values of n if S„(x) is still defined.) Therefore, under our condi­
tions, we get, 

An + An_xwn = (bn + wn)^n_! + ânAn_2 + T}nAn_x + M n - 2 

= (̂ n + Wn)[An-\ + Wn-\An-2] + ^ , A - 1 + M «-2 

(2.5) 
J = l 

+ 2 k,/L-2 fi ih + wi) 
m—\ L y=m- j - i 

for« = 0, 1, 2, . . . . 

By exactly the same method, we get similar expressions for Bn + 
Bn-i

wn> where all the v4's on the right hand side of (2.5) are replaced by 
iTs. Since A0 + w0 A_x = w0 and B0 + vv0^_i = 1 by (2.4), S„(wn) 
can be written 

W0+EVmm 
m = l 

* m - l ^ - : m—2 

(2.6) 5„(wn) = J=i >=i 

B, 'm-2 

for all « ^ 0 if 5y + wj =£ 0, for ally â 1. 

3. Convergence of {Sn(wn)}. As in [5] we now find sufficient conditions 
for each of the four series in (2.6) to converge absolutely. Furthermore, 
we find upper bounds for the sums of these series, and thus for 5n(w„), 
if \rjm\ and \5m\ are small enough. 

We are still looking at continued fractions K(ajbn) with constant 
elements. This corresponds to looking at K(an(z)jbn(z)) for fixed values 
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of r. (The upper bounds for Sn(wn) will then, in the next section, be used 
to prove uniform convergence of S„(u„, z) in appropriate domains.) 

We assume that the modifying factors wn related to the auxiliary con­
tinued fraction K(âjbn), by (2.2), are ^ —bn. We permit ä„ = 0 or an = 
0 for one or more values of«, even though K(ajbn) and/or K(äjbn), then, 
are not continued fractions by the usual definition as long as {Sn} and 
{wn} are still well defined. 

LEMMA 3.1. Let K(ajbn) and K(âjbn) be continued fractions (possibly 
with an or â„ = 0 for some n e N), and let {wn} be a sequence of complex 
numbers such that bn 4- wn # 0, for all n ^ 1, and 

(3.1) vv„-i(£* + * 0 = än /or « = 1, 2, 3, 

If there exist positive numbers C ^ 0 and M > 1 such that 

(3.2) 

and 

(3.3a) 

}Jm bj + wj 
^ CM»-m+l for all n ^ m ^ 1, 

a for n = 2, 3, 4, . . . , 

(3.3b) / o r « = 1,2, 3, . . . , \bn-bn\ ^ J 

\K + wj - M" 

where a and ß are positive constants such that 

a + ß 4- (n - 2)aC 4- (n - \)ßC < M»(M - 1) 

for n = 2, 3, 4, . 

|(1 + ( / i - OOM«"1 

/or « = 1, 2, 3, . . ., 

(3.4) 

then 

(3.5) 

^ n 

ft (*y + "/) 

HA
 gl 

5l 4- H>! 

a«J 

^ (1 + /iQAf»"1 max^ Af, 1 + A 

(3.6) I j j (*y + WJ) I 

/ o r « = 0, 1, 2, 

PROOF. We shall first prove (3.6). Let dn and rjn be defined by (2.1), and let 

n - B» 
(3 71 n » — ~ 

/=1 

for « = - 1, 0, 1, 
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Then Z>_i = 0, Z>0 = 1 a n d 

( 3 . 8 ) Dn=b^+?»-iD»-2 + f e + - ÖnDn-

for n = 1, 2, 3, . . ., by (2.4b) and (3.1). With 

(3.9) Pn = Dn+ lnDn~l for n = 0, 1, 2, . . ., 

we get P0 = 1, and> by (3.8), 

P = P 7„A.-1 ÔnDn-2 

(3.10) n "-1 £„ + W„ (bn + " M ) ( V l + W„_i) 

for« = 1, 2, 3, . . . 

