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A NOTE ON HIGHER DERIVATIONS AND ORDINARY
POINTS OF CURVES

WILLIAM C. BROWN

ABSTRACT. In this note, we prove the following theorem: Let k
be an algebraically closed field of arbitrary characteristic. Let C
denote a reduced curve in A} and let p be a point of C. Let R
denote the local ring of C at p and let R denote the integral closure
of R in its total quotient ring. Let M,, ..., M, be the branches of
C at p. Then p is an ordinary point of C if and only if the following
two conditions are satisfied: (a) Der(R) € Der¥(R) for allg = 1;
(b) For ¢ a common uniformizing parameter of C in R, there exists

an x in the maximal ideal of R such that 0x/0¢ is a unit in R, and
(0x/0t) Mod M, # (0x/dt) Mod, forall1 £i<j < h.

Introduction. Throughout this paper, we shall let k denote an algebrai-
cally closed field of arbitrary characteristic. We shall let C denote a
reduced curve in A? (affine n-space over k). Let p denote a point of C.
In this paper, we wish to characterize when p is an ordinary point of C
in terms of the higher derivations on the local ring R of C at p. We shall
first show that C is unramified at p precisely when every higher order
k-derivation on R extends to the integral closure R. To the best of my
knowledge this result was first proven by T. Bloom in [2] for irreducible
curves over the complex numbers C. This result was later generalized to
arbitrary fields of characteristic zero by J. Becker in [1]. In this paper,
we present a purely algebraic argument which works in any characteristic.

In the last part of this paper, we present straightforward differential
conditions which guarantee C has distinct tangents at p.

Preliminaries. In this section, we shall present the definitions and
basic notation which will be used throughout the rest of this paper.
We shall let C denote a reduced curve in A7. To be more specific; C =
Spec{k[X1, ..., X,J/%} where ¥ is a radical ideal, unmixed of height
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n — lin k[X3, ..., X,]. Let pe C. Without loss of generality, we can
assume p is the origin in AZ. Thus, % € (X3, ..., X,).

We shall let R = (@, the local ring of C at p. R will denote the integral
closure of R in its total quotient ring Q(R). We shall let m denote the
maximal ideal of R and {M;, ..., M,} the maximal ideals of R. We say
C is unramified at p it mR = M, --- M,

A g-th order, k-derivation § of a k-algebra S into an S-module V is a
linear map ¢ € Hom(S, V) such that forany g + 1 elements xy, ..., x,€ S
we have

5(XO e xq)

= 24y(= 1)t Zi1<~-<i, Xig ore X 0(xg oo Xy oo e Xy v 0 Xp)

M

The S-module of all g-th order, k-derivations of S into S will be denoted
by Deri(S). Any facts concerning these modules for which we do not
give a specific reference can be found in [9].

We say an ideal 7 £ S is differential under Der¥(S) if 6(/) € I for all
0 € Der%(S). We shall need the following simple lemma in the next section.

LEMMA. Let S be any noetherian k-algebra and I a radical ideal in S.
If 6 € Derd(S), and 6(I) € I, then 6(P) S P for any associated prime P
of I

PRrROOF. Let 2, ..., 2, denote the associated primes of /. Since [ is a
radical ideal, each 2; is an isolated prime of I. In particular, 2; 2 ()4
2. Let xe 2, and choose ye{();z #;} — #; Then for all n 2 1,
xym € I. Applying equation (1) to §(x)7), we see y49(x) € ;. Thus, §(x) €
2,, and £, is differential under 4.

We note that I being a radical ideal of S is essential for the validity of
the Lemma. For example, if $ = k[X], and J € DerZ(k[X]) is defined by
o(X) = 1, and 0(X?) = X2, then I = (X?) is differential under § whereas
v/ I = (X)is not.

Finally, we recall the definition of p being an ordinary point of C.
The maximal ideals M;, ..., M, in R are called the branches of C
at p (See [10]). If each branch M, is linear (i.e., mR = M, ... M,),
then the canonical map z,;: m/m2 - M,;/M? induces an injection z}:
Hom,(M,;/M?% k) - Hom,(m/m?, k). We identify Hom,(m/m?2, k) with
the tangent space J ¢ , of C at p. Foreachi =1, ..., h, let7,; = Im z}.
Then 7 ;is a one dimensional (i.e., a line) subspace of 7 , called the tan-
gent to M;. We say p is an ordinary point of C if C is unramified at p, and
the tangents 74, ..., 7, are all distinct.

