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A NOTE ON HIGHER DERIVATIONS AND ORDINARY 
POINTS OF CURVES 

WILLIAM C. BROWN 

ABSTRACT. In this note, we prove the following theorem: Let k 
be an algebraically closed field of arbitrary characteristic. Let C 
denote a reduced curve in A* and let p be a point of C. Let R 
denote the local ring of C at p and let R denote the integral closure 
of R in its total quotient ring. Let Ml9 . . . , Mh be the branches of 
C at p. Then p is an ordinary point of C if and only if the following 
two conditions are satisfied: (a) DerJCR) ü Der|(^) for all q ^ 1 ; 
(b) For t a common uniformizing parameter of C in R, there exists 
an x in the maximal ideal of R such that dx/dt is a unit in R, and 
(dx/dt) Mod Mi * (dx/dt) Mod, for all 1 ^ i < j £ h. 

Introduction. Throughout this paper, we shall let k denote an algebrai­
cally closed field of arbitrary characteristic. We shall let C denote a 
reduced curve in Ag (affine «-space over k). Let p denote a point of C. 
In this paper, we wish to characterize when p is an ordinary point of C 
in terms of the higher derivations on the local ring R of C at p. We shall 
first show that C is unramified at p precisely when every higher order 
^-derivation on R extends to the integral closure R. To the best of my 
knowledge this result was first proven by T. Bloom in [2] for irreducible 
curves over the complex numbers C. This result was later generalized to 
arbitrary fields of characteristic zero by J. Becker in [1]. In this paper, 
we present a purely algebraic argument which works in any characteristic. 

In the last part of this paper, we present straightforward differential 
conditions which guarantee C has distinct tangents at p. 

Preliminaries. In this section, we shall present the definitions and 
basic notation which will be used throughout the rest of this paper. 
We shall let C denote a reduced curve in AJ. To be more specific; C = 
Spec{k[Xi, . . . , XJ/21} where % is a radical ideal, unmixed of height 
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n — 1 in k[Xi, . . . , Xn]. Let p e C Without loss of generality, we can 
assume p is the origin in AJ. Thus, 2( ü (A^, . . . , A^). 

We shall let R = 0c>/), the local ring of Catp. R will denote the integral 
closure of R in its total quotient ring Q(R). We shall let m denote the 
maximal ideal of R and {M^ . . . , Mh) the maximal ideals of R. We say 
C is unramified at p if mR = Mx • • • Mh. 

A tf-th order, ^-derivation ö of a /:-algebra S into an S-module K is a 
linear map 5 G HomÄ(5, F) such that for any q + 1 elements x0, . . . , ^ e S 
we have 

= Lf= i ( - O5"1 Hh<-<is
 xh • * • xis d(x0 . . . ^ . . • *,, • - • *,). 

The S-module of all ^-th order, ^-derivations of S into S will be denoted 
by DerJ(S). Any facts concerning these modules for which we do not 
give a specific reference can be found in [9]. 

We say an ideal / g S is differential under Der*(S) if <?(/) g / for all 
ö G Der^(S). We shall need the following simple lemma in the next section. 

LEMMA. Let S be any noetherian k-algebra and I a radical ideal in S. 
If de Derq

k(S), and d(I) E /, then ö(0>) g &> for any associated prime 0> 
of! 

PROOF. Let ^ j , . . . , @>s denote the associated primes of /. Since / i s a 
radical ideal, each ^ z is an isolated prime of I. In particular, &>{ 2> f)j& 
gPj. Let xe&i and choose ye{f]Mi^j} - ^f.. Then for all n ^ 1, 
xyn G /. Applying equation (1) to d(xyQ), we see y«ö(x) e 2?^ Thus, ö(x) e 
&>h and g>i is differential under 5. 

We note that / being a radical ideal of S is essential for the validity of 
the Lemma. For example, if S = k[X], and ô e DerJ(fc[Ar]) is defined by 
d(X) = 1, and Ö(X2) = X2, then / = (A^2) is differential under Ö whereas 
V T = W i s not. 

Finally, we recall the definition of p being an ordinary point of C. 
The maximal ideals Mh ..., MÄ in /£ are called the branches of C 
at p (See [10]). If each branch Aff- is linear (i.e., mÄ = Afx . . . Mh), 
then the canonical map %{\ m/m2 -> MJMj induces an injection rif; 
Hom*(A/yMf, k) -> Hom*(m/m2, &). We identify Hom*(m/m2, k) with 
the tangent space &~c,p °f C a t /*• F ° r e a c ^ * = U • • •, A, let «^ = Im ^f. 
Then STi is a one dimensional (i.e., a line) subspace of &"Cip called the tan­
gent to Mt. We say /? is an ordinary point of C if C is unramified at /?, and 
the tangents <^i, . . . , 3Th are all distinct. 

