A NOTE ON HIGHER DERIVATIONS AND ORDINARY POINTS OF CURVES

WILLIAM C. BROWN

ABSTRACT. In this note, we prove the following theorem: Let *k* **be an algebraically closed field of arbitrary characteristic. Let C** denote a reduced curve in A_k^n and let p be a point of C. Let R denote the local ring of C at p and let \bar{R} denote the integral closure of *R* in its total quotient ring. Let M_1, \ldots, M_h be the branches of *C* **at** *p.* **Then** *p* **is an ordinary point of C if and only if the following two conditions are satisfied: (a)** $Der_{k}^{q}(R) \subseteq Der_{k}^{q}(\overline{R})$ **for all** $q \geq 1$ **; (b) For** *t* **a common uniformizing parameter of C in** *R,* **there exists** an *x* in the maximal ideal of *R* such that $\partial x/\partial t$ is a unit in \bar{R} , and $(\partial x/\partial t)$ Mod $M_i \neq (\partial x/\partial t)$ Mod, for all $1 \leq i < j \leq h$.

Introduction. Throughout this paper, we shall let *k* denote an algebraically closed field of arbitrary characteristic. We shall let C denote a reduced curve in A_k^n (affine *n*-space over *k*). Let *p* denote a point of *C*. In this paper, we wish to characterize when p is an ordinary point of C in terms of the higher derivations on the local ring *R* of C at *p.* We shall first show that *C* is unramified at *p* precisely when every higher order *k*-derivation on *R* extends to the integral closure \overline{R} . To the best of my knowledge this result was first proven by T. Bloom in [2] for irreducible curves over the complex numbers C. This result was later generalized to arbitrary fields of characteristic zero by J. Becker in [1]. In this paper, we present a purely algebraic argument which works in any characteristic.

In the last part of this paper, we present straightforward differential conditions which guarantee C has distinct tangents at *p.*

Preliminaries. In this section, we shall present the definitions and basic notation which will be used throughout the rest of this paper. We shall let C denote a reduced curve in A_{k}^{n} . To be more specific; $C =$ $Spec\{k[X_1, \ldots, X_n]\}$ where $\mathfrak A$ is a radical ideal, unmixed of height

AMS(MOS) subject classification: **Primary 13B15, Secondary 13B10**

Received by the editors on November 15, 1982, and in revised form on March 11, 1983.

Key Words and Phrases: q-th order, k-derivation, unramified, common uniformizing **parameter.**

 $n-1$ in $k[X_1, \ldots, X_n]$. Let $p \in C$. Without loss of generality, we can assume *p* is the origin in A_k^n . Thus, $\mathfrak{A} \subseteq (X_1, \ldots, X_n)$.

We shall let $R = \mathcal{O}_{C, p}$, the local ring of C at p. \bar{R} will denote the integral closure of *R* in its total quotient ring $Q(R)$. We shall let m denote the maximal ideal of *R* and $\{M_1, \ldots, M_h\}$ the maximal ideals of \bar{R} . We say *C* is unramified at *p* if $m\bar{R} = M_1 \cdots M_h$.

A q-th order, *k*-derivation δ of a *k*-algebra *S* into an *S*-module V is a linear map $\delta \in \text{Hom}_{k}(S, V)$ such that for any $q + 1$ elements $x_0, \ldots, x_q \in S$ we have

$$
(1) \qquad \begin{aligned} \n\delta(x_0 \cdots x_q) \\
&= \sum_{i=1}^q (-1)^{s-1} \sum_{i_1 < \cdots < i_s} x_{i_1} \cdots x_{i_s} \, \delta(x_0 \cdots \check{x}_{i_1} \cdots \check{x}_{i_s} \cdots x_q). \n\end{aligned}
$$

The S-module of all q -th order, k -derivations of S into S will be denoted by Der $\mathfrak{g}(S)$. Any facts concerning these modules for which we do not give a specific reference can be found in [9].

We say an ideal $I \subseteq S$ is differential under Der[{](S) if $\delta(I) \subseteq I$ for all $\delta \in \text{Der}\S(S)$. We shall need the following simple lemma in the next section.