Since, by (3.9), 

Dn = P wnDn-i = P 
w w ^ » - 1 

(3.11) 
6 n +w n

 n bn + wn bn + wn b^i + w^x 
Dn.o 

feoL jÀfi-i bj + n'y J 
for« = - 1 , 0 , 1, 2, . . . , 

we get 

s (-i)-^p, n —^ >=v+l Ay 4- Wj. 

(3.12) 
+ 

<S„ — s (-i)"^p, n ^L L-
(6W + HO(*„-1 + Wn_i) v=0 L y=v+l èy + Wy. 

for « = 1, 2, 3, . . . . 

By induction we shall see that |PJ ^ M""1 max{Af, 1, + ß/M} for 
« = 1,2,3, . . . . 

We note first that |P0 | = 1 = M° and |Pi| = |1 + 971/(61 + wx)\ ̂  
1 + ß/M. If \Pm\ ^ Mm~l max{M, 1 + ß/M}, for all m < n, where n is 
an integer ^ 2, then, by (3.12), 

\Pn\è\Pn-l\ + 

+ 

M" 

(3.13) 
M""1 

»-2 

l^-il+L 
v=0L 

»-3 

IJV-2I + E 
v=0 

My_1 max { - • ' ^ : C M n - l - v 

M ^ m a x ^ M , ! + ^ C M » - * - " 

gM^max^Af, 1 + A L 

< Mn_1max {»•>+& 
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by use of (3.2), (3.3) and (3.4). Therefore, by (3.11), 

(3.14) \Dn\ ̂  \Pn\ + g V j C M - ^ ( l +nC)M*-imax\M9 1 + &), 
v=0 K M ) 

for n = 0, 1, 2, . . ., which gives (3.6). 
To prove (3.5), we follow the same pattern, this time with 

691 

(3.15) ZL = 
I l (*y + "y) 

for A? = - 1, 0, 1, 

Then we get, in particular, that D_x = 1, D0 = 0 and Z^ = fli/(ôi + u^). 
With P„ defined by (3.9), we now have Pi = Dx and 

(3.16) &» + H 'Kv=1 L y = ^ 1 *y + HV 
^ n - 2 r «-2 w . -| 

+ — ^ T> ( - i ) n + v ^\ TT ; 

(*» + H'M)(^n_l + »'„-l) èlL V >=Al £/ + VV'yJ 
for n = 2, 3, 4, . . . . By induction we get that 

(3.17) \Pn\ ^ a\ 
bX + Vi'! 

! M""1 for« = 1, 2, 3, 

To see this, first note that \PX\ = \ax\\\bx + v l̂ and |P2 | ^ |/M + IPJ /3/A/2 
^ M l ^ l since / 3 ^ a + /3 + ( 2 - 2)aC + (2 - \)ßC ^ M\M - 1), by 
(3.4) (with n = 2). If (3.17) is valid for all n ^ m - 1, where m ^ 3, then, 
by (3.16) and (3.4), 

I ^J^L - i l + 
m-2 

i/Vii+i; 
«1 

+ a 

(3.18) 
« 1 

I/V2I + L 

! #1 + » I 

«1 

M ^ 1 CM™"1^ 

M*"1 CMm~^ 

^ l + Wi 

+ ( « - 3 ) ^ T ^ AP»-1. 
bl + wl 

Therefore, 

\Dn\ = 

(3.19) 

n r n w s 

L (-i)"+-^ n r - r - ^ 1̂ 1+ S I'M CM»-

ai 
#1 + ^ ! 

( l + ( n - l ) C ) M " - i for« = l ,2 ,3 , . . . , 
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which gives (3.5). 

COMMENT 1. We can always find a > 0 and ß > 0 satisfying (3.4). 
In fact, if C > 0, then 

(3 20) [<* + j8 + (« - 2)aC + (/i - l)Cß]M~» 

^ [a + ß + (« - l)aC + «ßC]M-<»+i> 

if and only if 

<121> " * 2 + 1T=T - £ - 7FT7T 
Therefore, (3.4) is satisfied for all w ^ 2 if 

(3.22) a + ß+ pxxC + (ft + \)ßC g M^(M - 1), 

(3.23) where M = max jo, M _ { —±r - - ^ - L 

In particular, this is so if 

(3 24) g + fl < M 2 + K M - 1} 

COMMENT 2. If, in particular, we require that C ^ M — 1, then we 
know, by (3.4), that 

(3.25) a + ß + j8C ^ M2(M - 1), 

and therefore 0 ^ (ARM - 1))/(C + 1) g M{M - 1). Hence, max 
{M, 1 4- /3/M} = M, which simplifies (3.6). 