Main results. It is well known that DerfOR) %R Q(R) s Derf(g(i?)). 
Thus, any ^-th order, /^-derivation d on R can be viewed as a <7-th order 
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derivation on the total quotient ring Q(R). It then makes sense to enquire 
when d(R) g Ä. If d(R) g R, we shall say ö extends to R. If every q-th 
order, ^-derivation on R extends to R, we shall write Der|(iÊ) g Der|(/£). 
In [11], A. Seidenberg showed that Der\(R) g Der|(Ä) whenever the 
characteristic of k is zero. In the same paper, Seidenberg gave an example 
of a first order A>derivation on R which did not extend to R when the 
characteristic of k was not zero. In [3], the author exhibited an example 
in characteristic zero, where Der|(i?) % Der|(Ä). In both examples, the 
curve C failed to be unramified at p. In studying these examples, one is 
naturally led to our first theorem. 

THEOREM 1. Let C denote a reduced curve in Ag and let p be a point of C. 
Let R denote the local ring of C at p and R the integral closure of R in its 
total quotient ring. Then C is unramified at p if and only if Der|(if) g 
Der|(Ä) for all q ^ 1. 

PROOF. We can assume the point p is the origin in Ag without any 
loss of generality. If p is a simple point of C, then R = /£, and the result 
is trivial. Hence, we assume p is a singular point of C. Then R ^ R. 

Let R and R denote the m-adic completions of R and R respectively. 
Since R is a reduced, excellent local ring, the completion R is reduced, 
and the integral closure of R in Q{R) is just R. The following facts are well 
known : 

(2) Der|(/?) ® J s Derf(£) for all q ^ 1, 

(3) Derf(Ä) ®* R s Der|(Ä) for all q ^ 1, 

and 

(4) Q(R) [)R = R 

A proof of equation (2) can be found in [6; Prop. 1]; equation (3) in [7; 
Lemma 2]; and (4) in [8; (18.4)]. It easily follows from equations (2) 
through (4) that we can assume without loss of generality that R is com­
plete. 

If ql9 . . . , qh denote the minimal primes of R, then R has the following 
form : 

(5) R = vx e •.. e vh 

In equation (5), Vt is the integral closure of Rjq{ in Q(R/qt). Each V{ is 
a complete, discrete, rank one, valuation ring containing a copy k of its 
residue class field. The reader is referred to [4; pp. 119-122] for the proofs 
of the statements made above. 

Now let us assume C is unramified at p. Then mR = Mx • • • Mh. It 
follows that mV{ is the maximal ideal of K,-. Thus, m(R/qt) contains a 
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uniformizing parameter of V{. Since both rings are complete, we conclude 
R/qt = V{. So, R = ©*=1 R/qt.. Now if Ö e DerfCR), then ô(0) g (0). 
Hence, by the Lemma, d(qt) g #,- for / = 1 , . . . , h. Thus, ö induces a q-th 
order ^-derivation on each summand R/qt of R. It readily follows that 
ö(R) E R, and, thus, Der£(/Ï) g Der|(£). _ 

Conversely, suppose Der|(i?) g Der|(Ä) for all q ^ 1. We wish to 
argue mÄ = Mi . . . MÄ. The proof given here is a modification of an 
argument due to Y. Ishibashi in [7]. 

We have xnR = M{1 • • • Mf with st ^ 1. Suppose $,• > 1 for some /'. 
We can assume sx = u > 1. We shall then construct a 5 e Der|(i?) for a 
suitable # > l such that d(R) <£ R. 

Let f denote the conductor of R in R. If / = Q ^ M , , then there exists 
an integer n > 1 such that Jn g f g m. /Êis a principal ideal ring, and, 
consequently, J = tR for some / 6 R. Let us write / = (th . . . , th) e 
©?=1K, = *. Then Ff- = k[[tt]], and f e f. 

Since tn+2 Risa, primary ideal for m in R, R/tn+2 Risa, finite dimensional 
k-vector space. Let {yx, . . . , ys} be elements of m whose residues modulo 
tn+2 R form a Â>basis of m/tn+2R. For any xe R, let us denote the /-th 
component of x (in Vt) as x,-. Then x = fo, . . . , xh). Let y,-: ß ( ^ ) - » Z U 
{oo} denote the canonical valuation given by y,-(z) = ord^.(z). Since 
xxxV1 = /«Kx with u > 1, we see viO^i) ^ 2 for y = 1, . . . , s. Using the 
fact that Vi = k[[ti\] and taking ^-linear combinations of yh . . . , >>s if 
need be, we can assume, without loss of generality, that 2 ^ Vi(yn) < 