LEMMA. *Let S be any noetherian k-algebra and I a radical ideal in S. If* $\delta \in \text{Der}^q_k(S)$, and $\delta(I) \subseteqq I$, then $\delta(\mathscr{P}) \subseteqq \mathscr{P}$ for any associated prime \mathscr{P} *of I.*

Proof. Let $\mathscr{P}_1, \ldots, \mathscr{P}_s$ denote the associated primes of *I*. Since *I* is a radical ideal, each \mathscr{P}_i is an isolated prime of *I*. In particular, $\mathscr{P}_i \not\supset \bigcap_{j \neq i}$ \mathscr{P}_j . Let $x \in \mathscr{P}_i$ and choose $y \in \{ \bigcap_{j \neq i} \mathscr{P}_j \} - \mathscr{P}_i$. Then for all $n \geq 1$, $xy^n \in I$. Applying equation (1) to $\delta(xy^q)$, we see $y^q \delta(x) \in \mathcal{P}_i$. Thus, $\delta(x) \in I$ \mathscr{P}_i , and \mathscr{P}_i is differential under δ .

We note that / being a radical ideal of *S* is essential for the validity of the Lemma. For example, if $S = k[X]$, and $\delta \in \text{Der}_{k}^{2}(k[X])$ is defined by $\delta(X) = 1$, and $\delta(X^2) = X^2$, then $I = (X^2)$ is differential under δ whereas $\sqrt{I} = (X)$ is not.

Finally, we recall the definition of *p* being an ordinary point of C. The maximal ideals M_1 , ..., M_h in \overline{R} are called the branches of C at p (See [10]). If each branch M_i is linear (i.e., $m\overline{R} = M_1 \ldots M_h$), then the canonical map π_i : $m/m^2 \to M_i/M_i^2$ induces an injection π_i^* : $\text{Hom}_k(M_i/M_i^2, k) \to \text{Hom}_k(m/m^2, k)$. We identify $\text{Hom}_k(m/m^2, k)$ with the tangent space $\mathcal{T}_{C, p}$ of C at p. For each $i = 1, ..., h$, let $\mathcal{T}_i = \text{Im } \pi_i^*$. Then \mathscr{T}_i is a one dimensional (i.e., a line) subspace of $\mathscr{T}_{C,\rho}$ called the tangent to M_i . We say p is an ordinary point of C if C is unramified at p, and the tangents $\mathcal{T}_1, \ldots, \mathcal{T}_h$ are all distinct.

Main results. It is well known that $Der_{k}^{q}(R) \otimes_{R} Q(R) \cong Der_{k}^{q}(Q(R)).$ Thus, any q -th order, k -derivation δ on R can be viewed as a q -th order

derivation on the total quotient ring $O(R)$. It then makes sense to enquire when $\delta(\bar{R}) \subseteq \bar{R}$. If $\delta(\bar{R}) \subseteq \bar{R}$, we shall say δ extends to \bar{R} . If every *q*-th order, *k*-derivation on *R* extends to \bar{R} , we shall write Der_{{(R)} \subseteq Der_{{(\bar{R}).} In [11], A. Seidenberg showed that $Der_k^1(R) \subseteq Der_k^1(\overline{R})$ whenever the characteristic of *k* is zero. In the same paper, Seidenberg gave an example of a first order *k*-derivation on *R* which did not extend to \bar{R} when the characteristic of *k* was not zero. In [3], the author exhibited an example in characteristic zero, where $Der_{k}^{2}(R) \nsubseteq Der_{k}^{2}(\overline{R})$. In both examples, the curve C failed to be unramified at p . In studying these examples, one is naturally led to our first theorem.

THEOREM 1. Let C denote a reduced curve in A_k^n and let p be a point of C. Let R denote the local ring of C at p and \overline{R} the integral closure of R in its *total quotient ring. Then C is unramified at p if and only if* $Der\mathcal{C}(R) \subseteq$ $Der_{\mathcal{I}}(\overline{R})$ for all $q \geq 1$.

PROOF. We can assume the point p is the origin in A_{k}^{n} without any loss of generality. If p is a simple point of C, then $R = \overline{R}$, and the result is trivial. Hence, we assume *p* is a singular point of *C*. Then $R \neq \overline{R}$.