Main results. It is well known that Der{(R) ® z Q(R) = Der{(Q(R)).
Thus, any g-th order, k-derivation § on R can be viewed as a g-th order
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derivation on the total quotient ring Q(R). It then makes sense to enquire
when §(R) € R. If 6(R) € R, we shall say § extends to R. If every g-th
order, k-derivation on R extends to R, we shall write Derd(R) £ Deri(R).
In [11], A. Seidenberg showed that Derl(R) £ Derli(R) whenever the
characteristic of k is zero. In the same paper, Seidenberg gave an example
of a first order k-derivation on R which did not extend to R when the
characteristic of k was not zero. In [3], the author exhibited an example
in characteristic zero, where Der?(R) & Der%(R). In both examples, the
curve C failed to be unramified at p. In studying these examples, one is
naturally led to our first theorem.

THEOREM 1. Let C denote a reduced curve in A% and let p be a point of C.
Let R denote the local ring of C at p and R the integral closure of R in its
total quotient ring. Then C is unramified at p if and only if Derd(R) S
Der¥(R) for all g 2 1.

PrOOF. We can assume the point p is the origin in A7 without -any
loss of generality. If p is a simple point of C, then R = R, and the result
is trivial. Hence, we assume p is a singular point of C. Then R # R.

Let R and R denote the m-adic completions of R and R respectively.
Since R is a reduced, excellent local ring, the completion R is reduced,
and the integral closure of R in Q(R) is just R. The following facts are well
known:

) Der{(R) ® R = Der¥(R) for all ¢ = 1,
3) Deri(R) @z R Derg(f() forallg = I,
and

O] QR NR=R

A proof of equation (2) can be found in [6; Prop. 1]; equation (3) in [7;
Lemma 2]; and (4) in [8; (18.4)]. It easily follows from equations (2)
through (4) that we can assume without loss of generality that R is com-
plete.

If g5, ..., g, denote the minimal primes of R, then R has the following
form:

&) R=V® - @V,

In equation (5), V; is the integral closure of R/q; in Q(R/q;). Each V, is
a complete, discrete, rank one, valuation ring containing a copy k of its
residue class field. The reader is referred to [4; pp. 119-122] for the proofs
of the statements made above.

Now let us assume C is unramified at p. Then mR = M; --- M,. It
follows that mV; is the maximal ideal of V,. Thus, m(R/q,) contains a
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uniformizing parameter of ¥,. Since both rings are complete, we conclude
R/g; = V. So, R = @', R/q;. Now if § € Deri(R), then §(0) < (0).
Hence, by the Lemma, §(¢q;) € ¢, for i = 1, ..., h. Thus, ¢ induces a g-th
order k-derivation on each summand R/q; of R. It readily follows that
8(R) £ R, and, thus, Derg(R) £ Der¥(R).

Conversely, suppose Dery(R) & Dery(R) for all ¢ = 1. We wish to
argue mR = My ... M,. The proof given here is a modification of an
argument due to Y. Ishibashi in [7].

We have mR = Myt --- M$* with s; > 1. Suppose s; > 1 for some i.
We can assume s; = u > 1. We shall then construct a ¢ € Der¥(R) for a
suitable ¢ > 1 such that §(R) ¢ R.

Let § denote the conductor of R in R. If J = ("), M, then there exists
an integer n > 1 such that J» < f £ m. R is a principal ideal ring, and.
consequently, J = tR for some t € R. Let us write t = (¢, ..., t;) €
@' V; = R.Then V; = k[[t]]], and t7 €.