V1O21) < * • • < vi (^, i ) . 
Now let D = {DQ = 1, Z>1? . . . } be the /^-derivation of infinite rank on 

V\ given by the following equations : 

i(t?) t{-' if ß > i 
(6) DM)=iSl) P~ 

{ 0 if ß < / 
For the definition and existence of such a derivation of infinite rank, we 
refer the reader to [5; IV (pt 4), 16.11.2]. Using equation (6), one easily 
checks that if fe Vx, and v\(f) = a, then the following relations are 
satisfied: 

(7) vi(A(/)) ^ oc - i for i < a 

and vi(Z)a(/)) = 0. Let us set yiO/i) = /iy for 7 = 1, . . . , J. Then 2 ^ ^ < 
w2 < • • • < ns. 

For any al5 . . . , as e VÌ9 we can consider the differential operator â 
defined by the following equation : 

(8) â =j-iD1 + ZUiaitr2£>nr 
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Since D is a higher derivation of infinite rank, each D{ is an z-th order, 
^-derivation on Vx ([9; Prop, 5]). Thus, using [9; Prop. 4], we can view 
A as an (ns — 2)-order, ^-derivation on Q(Vi) = k((ti)). We claim 
there exists a choice of constants aÌ9 . . . , as e Vi such that A(y,i) = 0 
for ally = 1, . . . , s. To see this, we consider the following system of linear 
equations in unknowns jtl5 . . . , xs: 

(9) ZUi Xi tr2 Dni(yjX) = - -J- D^y^J = 1, ..., s. 

We regard the equations in (9) as ^-equations in s-unknowns with coef­
ficients in the field k((t{)). If we solve the equations in (9) using Cramer's 
rule and use equation (7) to check the vi-value of our answers, we see we 
get a solution ah . . . , as in Vv 

Now let aÌ9 . . . , as e Kx be a solution to the equations in (9) and define 
A e Dern

k
s~2(k((ti))) from these aÌ9 . . . , as via equation (8). Set q = ns — 2. 

Since Q(R) = 0 J = 1 k((tt))9 one easily checks that Derf(ß(£)) = 
©?=iDerl(*(('i))). T h u s 8 = ( 4 °> . . . , 0) is a well defined #-th order, 
^-derivation on Q(R). We claim that 5(A) g i?, but <?(Ä) £ Ä. To see 
this, l e t / e R. Then / = a0 + a\y\ + • • • + asys 4* tn+2f. Here o:0, . . . , 
as e ky and 7- is some element in R. Since A vanishes on a0, Jn , . •., ys\9 

we have ö(f) = (A(tf+2 7-1), 0, . . . , 0). Again, using equations (7) and (8), 
one easily checks that vi(A(t?+2 7*1)) ^ n. Thus, A(t^+2 7 )̂ = * ï<7i for some 
element ax e Vv Therefore, ö(f) = tn(ah 0, . . . , 0) € R since tn e f. We 
have now shown ö(R) g R. Since <5(/_) = (zJ(*i), 0, . . . , 0) = (l/*i,0, 
. . . , 0) 4 R, we see d does not extend to R. This is impossible, and, hence, 
completes the proof of the theorem. 

Let us assume C is unramified at p. Since k is infinite, there exists a 
sufficiently general À>linear combination of the basis elements of m, say 
t e m, such that mR = tR. Then in the complete case, R = K[[t]] where 
K = R/J. Thus, for any x e R, dx/dt is well defined. Now if x e m, the 
value of (dx/dt) Modulo M{ is the same as the value of x/t at the cor­
responding point M{ fi JR[f_1m] of Spec(jR[/_1m]). So, for x a sufficiently 
general /c-linear combination of a basis for m, the number of distinct 
values of dx\dt at the closed points of Spec(Ä) will be precisely the number 
of maximal ideals of i?[f-1m], i.e., the number of tangents at p. Thus, we 
get the following corollary to the theorem. 

THEOREM 2. Let k be an algebraically closed field of arbitrary character­
istic. Let C denote a reduced curve in X% and let p be a point on C. Let R 
denote the local ring of C at p, and let R denote the integral closure of R in 
its total quotient ring. Let Afx, . . . , Mh be the branches of C at /?. Then p 
is an ordinary point of C if and only if the following two conditions are 
satisfied: 
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(a) Der^(Ä) g Derg(R) for all q ^ 1. 
(b) For t a common uniformizing parameter of C in R, there exists an 

x in the maximal ideal of R such that dx/dt is a unit in R, and (dx/dt) 
mod Mi # (dx/dt ) mod Mjfor all 1 ^ / < j ^ h. 
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