COMMENT 3. If we restrict ourselves to continued fractions K(aJ\) and 
K(äJ\), we can let 3̂ = 0. Then (3.4) reduces to 

( 1 2 6 ) °*lM+$!-i)C- f - « = 2, 3, 4 , . . . . 

Further, max {M, 1 + ßjM} = max {Af, 1} = M, which simplifies (3.6). 
(By the same reasoning as in Comment 1, (3.26) is surely satisfied for all 
integers n ^ 2 if it is satisfied for« = max{2, 2 + \/(M — 1) — 1/C}.) 

Similarly, if we restrict ourselves to continued fractions K(\/bn) and 
K(l/bn), we can use a = 0. Then (3.4) reduces to 

(3.27) ß <; x
M^Zl)c f o r » = 2, 3, 4, . . . 

(which is surely satisfied if it is valid for n = max(2, M/(M — 1) — 1/C}.). 
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The condition (3.2) in Lemma 3.1 imposes a restriction on the auxiliary 
continued fraction K(äjbn) and the sequence {wn} we choose to use. 
If K(äjb„) is limit ^-periodic, we know by [2, Theorem 4.1] that {\wn\l 
\bn + wn\} is limit ^-periodic, except in special situations. Therefore, the 
existence of appropriate constants M and C can be easily proved in these 
cases. 

In more general cases we know, by [1, Proposition 4.2], that lim^.,^ \[n
J=m 

\f(f)Kbj +f<»)l = 0if K(ajbn)converges and {f(n)}ZL0
is bounded. There­

fore, any M > 1 can be used, if we choose wn = f{n) in Lemma 3.1, and 
{f(n)} is bounded (if K(äjbn) converges). 

The next step in the process of finding conditions for the convergence 
of (2.6), is to use Lemma 3.1 to ensure absolute convergence of the four 
series on the right hand side of (2.6). 

LEMMA 3.2. Under the conditions of Lemma 3.1, except that (3.3) is 
replaced by 

(3.28) 
\bn + " J I V i + wn-i\ = M*"-i 

bn — bn ß 
M*n 

for n ^ 2, 

for / i ^ l , 

where 1 < M < M*9 we have, with ôn and 7]n defined by (2.1), 

_Oi J ß M* - M + CM 
(3.29) Si 

(3.30) Si 

Am_i 
V« m 

n <*,• + wi) 

^ m - 2 
'm m 

n (Bj + Wj) 

hl + Wl\W^ (M* -MY > 

a M*-M + CM 
b1 + w1 + <*\ 

51 + Wl| M* (M*-MY ' 

(3.31) Si Vm 
ßm-l 

n (bj + n*,-) 
~ M ( M * - M ) 2 l **"' M 

ÛAZt/ 

(3-32) £ 
5 m-2 . a M*-M±CM_mlu , , j3' 

PROOF. Since the conditions of Lemma 3.1 are satisfied, the conclusion 
(3.5) - (3.6) is valid. Therefore we get 
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A m - 1 
2-1 \Vm m 
m=i n (*/ + */) 

I y=i 
« i 

(3.33) = | T 
û i 

*1 -f Wj 

*1 

#1 + Wj 

/3 

(1 + (m - 2)C)M*-2 

j &1 + Wj 

«1 

M*2 

M*2 

/JVf m-2 urn-+c^s3
{m-2i^f 

l M 
M* 

+ C 

m=3 

M 1 
M* 

( ' - ^ ) 