Let \hat{R} and \hat{R} denote the m-adic completions of R and \overline{R} respectively. Since *R* is a reduced, excellent local ring, the completion \hat{R} is reduced. and the integral closure of \hat{R} in $O(\hat{R})$ is just \hat{R} . The following facts are well known :

(2)
$$
\operatorname{Der}^q_k(R) \otimes_R \hat{R} \cong \operatorname{Der}^q_k(\hat{R})
$$
 for all $q \ge 1$,

(3)
$$
\operatorname{Der}_{\hat{k}}^q(\bar{R}) \otimes_R \hat{R} \cong \operatorname{Der}_{\hat{k}}^q(\hat{R}) \text{ for all } q \geq 1,
$$

and

$$
(4) \hspace{3.1em} Q(\bar{R}) \hspace{0.2em} \cap \hspace{0.2em} \bar{R} \hspace{0.2em} = \hspace{0.2em} \bar{R}
$$

A proof of equation (2) can be found in [6; Prop. 1]; equation (3) in [7; Lemma 2]; and (4) in $[8; (18.4)]$. It easily follows from equations (2) through (4) that we can assume without loss of generality that *R* is complete.

If q_1, \ldots, q_h denote the minimal primes of *R*, then \overline{R} has the following form :

$$
\bar{R} = V_1 \oplus \cdots \oplus V_h
$$

In equation (5), V_i is the integral closure of R/q_i in $Q(R/q_i)$. Each V_i is a complete, discrete, rank one, valuation ring containing a copy *k* of its residue class field. The reader is referred to [4; pp. 119-122] for the proofs of the statements made above.

Now let us assume *C* is unramified at *p*. Then $m\overline{R} = M_1 \cdots M_h$. It follows that mV_i is the maximal ideal of V_i . Thus, $m(R/q_i)$ contains a

uniformizing parameter of *V{ .* Since both rings are complete, we conclude $R/q_i = V_i$. So, $R = \bigoplus_{i=1}^h R/q_i$. Now if $\delta \in \text{Der}_{\ell}(R)$, then $\delta(0) \subseteq (0)$. Hence, by the Lemma, $\delta(q_i) \subseteq q_i$ for $i = 1, \ldots, h$. Thus, δ induces a q-th order *k*-derivation on each summand *R/q_t* of *R*. It readily follows that $\delta(\bar{R}) \subseteq \bar{R}$, and, thus, Der $\ell(R) \subseteq \text{Der}_{\ell}(\bar{R})$.

Conversely, suppose $\text{Der}_{\ell}(R) \subseteq \text{Der}_{\ell}(\bar{R})$ for all $q \ge 1$. We wish to argue $m\bar{R} = M_1 \ldots M_k$. The proof given here is a modification of an argument due to Y. Ishibashi in [7].

We have $m\bar{R} = M_1^{s_1} \cdots M_h^{s_h}$ with $s_i \ge 1$. Suppose $s_i > 1$ for some *i*. We can assume $s_1 = u > 1$. We shall then construct a $\delta \in \text{Der}_{k}^q(R)$ for a suitable $q \gg 1$ such that $\delta(\bar{R}) \not\subset \bar{R}$.

Let f denote the conductor of *R* in \bar{R} . If $J = \bigcap_{i=1}^h M_i$, then there exists an integer $n \gg 1$ such that $J^n \subseteq \mathfrak{f} \subseteq \mathfrak{m}$. \overline{R} is a principal ideal ring, and, consequently, $J = t\bar{R}$ for some $t \in \bar{R}$. Let us write $t = (t_1, \ldots, t_h) \in$ $\bigoplus_{i=1}^{h} V_i = \overline{R}$. Then $V_i = k[[t_i]]$, and $t^n \in \mathfrak{f}$.

