A NOTE ON HIGHER DERIVATIONS AND ORDINARY POINTS OF CURVES

WILLIAM C. BROWN

ABSTRACT. In this note, we prove the following theorem: Let k be an algebraically closed field of arbitrary characteristic. Let C denote a reduced curve in A_k^n and let p be a point of C. Let R denote the local ring of C at p and let \overline{R} denote the integral closure of R in its total quotient ring. Let M_1, \ldots, M_h be the branches of C at p. Then p is an ordinary point of C if and only if the following two conditions are satisfied: (a) $\text{Der}_k^q(R) \subseteq \text{Der}_k^q(\overline{R})$ for all $q \ge 1$; (b) For t a common uniformizing parameter of C in R, there exists an x in the maximal ideal of R such that $\partial x/\partial t$ is a unit in \overline{R} , and $(\partial x/\partial t) \mod M_i \neq (\partial x/\partial t) \mod_i$ for all $1 \le i < j \le h$.

Introduction. Throughout this paper, we shall let k denote an algebraically closed field of arbitrary characteristic. We shall let C denote a reduced curve in A_k^n (affine *n*-space over k). Let p denote a point of C. In this paper, we wish to characterize when p is an ordinary point of C in terms of the higher derivations on the local ring R of C at p. We shall first show that C is unramified at p precisely when every higher order k-derivation on R extends to the integral closure \overline{R} . To the best of my knowledge this result was first proven by T. Bloom in [2] for irreducible curves over the complex numbers C. This result was later generalized to arbitrary fields of characteristic zero by J. Becker in [1]. In this paper, we present a purely algebraic argument which works in any characteristic.

In the last part of this paper, we present straightforward differential conditions which guarantee C has distinct tangents at p.

Preliminaries. In this section, we shall present the definitions and basic notation which will be used throughout the rest of this paper. We shall let C denote a reduced curve in A_k^n . To be more specific; $C = \text{Spec}\{k[X_1, \ldots, X_n]/\mathfrak{A}\}$ where \mathfrak{A} is a radical ideal, unmixed of height

AMS(MOS) subject classification: Primary 13B15, Secondary 13B10

Received by the editors on November 15, 1982, and in revised form on March 11, 1983.

Key Words and Phrases: q-th order, k-derivation, unramified, common uniformizing parameter.

n-1 in $k[X_1, \ldots, X_n]$. Let $p \in C$. Without loss of generality, we can assume p is the origin in A_k^n . Thus, $\mathfrak{A} \subseteq (X_1, \ldots, X_n)$.

We shall let $R = \mathcal{O}_{C,p}$, the local ring of C at p. \overline{R} will denote the integral closure of R in its total quotient ring Q(R). We shall let m denote the maximal ideal of R and $\{M_1, \ldots, M_h\}$ the maximal ideals of \overline{R} . We say C is unramified at p if $m\overline{R} = M_1 \cdots M_h$.

A q-th order, k-derivation δ of a k-algebra S into an S-module V is a linear map $\delta \in \text{Hom}_k(S, V)$ such that for any q + 1 elements $x_0, \ldots, x_q \in S$ we have

(1)
$$\begin{aligned} \delta(x_0 \cdots x_q) \\ &= \sum_{s=1}^q (-1)^{s-1} \sum_{i_1 < \cdots < i_s} x_{i_1} \cdots x_{i_s} \, \delta(x_0 \cdots \check{x}_{i_1} \cdots \check{x}_{i_s} \cdots x_q). \end{aligned}$$

The S-module of all q-th order, k-derivations of S into S will be denoted by $\text{Der}_{k}^{q}(S)$. Any facts concerning these modules for which we do not give a specific reference can be found in [9].

We say an ideal $I \subseteq S$ is differential under $\text{Der}_k^q(S)$ if $\delta(I) \subseteq I$ for all $\delta \in \text{Der}_k^q(S)$. We shall need the following simple lemma in the next section.