/3 M* - M + CM 
~W (M* - MY ' i bx + M\ 

since A0 = 0. Furthermore, since A_x = 1, it follows that 

Am 

< 

m tn 

IT (*y + "/) 
y=i 

(3.34) Si + W i ^ S V M * - ! 
fli 1(1 + (m-3 )C)M w - 3 

di i , I # i l a 
1 + Ir | * i + ^ 1 i^ + vvijM*2 

« i 

bi + wi + 
« l 

éi 4- Wi 

a M* - M + CM 

M* 

*i + W! M* (M* - M)2 

Similarly, 

m=l 
Cm" 

* - l 

Ff & + w/) 
y=i 

(3.35) 

^ £ ( - ^ 0 + (« - DC)M-2 max |M, J + £}) 

.X{M,I+J§; M ' {_ M + C 
M* 

/3 M* - M + CM 
M (M* - MY 

and 
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2 
m = l 

B„ 

n & - wy) y=i 

(3.36) 
^ £ ( ! ^ T ( 1 + (* - 2)OM--3 maxJM, 1 + £ 

m=2 

a 
M*2 

1 M* 
M ' 1 _ M 

M* 

+ C M V 
'M* 

max<M, 1 + 
M 

a M* - M + CM „„jA/f i , j8 

We can now use Lemma 3.2 to obtain sufficient conditions for the con­
vergence of (2.6). 

PROPOSITION 3.3 Let K(ajbn) and K(äjbn) be continued fractions 
(possibly with an or än = 0 for some n e N), and {w„} a sequence of 
complex numbers such that, for an TV* e N |J {0}, 

(0 
(3.37) ww_i(£„ + H'„) = än, BH + wH*0forn = N* +\,N*+2,.. ., 

and 
(ii) there exist constants C ^ 0 and M > 1 such that 

(3.38) 

/ / 

(3.39) 

and 

TÌ ~ - i 1 ^ CM*-™"1 foralln^m^N* + 1. 
/y»; bj + wy ! 

K - â j ^ |£n + wn\ | V i + uv-il M*„_r 

for n = N* + 2, JV* + 3, . . ., 

(3.40) Ift, - bn\ ^ \bn + wn\ ß 
M*n 

forn = N* + 1, AT* + 2 , . . ., 

w/zere M < M* ^ M2 and a, ß ^ 0, //*£AZ //*£ following three statements 
are true. 

A. {Sn(wn)} converges, possibly to oo. 
5. For a fixed continued fraction K(äjbn), a fixed sequence {wn} and 

fixed values C, M, M*, there is an extended re al-valued function H(a, ß), 
so that H(a, ß) -• 0 as (a, ß) -+ (0, 0) and so that 

(3.41) | lim S<T> (wn^) -wN.\^ / /(a, ß), 
n~*oo 

provided (3.39) and (3.40) are* satisfied and \aN*^ - äN,+x\ ^ a • P, 
where P is a fixed, positive constant. 
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C. Let q e (0, 1) be an arbitrary constant. Then 

(3.42) |limS<f>(w„+J-w„| g K(ri) 
\-q 

forn = N, N + 1,. . ., 

0 + /3 (A/* - Af)2 
^ * N = ^ Af* - A/ + CM ' 

H'Aere TV /5 ;/ie smallest integer ^ N* such that 

(3.43) 

ö«(/ where 

(3.44) A(„) | ìB + i + VVn+1; + ̂ + i + H , M + 1 |+ l^ l M J M * ^ ( M * - M ) 2 -

PROOF. We shall first prove C, and thereafter use C to prove A and 5. 
C. The conditions of Lemma 3.2 are satisfied for the 7Vth tails K%LN+l 

(ajbn) and K^^äjb^ (with a and ß in Lemma 3.2 replaced by aM*~N 

and ßM*~N), because (3.43) implies (3.4) (with the said change of nota­
tion). This follows from Comment 1 to Lemma 3.1 since by (3.43) we 
have, with M* = M{\ + <5), where ö > 0, 

a + Z3 < „ <52M ^ <52M 
M*" ^ ? 5 + C ^ 5 + C 

and 

MHM - 1 ) > « ^ Ì ^ M ( « - D â ^ ± # ( M + ™ 

q + /3 

<?2 

1 + 1 + 

M* M - 1 

1 
M - l 

c)>°^£(\+(\+fi)cx 

since M* = M(l + 5) ^ M2, i.e., 3 g Af - 1. Hence (3.43) implies 
(3.22) with fi given by (3.23), which again implies (3.4). Therefore we have, 
by Lemma 3.2, that 

