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ON THE INITIAL BOUNDARY-VALUE PROBLEM FOR NON-
HOMOGENEOUS
INCOMPRESSIBLE HEAT CONDUCTING FLUIDS

BUI AN TON

ABSTRACT. The existence of a weak global solution of the following
system of initial boundary-value problem:

pw' + u-vu) — v((p)Vu) + grad p = pf,
div(x)=0 on(0, T) x G,
ulx,t) =0 on (0, T) x 0G, u(x, O) = u° onG
and of
o + u-gradp = 0,
o(x,t)>0 on (0, T) x G, p(x, 0) = p° on G
with
(0" + u-grad 0) — v(x(o)v0) = pg + h on (0, T) x G,
0(x,t) =0 on (0, T) x 0G, 6(x,0) = 6° on G

is established by the method of successive approximations.

The purpose of this paper is to show the existence of a weak global
solution of the first initial boundary-value problem for non-homogeneous
viscous, incompressible heat conducting fluids. Let u, p, 6 be the velocity,
the density and the temperature of the fluid respectively. The motion of
the fluid is described by the initial boundary-value problem

ot
©.1) divi) =0 on (0, 7) x G,
u(x,t) =0 on (0, T) x oG and u(x, 0) = u%(x) on G,

p@y + u-Vu) — V(e(p)Vu) + grad p = of,

where G is a bounded open subset of R3.
The conservation of mass is expressed by

% 4. -
0.2) s Tugradp =0 p(x,1) >0 on(0,7) xG,

o(x,0) = p%x) on G.

The conservation of internal energy is described by the initial boundary
value problem
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o237 + u-grad 0) = V@V = h + g on(0,7) x G,

0(x,¢t) =0 on (0,7T) x 9G and 6(x,0) = §%x) on G.

0.3)

In the system (0.3) we have used a standard argument to reduce the case
of a non-homogeneous boundary condition to that of a homogeneous one.
The viscosity of the fluid is ¢(p) and the coefficient of heat conduction is
%(0)-

The system (0.1)-(0.3) does not belong to any of the three traditional
types of classification of partial differential equations.

When ¢(p) is a positive constant, the existence of a weak solution of
(0.1) — (0.2) has been established by Kajikov [2] and reported in [5], using
the semi-Galerkin approximation method and a new type of estimates for
fractional time-derivatives.

In this paper we shall use the method of successive approximations. The
notations, the assumptions on ¢(p) and on y(p) and the main result of the
paper are given in §1. A detailed outline of the proof of the theorem is at
the end of that section.

Acknowledgment. After the original version of the paper was submitted,
Prof. P. Fife called the attention of the writer to Kajikov’s result. The
writer is indebted to Prof. Fife for pointing out to him the references [2]
and [5] as well as the physical relevance of the dependence of ¢, y on p.

1. Let G be a bounded open subset of R3 with a smooth boundary 9G.
For each triple « = (a3, a3, a3) of non-negative integers we write

3 3
D= = [[ D% with |a| = )] «; and D; = 9/ox;.
j=1 =1

The inner product and the norm in H = L2(G) are denoted by (-, -) and
by || - || respectively.

The Sobolev space H* = {¢: ¢ in H, D*¢ in H for || < k} is a Hilbert
with the norm

Iglez = {22, 1Dogl2}12

and the usual inner product.

H is the closure of the set of testing functions in the H*-norm, We
denote by H—* the dual of H¥ and by abuse of notations, we shall write
(+,-) for the pairing between H} and its dual.

V't is the closure of the set {w: w = (wy, wy, w3), win C§(G), div(w) = 0}
in the H*-norm. We shall write ¥ for V0 and V—* for (V#)*.

Throughout the paper we shall make repeated uses of the following
results of the Sobolev imbedding theorem:
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H? c C(cl G) and H! < L§G).

The above natural injection mappings are all continuous and H2 is an
algebra with respect to pointwise multiplication.

L2(0, T; V*) is the set of equivalence classes of functions w(:, ¢) from
(0, T) to V* which are L2-integrable over (0, T). It is a Hilbert space with
the norm

T 2 172
W lsaz = { WG Ol 2t}

and the usual inner product.

L>(0, T; V*) is silmilary defined with the obvious modification. The
derivative of w with respect to ¢ is denoted by ow/ot or simply by w’
when there is no confusion possible.

The following assumption on the viscosity and on the coefficient of
heat conduction shall be made throughout the paper.

EN

AssuMPTION (I).

DO0<eg=elp) 2c,0< =yl Scfor0<azp=b

2) |0e/0pl, |0y/opl = M for 0 < a < p £ b.

3) If p, — p in the weak*-topology of L>(0, T; L>(G)) and if p, — o’
weakly in L0, T; H™1), then (p,) — €(p), x(p,) — x(p)both in the weak*-
topology of L=(0, T; L*(G)).