Since t^{n+2} *R* is a primary ideal for m in R, R/t^{n+2} *R* is a finite dimensional *k*-vector space. Let $\{y_1, \ldots, y_s\}$ be elements of m whose residues modulo t^{n+2} R form a k-basis of $m/t^{n+2}R$. For any $x \in \overline{R}$, let us denote the *i*-th component of *x* (in V_i) as x_i . Then $x = (x_1, \ldots, x_h)$. Let $v_i: Q(V_i) \rightarrow \mathbb{Z} \cup \mathbb{Z}$ $\{\infty\}$ denote the canonical valuation given by $v_i(z) = \text{ord}_t(z)$. Since $mV_1 = t_1^{\mu}V_1$ with $u > 1$, we see $v_1(v_{i_1}) \geq 2$ for $j = 1, \ldots, s$. Using the fact that $V_1 = k[[t_1]]$ and taking k-linear combinations of y_1, \ldots, y_s if need be, we can assume, without loss of generality, that $2 \leq \nu_1(y_{11})$ < $\nu_1(y_{21}) < \cdots < \nu_1(y_{s1}).$

Now let $D = \{D_0 = 1, D_1, \ldots\}$ be the *k*-derivation of infinite rank on V_1 given by the following equations:

(6)
$$
D_i(t_1^{\beta}) = \begin{cases} \binom{\beta}{i} t_1^{\beta-i} & \text{if } \beta \geq i \\ 0 & \text{if } \beta < i \end{cases}
$$

For the definition and existence of such a derivation of infinite rank, we refer the reader to [5; *IV* (pt 4), 16.11.2]. Using equation (6), one easily checks that if $f \in V_1$, and $v_1(f) = \alpha$, then the following relations are satisfied:

(7)
$$
\nu_1(D_i(f)) \geq \alpha - i \text{ for } i < \alpha
$$

and $\nu_1(D_\alpha(f)) = 0$. Let us set $\nu_1(\nu_{i1}) = n_i$ for $j = 1, \ldots, s$. Then $2 \leq n_1 <$ $n_2 < \cdots < n_s$

For any $a_1, \ldots, a_s \in V_1$, we can consider the differential operator Δ defined by the following equation :

(8)
$$
\Delta = \frac{1}{t_1} D_1 + \sum_{i=1}^s a_i t_1^{n_i-2} D_{n_i}.
$$

Since *D* is a higher derivation of infinite rank, each D_i is an *i*-th order, *k*-derivation on V_1 ([9; Prop, 5]). Thus, using [9; Prop. 4], we can view *A* as an $(n_s - 2)$ - order, *k*-derivation on $Q(V_1) = k((t_1))$. We claim there exists a choice of constants $a_1, \ldots, a_s \in V_1$ such that $\Delta(y_{j1}) = 0$ for all $j = 1, \ldots, s$. To see this, we consider the following system of linear equations in unknowns x_1, \ldots, x_s :

(9)
$$
\sum_{i=1}^s x_i t_1^{n_i-2} D_{n_i}(y_{i1}) = -\frac{1}{t_1} D_1(y_{i1}), j = 1, ..., s.
$$

We regard the equations in (9) as s-equations in s-unknowns with coefficients in the field $k((t_1))$. If we solve the equations in (9) using Cramer's rule and use equation (7) to check the v_1 -value of our answers, we see we get a solution a_1 , ..., a_s in V_1 .

Now let $a_1, \ldots, a_s \in V_1$ be a solution to the equations in (9) and define $\Delta \in \text{Der}_{k}^{n_s-2}(k((t_1)))$ from these a_1, \ldots, a_s via equation (8). Set $q = n_s - 2$. Since $Q(\overline{R}) = \bigoplus_{i=1}^{h} k((t_i))$, one easily checks that $Der_k^q(Q(\overline{R})) =$ $\bigoplus_{i=1}^h \text{Der}_{k}^{a}(k((t_i)))$. Thus $\delta = (1, 0, \ldots, 0)$ is a well defined q-th order, *k*-derivation on $O(\bar{R})$. We claim that $\delta(R) \subseteq R$, but $\delta(\bar{R}) \nsubseteq \bar{R}$. To see this, let $f \in R$. Then $f = \alpha_0 + \alpha_1 y_1 + \cdots + \alpha_s y_s + t^{n+2} \gamma$. Here α_0, \ldots , $\alpha_s \in k$, and γ is some element in *R*. Since Δ vanishes on $\alpha_0, \gamma_{11}, \ldots, \gamma_{s1}$, we have $\delta(f) = (A(t_1^{n+2}\gamma_1), 0, \ldots, 0)$. Again, using equations (7) and (8), one easily checks that $\nu_1(A(t_1^{n+2}\gamma_1)) \ge n$. Thus, $A(t_1^{n+2}\gamma_1) = t_1^n \sigma_1$ for some element $\sigma_1 \in V_1$. Therefore, $\delta(f) = t^n(\sigma_1, 0, \ldots, 0) \in R$ since $t^n \in \mathfrak{f}$. We have now shown $\delta(R) \subseteq R$. Since $\delta(t) = (A(t_1), 0, \ldots, 0) = (1/t_1, 0, \ldots)$ \ldots , 0) $\notin \overline{R}$, we see δ does not extend to \overline{R} . This is impossible, and, hence, completes the proof of the theorem.