Since t7+2 R is a primary ideal for min R, R/i**2 R s a finite dimensional
k-vector space. Let {yy, ..., y,} be elements of m whose residues modulo
t#*2 R form a k-basis of m/t"*2R. For any x € R, let us denote the i-th
component of x (in V) as x,;. Then x = (xy, ..., x;). Lety;: Q(V;)) - Z U
{oo} denote the canonical valuation given by v(z) = ord,(z). Since
mV; = t#V; with u > 1, we see y1(y;1) = 2 for j =1, ..., s. Using the
fact that V; = k[[#;]] and taking k-linear combinations of yj, ..., y, if
need be, we can assume, without loss of generality, that 2 < v(y11) <
vi(ya) <+ < vi(ya)-

Now let D = {Dy = 1, Dy, ...} be the k-derivation of infinite rank on
V1 given by the following equations:

8\ o .
© D) = () it sz
0 if g<i

For the definition and existence of such a derivation of infinite rank, we
refer the reader to [5; IV (pt 4), 16.11.2]. Using equation (6), one easily
checks that if fe Vy, and vi(f) = a, then the following relations are
satisfied:

@) viDf) =Za—i for i<a

and v1(Dy(f)) = 0. Let us set yy(y;1) =n;for j=1,...,s. Then2 < n; <
Ny < ++¢ < Ny

For any a4, ..., a,€ V1, we can consider the differential operator 4
defined by the following equation:

®) A=%&+ngwww
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Since D is a higher derivation of infinite rank, each D, is an i-th order,
k-derivation on V; ([9; Prop, 5]). Thus, using [9; Prop. 4], we can view
A4 as an (n, — 2)—order, k-derivation on Q(V7) = k((t;)). We claim
there exists a choice of constants a;, ..., a,€ V; such that 4(y;) =0
forallj = 1, ..., s. To see this, we consider the following system of linear
equations in unknowns xj, ..., X:

©) Tt X 02 Do) = — - D = Loy

We regard the equations in (9) as s-equations in s-unknowns with coef-
ficients in the field k((¢,)). If we solve the equations in (9) using Cramer’s
rule and use equation (7) to check the y;-value of our answers, we see we
get a solution ay, ..., a,in V.

Now let a;, ..., a;, € V; be a solution to the equations in (9) and define
4 € Ders—2(k((t)))) from these ay, . . ., a, via equation (8). Setq = n, — 2.
Since Q(R) = @, k((t)), one easily checks that DerQ(R)) =

h_ Derd(k((z,))). Thus § = (4,0, ..., 0)is a well defined ¢-th order,
k-derivation on Q(R). We claim that §(R) S R, but §(R) & R. To see
this, let fe R. Then f = ay + a1y1 + *++ + a,y; + t""2r. Here ay, .. .,
as€k, and y is some element in R. Since 4 vanishes on ay, yy3, .- ., Vs,
we have o(f) = (472 11), 0, ..., 0). Again, using equations (7) and (8),
one easily checks that vy (4(t#*2 11)) = n. Thus, 4(t712 y;) = t}0, for some
element ¢, € V;. Therefore, d(f) = t"(61, 0, ..., 0) € R since 1" ef. We
have now shown J(R) € R. Since §(t) = (4d(t1), 0, ..., 0) = (1/1,0,
...,0) ¢ R, we see 0 does not extend to R. This is impossible, and, hence,
completes the proof of the theorem.

Let us assume C is unramified at p. Since k is infinite, there exists a
sufficiently general k-linear combination of the basis elements of m, say
t € m, such that mR = tR. Then in the complete case, R = K[[¢]] where
K = R/J. Thus, for any x € R, 9x/at is well defined. Now if x e m, the
value of (0x/9t) Modulo M, is the same as the value of x/t at the cor-
responding point M; | R[t~m] of Spec(R[t~1m]). So, for x a sufficiently
general k-linear combination of a basis for m, the number of distinct
values of 9x/at at the closed points of Spec(R) will be precisely the number
of maximal ideals of R[t~lmy], i.e., the number of tangents at p. Thus, we
get the following corollary to the theorem.

THEOREM 2. Let k be an algebraically closed field of arbitrary character-
istic. Let C denote a reduced curve in A%} and let p be a point on C. Let R
denote the local ring of C at p, and let R denote the integral closure of R in
its total quotient ring. Let My, ..., M, be the branches of C at p. Then p
is an ordinary point of C if and only if the following two conditions are
satisfied:
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(a) Derg(R) < Derg(R) for all ¢ = 1.

(b) For t a common uniformizing parameter of C in R, there exists an
X in the maximal ideal of R such that 0x[ot is a unit in R, and (9x/3t)
mod M; s (9x/0t)mod M forall1 < i< j < h
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