DEFINITION 1. Let u be in L*(0, T; V) L2(0, T; V1) and o® > O- be
a scalar function in L=(G). Then a scalar function p in L*(0, T; L(G))
with p > Qs said to be a weak solution of (0.2) if

T T
- fo (0, ¢")dt — _‘"0 (u-grad &, p)dt = (&%, ¢(-, 0))

JSor all scalar functions ¢ in L%(q, T; HY) with ¢ in L%0, T; H) and (-, T)
= 0.

DEFINITION 2. Let f be in L%(0, T; H), u® be in V and p® > 0, be in L(G).
Then {u, p} in {L=(0, T; V) (| L¥0, T; VY)} x L=(0, T; L™(G)) is said
to be a weak solution of (0.1)-(0.2) if

(i) p is a weak solution of (0.2) in the sense of Definition 1, and

(i) — jj(pu, wyde + | :(e(p)Vu, Vw)dr — _f:(pww, u)dt
= [ (ot it + (w0, (-, 0)

for all vector functions w in L2(0, T; V3) with w' in L2, T; V) and w(-, T)
= 0.

Finally for the system (0.3) we have the following definition.
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DEFINITION 3. Let g, h be in L%(0, T; H), 6% in H. Let {u, p} be a weak
solution of (0.1)-(0.2) in the sense of Definition 2. Then a scalar function
in L0, T; H) [ L%0, T; H}) is said to be a weak solution of (0.3) if

—J.T(pﬂ, &)dr + _[T(x(p)va, Vg)dt — j " (ou-gradg, 0) dr
0 0 0

- j':(pg + h, @)t + (%%, $(-, 0))

Sfor all scalar functions ¢ in L20, T; H3) with ¢' in L2(0, T; H) and
¢('a T) = 0.

The main result of the paper is the following theorem.

THEOREM 1.1. Let u0 be in V, let o° and 6° be two scalar functions with 0°
inHand0 < a £ p%x) < b on G. Suppose that Assumption (1) is satisfied.
Then for any {f, g, h} in L%(0, T; H) there exists a weak solution {u, p, 0}
of (0.1)-(0.3) in the sense of Definitions 2 and 3. Moreover 0 < a < p(x, t)
Sbon(0,T) x G.

Furthermore u is in L, T; V) (| L&0, T; V') and 0 is in L=, T; H)
N L0, T; HY).

REMARKS. 1) The problem of the unicity of the solution of (0.1)-(0.3)
is open even in the case of constant density. (Cf. [3] for the Navier-Stokes
equations). 2) As noted earlier the system (0.1)-(0.3) is not of standard
type. An application of the Galerkin method or of its variants seems to
give rise to difficulties. A priori estimates are fairly easy to establish and
unlike the case of constant density, the difficulty lies in the proof of the
existence of a local solution of the Galerkin approximating solutions.
We shall circumvent the difficulty by using the method of successive
approximations.

Before going into the details we shall give an outline of the proof of
Theorem 1.1.

STEP 1. (to be carried out in §2). Let v be in L>(0, T; V) (\ L%(0, T; V'1).
By a standard method we show the existence of a weak solution of
o + v-gradp =0,
O0<aspx,t)=b on(0,T) x G, p(x,0) = p’(x) onG.

Moreover

(L.1)

0"l 20, 7 -1y + 1(e(@))' | 200, 73561
+ 1) 2o, 7551y = CA + V] 20, 7391)-

C is independent of v.

STEP 2. (to be studied in §3). Let v be as before and let p be a weak
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solution of (1.1) given by Step 1. The Galerkin approximation method
gives the existence of a weak global solution of

o' + v-Vu) — V(e(p)Vu) + grad p = of,
(1.2) diviw) =0 on(0,T) x G,
u(x,t) =0 on (0, T) x 0G, u(x, 0) = u%(x) onG.

moreover
lull ooy + 626l 20,791y = C
(o) | 2o, 7v-3 = C(L + V]l oo g0, 759))-

C is independent of v and p.
Similarly there exists a weak global solution of

o0 + v-grad 0) — V(x(p)V0) = h + pg on (O, T) x G,
0(x, t) =0 on (0, T) x 9G, 0(x, 0) = §%x) on G.

Furthermore

(1.3)

10 o 0,7 + 28200 20,7, 1} < C and
00"l 20,713 < C(1 + [Vl oo t0,739)-
C is independent of v and p.

StEP 3. We now construct a sequence of successive approximations of
(0.1)—(0.3). Consider the system
(1.4) Pn + ts—1-grad p, =0, p(x, t)>0 on (0, T) x G,

) p(x, 0) = p%x) on G with uy =0, n=1, 2...

and

pn(u}l: + un—l’vun) - V(G(Pn)v“n) + grad DPn = pnf’
(1.5) div(u,) =0 on(0,T) x G,
ux,t) =0 on (0, T) x 0G, u,(x, 0) = u%x) on G

and

Pn(o;; + un—l'grad 0n) - V(X(pn)vﬂn) =h+ 0,8 On (0’ T) X G,

16 0,x,t) =0 on (0 T) x 3G, 0,(x, 0) = %x) on G.