LEMMA. Let S be any noetherian k-algebra and I a radical ideal in S. If $\delta \in \text{Der}_k^q(S)$, and $\delta(I) \subseteq I$, then $\delta(\mathscr{P}) \subseteq \mathscr{P}$ for any associated prime \mathscr{P} of I.

PROOF. Let $\mathcal{P}_1, \ldots, \mathcal{P}_s$ denote the associated primes of *I*. Since *I* is a radical ideal, each \mathcal{P}_i is an isolated prime of *I*. In particular, $\mathcal{P}_i \supset \bigcap_{j \neq i} \mathcal{P}_j$. Let $x \in \mathcal{P}_i$ and choose $y \in \{\bigcap_{j \neq i} \mathcal{P}_j\} - \mathcal{P}_i$. Then for all $n \ge 1$, $xy^n \in I$. Applying equation (1) to $\delta(xy^q)$, we see $y^q \delta(x) \in \mathcal{P}_i$. Thus, $\delta(x) \in \mathcal{P}_i$, and \mathcal{P}_i is differential under δ .

We note that I being a radical ideal of S is essential for the validity of the Lemma. For example, if S = k[X], and $\delta \in \text{Der}_k^2(k[X])$ is defined by $\delta(X) = 1$, and $\delta(X^2) = X^2$, then $I = (X^2)$ is differential under δ whereas $\sqrt{I} = (X)$ is not.

Finally, we recall the definition of p being an ordinary point of C. The maximal ideals M_1, \ldots, M_h in \overline{R} are called the branches of C at p (See [10]). If each branch M_i is linear (i.e., $m\overline{R} = M_1 \ldots M_h$), then the canonical map $\pi_i: m/m^2 \to M_i/M_i^2$ induces an injection $\pi_i^*: Hom_k(M_i/M_i^2, k) \to Hom_k(m/m^2, k)$. We identify $Hom_k(m/m^2, k)$ with the tangent space $\mathcal{T}_{C,p}$ of C at p. For each $i = 1, \ldots, h$, let $\mathcal{T}_i = Im \pi_i^*$. Then \mathcal{T}_i is a one dimensional (i.e., a line) subspace of $\mathcal{T}_{C,p}$ called the tangent to M_i . We say p is an ordinary point of C if C is unramified at p, and the tangents $\mathcal{T}_1, \ldots, \mathcal{T}_h$ are all distinct.

Main results. It is well known that $\operatorname{Der}_{k}^{q}(R) \otimes_{R} Q(R) \cong \operatorname{Der}_{k}^{q}(Q(R))$. Thus, any q-th order, k-derivation δ on R can be viewed as a q-th order derivation on the total quotient ring Q(R). It then makes sense to enquire when $\delta(\bar{R}) \subseteq \bar{R}$. If $\delta(\bar{R}) \subseteq \bar{R}$, we shall say δ extends to \bar{R} . If every q-th order, k-derivation on R extends to \bar{R} , we shall write $\text{Der}_k^q(R) \subseteq \text{Der}_k^q(\bar{R})$. In [11], A. Seidenberg showed that $\text{Der}_k^1(R) \subseteq \text{Der}_k^q(\bar{R})$ whenever the characteristic of k is zero. In the same paper, Seidenberg gave an example of a first order k-derivation on R which did not extend to \bar{R} when the characteristic of k was not zero. In [3], the author exhibited an example in characteristic zero, where $\text{Der}_k^2(R) \not\subseteq \text{Der}_k^2(\bar{R})$. In both examples, the curve C failed to be unramified at p. In studying these examples, one is naturally led to our first theorem.

THEOREM 1. Let C denote a reduced curve in A_k^n and let p be a point of C. Let R denote the local ring of C at p and \overline{R} the integral closure of R in its total quotient ring. Then C is unramified at p if and only if $\operatorname{Der}_k^q(R) \subseteq$ $\operatorname{Der}_k^q(\overline{R})$ for all $q \ge 1$.

PROOF. We can assume the point p is the origin in A_k^n without any loss of generality. If p is a simple point of C, then $R = \overline{R}$, and the result is trivial. Hence, we assume p is a singular point of C. Then $R \neq \overline{R}$.