(3.45) 

ZI ! (bN+m 

< 

N+m) N+m 

A(N) 

aN+\ i ß M* - M + CM 
+ wN+1 I M*N+I (M* - MY 

(3.46) 

(aN+m — ^N+m) N+m 
^ m - 2 

4-

41."'+ •"> 
aN+\ I a M* - M + CM 

aN+i — aN+\ 

bN+i + wN+i 

bN+i + wN+1 I M * ^ i (M* - M)2 
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(3.47) Si 

and 

i^N+m — bN+m) N^m 
°m-\ 

j=N~l 
j) 

ß M*-M + CM 
1 = "M*^ (M*-M¥ ' 

(3# 4g) 2 J j (aN+m ~ ^N+m) ~NTn ~ 
a M*-M + CM 

^ { b i + w i ) 

= M*N (M*-M)2 

since (3.43) implies that max{M, 1 + ßKMM**)} = M. In fact, the 
same is true for all n ^ N. By (2.6), we therefore get, for all n ^ N, 

i lim S£> (wm+n) - wj 

(3.49) 
M* - M 4- CM] /L _ a + ß M* - M + CM] 

(M* - M)2 / / I1 M*" (M* - M)2 J 

*(*) 
(1 - q) ' 

because 

q + ff M * - M + C M < 

M*» (A/*-A/)2 = ^ 

by (3.43) 

A. Since {S^H»w+J}m=i converges by part C, we get l i m ^ Sn(wn) = 

B. By part C we we can for instance, use 

/* cm , „ nx (2K(N*) if (a,/3) satisfies (3.43) with TV = TV* and q=l/2 
(J.50) H(a,ß) = < . 

[oo otherwise. 

COMMENT. 1. The bound given by (3.42) is obviously not particularly 
good for n much larger than TV, since the denominator is replaced by 
1 — q. But we are only interested in establishing a finite upper bound 
here, which approaches 0 as n -» oo, and not necessarily a best one. 

COMMENT 2. Proposition 3.3 is also valid if an or än is equal to 0 for 
one or more values of n. It can even be made valid for cases where 
bn + wn = 0 for some values of n, if we define (3.38) in a natural way. 
Except in special cases, we then need C = oo or M = oo, and hence, 
an = än and bn = bn for all n. Therefore Sn(wn) = w0 and S£m)(wm+n) = 
wm for all n and w, and the result of Proposition 3.3 holds trivially. This 
will be a point of interest when we proceed to the next section, where 
we look at functions defined by continued fractions. 
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4. Analytic or meromorphic functions represented by continued fractions. 
In this section we return to the situation described in §1. We let the 
elements an and bn of the continued fractions be functions of a complex 
variable z, and, in particular, we restrict ourselves to the case where 
an(z) and bn(z) are analytic in the domain where we choose to define our 
continued fraction. Questions of interest will then be: 

1. Does the continued fraction define an analytic or meromorphic 
function in some domain? 

2. Can it, by any means, be continued analytically or meromorphically 
beyond that domain? 

3. Can anything be said about possible singularities of this function? 

Some results along these lines are already known. Question 1 is an­
swered positively for certain 7-fractions, C-fractions, rc-fractions, etc. 
(See, for instance, [3, Chapter 7].) Question 2 is answered positively for 
the case where K(an(z)/bn(z)) is limit 1-periodic, and an(z) and bn(z) ap­
proach their limits geometrically and fast enough (see [4, 5]). In this case, 
Question 3 is also positively answered, with respect to branch points. 
Several results about possible poles are also known. (See [3, Chapter 7].) 