Let us assume *C* is unramified at *p.* Since *k* is infinite, there exists a sufficiently general k -linear combination of the basis elements of m , say *t* ϵ m, such that $m\bar{R} = t\bar{R}$. Then in the complete case, $\bar{R} = K[[t]]$ where $K = \overline{R}/J$. Thus, for any $x \in \overline{R}$, $\partial x/\partial t$ is well defined. Now if $x \in \mathfrak{m}$, the value of $(\partial x/\partial t)$ Modulo M_i is the same as the value of x/t at the corresponding point $M_i \cap R[t^{-1}m]$ of Spec($R[t^{-1}m]$). So, for x a sufficiently general k -linear combination of a basis for m , the number of distinct values of $\partial x/\partial t$ at the closed points of Spec(\overline{R}) will be precisely the number of maximal ideals of $R[t^{-1}m]$, i.e., the number of tangents at p. Thus, we get the following corollary to the theorem.

THEOREM 2. *Let k be an algebraically closed field of arbitrary characteristic. Let C denote a reduced curve in X% and let p be a point on C. Let R denote the local ring of C at p, and let R denote the integral closure of R in its total quotient ring. Let* M_1, \ldots, M_h *be the branches of C at p. Then p is an ordinary point of C if and only if the following two conditions are satisfied:*

(a) $\text{Der}_{\mathcal{G}}(R) \subseteq \text{Der}_{\mathcal{G}}(\overline{R})$ for all $q \geq 1$.

(b) *For t a common uniformizing parameter of C in R, there exists an x* in the maximal ideal of R such that $\partial x/\partial t$ is a unit in \bar{R} , and $(\partial x/\partial t)$ mod $M_i \neq (\partial x / \partial t)$ mod M_j for all $1 \leq i < j \leq h$.

REFERENCES

1. J. Becker, *Higher Derivations and Integral Closure,* **Amer. J. Math., 100, (1978), 495-521.**

2. T. Bloom, *Differential Operators on Curves,* **Proceedings of the Conference on Complex Analysis—1972, Rice Univ. Studies, Vol. 59, No. 2, 13-17.**

3. W.C. Brown, *Higher Derivations on Finitely Generated Integral Domains II,* **Proc.** Amer. Math. Soc., 51, (1975), 8-14.

4. J. Dieudonne, *Topics In Local Algebra,* **Notre Dame Math. Lectures, No. 10, 1967.**

5. A. Grothendieck, *Elements de Géométrie Algébrique IV* **(pt. 4), Pubi. Math. No. 32, 1967.**

6. Y. Ishibashi, *A Characterization of One Dimensional Regular Local Rings In Terms of High Order Derivations,* **Bull. Fukuoka Univ. of Education, Vol. 24, Pt. 3, (1975). pp. 11-18.**

7. , *Remarks On a Conjecture of Nakai,* **Preprint, Hiroshima Univ.**

8. M. Nagata, *Local Rings,* **Interscience Publishers, John Wiley and Sons, 1962.**

9. Y. Nakai, *High Order Derivations I,* **Osaka J. Math., 7, (1970), 1-27.**

10. F. Orecchia, *Ordinary Singularities of Algebraic Curves,* **Can. Math. Bull., 24 (4), (1981).**

11. A. Seidenberg, *Derivations and Integral Closure,* **Pac. J. Math. 16, (1966), 167- 173.**

MICHIGAN STATE UNIVERSITY, EAST LANSING, MI