Let \hat{R} and \hat{R} denote the m-adic completions of R and \bar{R} respectively. Since R is a reduced, excellent local ring, the completion \hat{R} is reduced, and the integral closure of \hat{R} in $Q(\hat{R})$ is just \hat{R} . The following facts are well known:

(2)
$$\operatorname{Der}_{k}^{q}(R) \otimes_{R} \widehat{R} \cong \operatorname{Der}_{k}^{q}(\widehat{R})$$
 for all $q \ge 1$,

(3)
$$\operatorname{Der}_{k}^{q}(\overline{R}) \otimes_{\overline{R}} \overline{R} \cong \operatorname{Der}_{k}^{q}(\overline{R}) \text{ for all } q \ge 1,$$

and

$$(4) Q(\bar{R}) \cap \bar{R} = \bar{R}$$

A proof of equation (2) can be found in [6; Prop. 1]; equation (3) in [7; Lemma 2]; and (4) in [8; (18.4)]. It easily follows from equations (2) through (4) that we can assume without loss of generality that R is complete.

If q_1, \ldots, q_k denote the minimal primes of R, then \overline{R} has the following form:

(5)
$$\bar{R} = V_1 \oplus \cdots \oplus V_h$$

In equation (5), V_i is the integral closure of R/q_i in $Q(R/q_i)$. Each V_i is a complete, discrete, rank one, valuation ring containing a copy k of its residue class field. The reader is referred to [4; pp. 119–122] for the proofs of the statements made above.

Now let us assume C is unramified at p. Then $m\bar{R} = M_1 \cdots M_h$. It follows that mV_i is the maximal ideal of V_i . Thus, $m(R/q_i)$ contains a

uniformizing parameter of V_i . Since both rings are complete, we conclude $R/q_i = V_i$. So, $\overline{R} = \bigoplus_{i=1}^{h} R/q_i$. Now if $\delta \in \text{Der}_k^q(R)$, then $\delta(0) \subseteq (0)$. Hence, by the Lemma, $\delta(q_i) \subseteq q_i$ for i = 1, ..., h. Thus, δ induces a q-th order k-derivation on each summand R/q_i of \overline{R} . It readily follows that $\delta(\overline{R}) \subseteq \overline{R}$, and, thus, $\text{Der}_k^q(R) \subseteq \text{Der}_k^q(\overline{R})$.

Conversely, suppose $Der_k^q(R) \subseteq Der_k^q(\bar{R})$ for all $q \ge 1$. We wish to argue $m\bar{R} = M_1 \dots M_h$. The proof given here is a modification of an argument due to Y. Ishibashi in [7].

We have $m\bar{R} = M_{1}^{s_1} \cdots M_{h}^{s_h}$ with $s_i \ge 1$. Suppose $s_i > 1$ for some *i*. We can assume $s_1 = u > 1$. We shall then construct a $\delta \in \text{Der}_k^q(R)$ for a suitable $q \gg 1$ such that $\delta(\bar{R}) \not\subset \bar{R}$.

Let \mathfrak{f} denote the conductor of R in \overline{R} . If $J = \bigcap_{i=1}^{h} M_i$, then there exists an integer $n \gg 1$ such that $J^n \subseteq \mathfrak{f} \subseteq \mathfrak{m}$. \overline{R} is a principal ideal ring, and, consequently, $J = t\overline{R}$ for some $t \in \overline{R}$. Let us write $t = (t_1, \ldots, t_h) \in \bigoplus_{i=1}^{h} V_i = \overline{R}$. Then $V_i = k[[t_i]]$, and $t^n \in \mathfrak{f}$.