We are going to find sufficient conditions for positive answers to these 
questions in some new cases, by using Proposition 3.3 and its proof. 
The method involved is the one mentioned in the introduction, namely 
to use auxiliary continued fractions K(än(z)/bn(z)) to construct modified 
approximants. We shall see that if the two continued fractions are "near 
enough", properties of K(än(z)/bn(z)) are, to a certain extent, inherited by 
K(aH(z)/bH(z)). 

Tne following theorem is the main result of this paper. It provides the 
definition of "near enough". In doing so, the term "domain" is used. 
By that we shall mean a domain in the usual, strict sense, i.e., an open 
connected set. 

THEOREM 4.1. Let two continued fractions K(an(z)/bn(z)) and K{än{z)j 
bn(z)) and a sequence {wn(z)} be given such that 

(4.1) wn_x{z) [bn(z) + wn(z)] = än(z) for n = 1, 2, 3, . . . 

in a domain &*. Let & ç Q* be a domain, and N\® -» [0, oo) be a con­
tinuous function such that the following conditions are satisfied in Q\ 

(/) an, bn, än and bn are analytic in Q for all n ^ 1 ; 
(//) wn(z) + bn(z) * 0 in & for all n Z N(z) + 1 ; 

(///) for each z e ^ , wn is analytic at zfor alln > N(z); 
(/v) there exist continuous functions M\Q) -> (1, oo) and C'.Q) -+ [0, oo), 

such that, in Q 
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(4-2) fi r , ?V(Z) , V ^ C(z)M(zy-™^for all n ^ m ^ W(z) + 1 ; 

(v) //ze^ ex/s/ continuous functions a, /3, 5: Q -> [0, oo) swc/? that 
0 < 5(z) ^ M(z) - 1 in £•, 

(4 3Ì I* (zi - n (7\\ < l^(z) + wn(z)\ \bn-i(z) + H-W_1(z)|g(z) 
1 ; ' n{ } "{)i = ' [(1 + d{z))M(z)Y'i ' 

for all n ^ N(z) + 2; and 

(4-4) ^ - ^ ^ ' ^ S fora,,n * "<*> + '< 
/or #// z e £?. 
If&^fô, the following statements are true. 

A. {Sw(w„, Z ) } ^ converges to a meromorphic function F(z) in £/ or 
to F(z) = oo in Ç/. The convergence is uniform in compact subsets of Q) 
which contain no poles of F(z), if F is meromorphic. 

B. For every compact subset <6 of Q; there exist a natural number N%^N^ 
= maxze^ N(z) and a positive sequence {^£°} sucn tnat {^m}(wm+^ z)}m=i 
converges uniformly to an analytic function F(n)(z) in <6\for all n ^ N%, 
and 

(4.5) \F«»(z) - H..(Z)| g K r v ^ m [ n i n « for n * N*. 

C. IfN(z) is bounded in & by some N e N such that, for a given continuous 
function q\& -• (0, 1), 

(4.6) ö(z) a(z) + ß(z) ^ q(z)—W—^ M(z)^[\ + <5(z)]\ 

/AÉTI {5^)(yv„_m, z)}~=1 converges uniformly to an analytic function F{n)(z) 
in Qfor all n ^ N. 

DAim^ooiF^iz) - wn(z)) = 0, for all z e^for which 

(4.7) lim {\bn(z) + vv„(z)| + \wn{z)\}[M{z) (1 + <5(z))]~" = 0. 
n—»oo 

PROOF. Suppose that & ^ 0 . For each z e ^ , the hypothesis of Proposi­
tion 3.3A is satisfied for the continued fractions 

K ( |44) and K (ff\ 
»=-:-w(«):-f-i \ bn(z) ) »=-:-^(«):-ri V bn(z) 

(with M* = Af(z)(l + <?(z)), a = a(z)(M(z)(l + 5(z)))>JV(*):, and ß = 
/3(z)(M(z)(l + d(z))):-N(z):(M = max{AzeZ; « ^ z})). Therefore, we know 
that Sn(wny z)™=l converges for each z^Q. 
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From Proposition 3.3C it follows that, for each z e ^ , w e have 

|F<»>(z)-w„(z)| ^ * ( " ' 5 > for 
(4.8) l - ?(z) 