Since $t^{n+2} R$ is a primary ideal for m in R, $R/t^{n+2} R$ is a finite dimensional k-vector space. Let $\{y_1, \ldots, y_s\}$ be elements of m whose residues modulo $t^{n+2} R$ form a k-basis of $m/t^{n+2}R$. For any $x \in \overline{R}$, let us denote the *i*-th component of x (in V_i) as x_i . Then $x = (x_1, \ldots, x_h)$. Let $v_i: Q(V_i) \to \mathbb{Z} \cup \{\infty\}$ denote the canonical valuation given by $v_i(z) = \operatorname{ord}_{t_i}(z)$. Since $mV_1 = t_1^{n}V_1$ with u > 1, we see $v_1(y_{j1}) \ge 2$ for $j = 1, \ldots, s$. Using the fact that $V_1 = k[[t_1]]$ and taking k-linear combinations of y_1, \ldots, y_s if need be, we can assume, without loss of generality, that $2 \le v_1(y_{11}) < v_1(y_{21}) < \cdots < v_1(y_{s1})$.

Now let $D = \{D_0 = 1, D_1, ...\}$ be the k-derivation of infinite rank on V_1 given by the following equations:

(6)
$$D_i(t_1^{\beta}) = \begin{cases} \binom{\beta}{i} t_1^{\beta-i} & \text{if } \beta \ge i \\ 0 & \text{if } \beta < i \end{cases}$$

For the definition and existence of such a derivation of infinite rank, we refer the reader to [5; IV (pt 4), 16.11.2]. Using equation (6), one easily checks that if $f \in V_1$, and $\nu_1(f) = \alpha$, then the following relations are satisfied:

(7)
$$\nu_1(D_i(f)) \ge \alpha - i \text{ for } i < \alpha$$

and $\nu_1(D_{\alpha}(f)) = 0$. Let us set $\nu_1(y_{j1}) = n_j$ for $j = 1, \ldots, s$. Then $2 \leq n_1 < n_2 < \cdots < n_s$.

For any $a_1, \ldots, a_s \in V_1$, we can consider the differential operator Δ defined by the following equation:

(8)
$$\varDelta = \frac{1}{t_1} D_1 + \sum_{i=1}^{s} a_i t_1^{n_i - 2} D_{n_i}.$$

Since D is a higher derivation of infinite rank, each D_i is an *i*-th order, *k*-derivation on V_1 ([9; Prop, 5]). Thus, using [9; Prop. 4], we can view Δ as an $(n_s - 2)$ -order, *k*-derivation on $Q(V_1) = k((t_1))$. We claim there exists a choice of constants $a_1, \ldots, a_s \in V_1$ such that $\Delta(y_{j1}) = 0$ for all $j = 1, \ldots, s$. To see this, we consider the following system of linear equations in unknowns x_1, \ldots, x_s :

(9)
$$\sum_{i=1}^{s} x_i t_1^{n_i-2} D_{n_i}(y_{j1}) = -\frac{1}{t_1} D_1(y_{j1}), j = 1, \ldots, s.$$

We regard the equations in (9) as s-equations in s-unknowns with coefficients in the field $k((t_1))$. If we solve the equations in (9) using Cramer's rule and use equation (7) to check the ν_1 -value of our answers, we see we get a solution a_1, \ldots, a_s in V_1 .

Now let $a_1, \ldots, a_s \in V_1$ be a solution to the equations in (9) and define $\Delta \in \operatorname{Der}_k^{n_s-2}(k((t_1)))$ from these a_1, \ldots, a_s via equation (8). Set $q = n_s - 2$. Since $Q(\bar{R}) = \bigoplus_{i=1}^{h} k((t_i))$, one easily checks that $\operatorname{Der}_k^q(Q(\bar{R})) = \bigoplus_{i=1}^{h} \operatorname{Der}_k^q(k((t_i)))$. Thus $\delta = (\Delta, 0, \ldots, 0)$ is a well defined q-th order, k-derivation on $Q(\bar{R})$. We claim that $\delta(R) \subseteq R$, but $\delta(\bar{R}) \not\subseteq \bar{R}$. To see this, let $f \in R$. Then $f = \alpha_0 + \alpha_1 y_1 + \cdots + \alpha_s y_s + t^{n+2} \gamma$. Here $\alpha_0, \ldots, \alpha_s \in k$, and γ is some element in R. Since Δ vanishes on $\alpha_0, y_{11}, \ldots, y_{s1}$, we have $\delta(f) = (\Delta(t_1^{n+2} \gamma_1), 0, \ldots, 0)$. Again, using equations (7) and (8), one easily checks that $\nu_1(\Delta(t_1^{n+2} \gamma_1)) \geq n$. Thus, $\Delta(t_1^{n+2} \gamma_1) = t_1^n \sigma_1$ for some element $\sigma_1 \in V_1$. Therefore, $\delta(f) = t^n(\sigma_1, 0, \ldots, 0) \in R$ since $t^n \in f$. We have now shown $\delta(R) \subseteq R$. Since $\delta(t) = (\Delta(t_1), 0, \ldots, 0) = (1/t_1, 0, \ldots, 0) \notin \bar{R}$, we see δ does not extend to \bar{R} . This is impossible, and, hence, completes the proof of the theorem.