„ = N*(z),N*(z) + 1, tf*(z) + 2, . . ., 

where 7V*(z) is the least integer in [N(z), oo) such that (4.6) is satisfied with 
N = 7V*(z), and 

(4.9) 

I bn+l{z) + ww+1(z) 

g»+i(*) 

*i.+l(*) + Wn+l(z) 
+ |vvn(z)|M(z)(l+<5(z))) 

g(z) + j3(z) 3(z) + C(z) 
(M(z)(l 4- *(z)))"+i M(z)d(z)* 

We shall use this to prove B. Thereafter, we shall apply B. to prove A., 
C. and D. 

B. Let <g be an arbitrary compact subset of £#>. Then the four series 
(3.45) - (3.48), where N is any integer ^ A^, have analytic terms and 
converge absolutely and uniformly in #. Therefore each of these four 
series converges to an analytic function in c€. 

If, in addition, we choose n = N ^ sup{Ar*(z); z e <g} = JV|, we 
know, by (4.8), that (4.5) is valid with 

(4.10) #£> = max( * (*? f\ [M(z) (1 + <5(z))]»j for n^N 
ZŒV { 1 — q\z) ) 

Therefore, F(w) is analytic in <€ for all n ^ TV J. Furthermore, by 
(2.6) (the uniform convergence of the four series and the bounded-
ness away from 0 of the denominator), we see that the convergence of 
{S^(wn+m, z)}%=1 is uniform with respect to ^ for all n ^ N%. 

A. Since F{z) = lim^ooSn(wn, z) = SN*(F(N%), Z) for all z e ^ , where 
F(N*) and the coefficients of SN* are analytic in <g by condition (i) and 
part B, we know that F(z) is meromorphic or identically oo in (6. Further­
more, the convergence is uniform if F(z) ^ oo in fé'. Since fé was arbitrarily 
chosen, A follows. 

C. This follows directly, since (4.6) implies (4.8) with n = N for all 
Z G i 

D. This follows directly from (4.5) and (4.10). 

COMMENT 1. The constant N$ and the sequence {^n)}£Ljv$ in part 
B, are (by the proof) for a fixed q\Q) -* (0, 1), given by (4.10) and by 
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N% = max{A^*(z); z e ^ } , where N*(z) is the smallest integer in [N(z), oo) 
such that (4.6) is satisfied (with N = N*(z)). 

COMMENT 2. Part C states sufficient conditions for F{n) to be analytic 
in Q). If, in particular, these conditions are satisfied for N = 0, then F 
and F(n) are analytic in <3, for all n. 

So, also, in part B, if N% = 0 is possible in some compact subset <̂ , 
then Fand F{n) are analytic in ^ for all n. 

COMMENT 3. As mentioned in Comment 2 to Proposition 3.3, we can 
permit an(z) = 0 and/or än(z) = 0 in Q. This is convenient, since an and 
än are functions. For the same reason, we also want to include some of the 
cases where bn(z) + wn(z) = 0 or wn{z) = oo, for some n. 

Case 1. If z0 is an isolated point in ^ * \ ^ , such that 
(a) an, bn, ân and bn are analytic and wn is meromorphic at z0 for all n\ 
(b) l i m ^ a(z), iim2_»20 ß(z) and ìim"^20 N(z) are finite; and 
(c) bn(z0) + w„(z0) = 0 for at most a finite number of indices n, then 

we can include z0 in Q) by adjusting a, ß and A" in a neighborhood of z0. 
If, however, bn(z0) + wn(z0) = 0 and/or vi'„(z0) = oo for infinitely many 

indices n, we need another approach as in Case 2. 
Case 2. Suppose that z0 is an isolated point in ^*\®, such that the 

conditions (a) and (b) above hold, and, in addition, that 
(c)' bn(z0) + wn(z0) = 0, for some or all n, 
(d)' wn is analytic at z0, for sufficiently large indices n, and 
(e)' òn(z0) # 0, for some sufficiently large indices n for which bn(z0) + 

ww(z0) = 0. 
Then we can define N(z) such that TV is also continuous at z0. (We 

achieve this by defining N(z0) ^ ÏÏïn^^A^z), and redefining N(z) in a neigh­
borhood of z0, such that TV is continuous in Q) U fco}-) F r ° m (4-2X w e s e e 

that (e)' implies that we need M(z0) = oo (in fact, lim2_+20Af(z) = oo) 
or C(zQ) = oo (l im^C(z) = oo), which, by (4.6), implies that a(z0) = 
ß(z0) = 0 (lim2_20a(z) = lim2_20/3(z) = 0). In both cases we therefore 
need an+1(z0) = än+1(z0) and bn(z0) = *B(z0), for all /i ^ JV(Z0) + 1. 

If lim2_>20M(z) = oo, we see, by (4.5), that lim2_20F
(n)(z) = wn(z0) = 

S^(wn+m, z0) = lim^oo S « ( ^ , z0) = F^(zo), for all « ^ JV(z0) + 1 . 
Hence, F(w)(z) is analytic at z0, for all n > N(z0). 

If lim2_20C(z) = oo, the question is more open. Again, we have Fin)(zQ) 
= wn(z0). But we need lim2_20 (a(z) + ß(z))C(z) = 0 to conclude from 
Theorem 4.1 that F ( n ) is analytic at z0. 

Case 3. If we have that bn(z0) + wn(z0) = 0 if and only if bn(z0) = 0, or 
if we have that w„ has a pole at z0 for some or all indices n ^ N(z0) + 1, 
the picture gets more complicated. These cases are best handled separ­
ately in each specific application of Theorem 4.1. 

COMMENT 4. The generality of this theorem has made the checking of 
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the conditions in specific situations rather troublesome. In particular, 
this is so for the restrictions on the auxiliary continued fraction K{àn(z)j 
bn(z)) and its tails. Therefore, this theorem should mainly be used to 
develop a library of usable (that is, already checked) auxiliary continued 
fractions along with instructions for which continued fractions K{an(z)j 
bn{z)) they can be used. A beginning of such a library will be presented in a 
separate paper in the near future. 

COMMENT 5. If we have, in addition to the conditions of Theorem 
4.1, that both K(an(z)/bn(z)) and K(än(z)/bn(z)) converge in ^ , that 
l i m ^ ^ S ^ / ^ , z) = / (z ) in £% and furthermore that wn = f{n\ then f(z) 
is meromorphic or identically oo in Q, by Theorem 4.1. 

The condition f(z) = \\mn^Sn(f
{n), z) is not as restrictive as it may 

seem. For instance, if K(an(z)/bn(z)) is limit ^-periodic, then we know 
by [2, Theorem 3.1] that it is satisfied, except, possibly, in very special 
situations. 

If, in particular, N(z) = 0 and (4.6) is satisfied for TV = 0, then f(z) 
is analytic in Q, and so are all the tails/(w)(z). 

We can also use Theorem 4.1 to prove that f(z) = K(an(z)/bn(z)) is 
meromorphic in a domain Q, and thereafter combine this with results 
on boundedness of/(z). 

COMMENT 6. If we have, in addition to the conditions of Theorem 4.1, 
that both K(an(z)bJ(z)) and K(ân(z)lbn(z)) converge in a domain ^ 0 ^ ^> 
that F(0)(z) = f(z) in ^ a n d that the analytic continuation wM(z)of f{n)(z) 
to @ satisfies the conditions (ii) and (iii) of Theorem 4.1 in ^ , then Fm(z) 
is the meromorphic continuation of f(z) to Q. 

If, in particular, N(z) = 0, and (4.6) is satisfied for N = 0,then F{0)(z) 
is the analytic continuation of/(z) to Q. 

However, in this situation, the computation of F(z) by means of 5„(H„, 

z) can be unstable. This is not a big problem, since it is easily solved by 
means of continued fractions. The method is presented in [8]. In short, 
it consists of constructing the continued fraction which has Sn(wn, z) as 
its ordinary approximants, and of computing its approximants by one 
of the stable methods for computing approximants of continued fractions. 
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