Let us assume C is unramified at p. Since k is infinite, there exists a sufficiently general k-linear combination of the basis elements of m, say $t \in m$, such that $m\bar{R} = t\bar{R}$. Then in the complete case, $\bar{R} = K[[t]]$ where $K = \bar{R}/J$. Thus, for any $x \in \bar{R}$, $\partial x/\partial t$ is well defined. Now if $x \in m$, the value of $(\partial x/\partial t)$ Modulo M_i is the same as the value of x/t at the corresponding point $M_i \cap R[t^{-1}m]$ of $\text{Spec}(R[t^{-1}m])$. So, for x a sufficiently general k-linear combination of a basis for m, the number of distinct values of $\partial x/\partial t$ at the closed points of $\text{Spec}(\bar{R})$ will be precisely the number of maximal ideals of $R[t^{-1}m]$, i.e., the number of tangents at p. Thus, we get the following corollary to the theorem.

THEOREM 2. Let k be an algebraically closed field of arbitrary characteristic. Let C denote a reduced curve in \mathbf{A}_k^n and let p be a point on C. Let R denote the local ring of C at p, and let \overline{R} denote the integral closure of R in its total quotient ring. Let M_1, \ldots, M_h be the branches of C at p. Then p is an ordinary point of C if and only if the following two conditions are satisfied: (a) $\operatorname{Der}_{k}^{q}(R) \subseteq \operatorname{Der}_{k}^{q}(\overline{R})$ for all $q \ge 1$.

(b) For t a common uniformizing parameter of C in R, there exists an x in the maximal ideal of R such that $\partial x/\partial t$ is a unit in \overline{R} , and $(\partial x/\partial t)$ mod $M_i \neq (\partial x/\partial t) \mod M_i$ for all $1 \leq i < j \leq h$.

References

1. J. Becker, Higher Derivations and Integral Closure, Amer. J. Math., 100, (1978), 495-521.

2. T. Bloom, *Differential Operators on Curves*, Proceedings of the Conference on Complex Analysis—1972, Rice Univ. Studies, Vol. 59, No. 2, 13-17.

3. W.C. Brown, Higher Derivations on Finitely Generated Integral Domains II, Proc. Amer. Math. Soc., 51, (1975), 8-14.

4. J. Dieudonne, *Topics In Local Algebra*, Notre Dame Math. Lectures, No. 10, 1967.

5. A. Grothendieck, *Elements de Géométrie Algebrique IV* (pt. 4), Publ. Math. No. 32, 1967.

6. Y. Ishibashi, A Characterization of One Dimensional Regular Local Rings In Terms of High Order Derivations, Bull. Fukuoka Univ. of Education, Vol. 24, Pt. 3, (1975). pp. 11-18.

7. ——, Remarks On a Conjecture of Nakai, Preprint, Hiroshima Univ.

8. M. Nagata, Local Rings, Interscience Publishers, John Wiley and Sons, 1962.

9. Y. Nakai, High Order Derivations I, Osaka J. Math., 7, (1970), 1-27.

10. F. Orecchia, Ordinary Singularities of Algebraic Curves, Can. Math. Bull., 24 (4), (1981).

11. A. Seidenberg, Derivations and Integral Closure, Pac. J. Math. 16, (1966), 167-173.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MI