It follows from Steps 1 and 2 that

lttall oo,y + Nttull 20wy + W0ull 0.7 + 110,220,738
+ lloall 2o, rsm-1 + 1C0attn) | 20, 757-3) + 1100400) | 200, 7:21-5)
+ @) | 2o, r3m-1y + 1Cxloa)) Il 20,731y = C.

C is a constant independent of n. Let n — + 0o and by standard compact-
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ness theorems as well as by the compensated compactness arguments of
Murat (Cf. [5]) we get the theorem.

2. We shall now carry out the proof of Step 1.

THEOREM 2.1. Let v be in L>(0, T; H) (| L0, T; V) and let o be a
scalar function in L*(G) with 0 < a £ p%x) < b on G. Then there exists
a weak solution p in L=(0, T; L*(G)) of (1.1) in the sense of Definition 1.
Moreover 0 < a < p(x,t) S bon(0,T) x G and

0"l 220,731y + (@) | 20,7381
+ 1) [ 2o 7:m-1n S CA+ [Vl 20,751
C is a constant independent of v.

PRrOOF. 1) Since v is in L2%(0, T; V1) there exists {v,} in C(0, T; CF(G))
with div(v,) = 0 and such that v, —» vin L2(0, T; V')asn —» + co.
Consider the initial-value problem

o, + vyrgrad p, =0 on (0, T) x G, p,(x, 0) = p%x) onG.
It is standard to show that there exists p,, solution of the above problem.
Since D/Dt(p,) = p, + v,-grad p, =0, the Lagrangian derivative of p,
is zero. Therefore p, is constant along a particle path. On the other hand
we know that 0 < a = p,(x,0) = o%x) < bon G. Hence 0 < a < p,(x,t)
<bon(@,7T) xG.
Let ¢ be a scalar function in H}. Then

(p;’ ¢') = - (vn'grad Ons ¢) = (v,,-grad ¢a Pn)
Therefore

[(0rs D = N104(+> Oll o) Va5 DU, 2-
Hence

lonll 20,751 = BlVall 20,7y S CU + IVll20,701)-

Cis independent of # and v.
2) Similarly, we have

(0,-0e(0,)/005 ) + ((v,- gradp,)oe(p,)/0p,, ¢) = O.
Thus,
((e(on))'s ) + (v,-grad e(p,), ¢) = 0.
Hence

((5(Pn))l’ ¢) = (v,,-grad ¢9 5(pn))'
Therefore
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o)) 20,1361 £ 1Vallzosady le(oa)ll oo, 726
It follows from the first part and from Assumption (I) that
(@) Il 20, 7-1y = CU + 1Vl 20,7590
In exactly the same fashion, we obtain
1)) | 20, 7:m-1y = €A+ IVl L2, 7ivm)-
The different constants C are all independent of n and v.

3) From the above estimates we get by taking subsequences p, — p in
the weak*-topology of L>(0, T; L*(G)), p, — p’ weakly in L%(0, T; H-1).
Itisclearthat0 < a < p(x,1) £ b on(0,T) x Gand

o'l 20,7581 < C(L + |Vl 20, 7:5m)-
It follows from Assumption (I) and from the estimates of part (2) that
(@)l 20,7;-1n + 1)) lL20,7:m-1 S CU + [Vll20,73v1)-

Cis independent of v.
Let ¢ be a scalar function in L2(0, T; H!) with ¢’ in L%0, T; H) and
¢(+, T) = 0. Then

T T
= [ w 92ar = [ (v-grad g, p)dr = (. 4, O).

Let n - + oo and we get the theorem.

3. We now proceed to Step 2.
Let{w;} be a basis of V'3 and since «° is in ¥ and V is dense in V3,
there exist real numbers «;, such that

n
Dawi—>ulin V.
=1

Set

n
Uy, = Z; Cin(EIW;.
=

Let p be as in Theorem 2.1 and consider the following system of linear
ordinary differential equations in c,,(¢):

(oun, wy) + (@) Vu,, Vw)) + (ov-Vu,, w)) = (of, w)),
cin0) = a3 1 £j = n.

3.1)

LemMA 3.1. Let b and p be as in Theorem 2.1. Then for any f in L*0,
T; H), there exists a local solution u, in C(0, T,; V3) of the system (3.1).

PRrOOF. We have
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(pur:’ wj) = kZ_lcl;n(t)(pwk’ wj)'

Since 0 < a < p(x, t) £ bon (0, T) x G, the norm induced by the inner
product ((u, v)) = (p(+, t)u, v) is equivalent to the H-norm. By hypotheses
{w;} is linearly independent in H, thus det(ow;, w;) # 0. The lemma
from the Caratheodory theorem.

LEMMA 3.2. Let v, p and u,, be as in Lemma 3.1. Then
lalls 070y + €82 nll 20,701 S C-

C is constant independent of n, v and p. It depends only on f and on the
bounds of p® on G as well as on u°.

Proor. We shall show that u, is a global solution and establish some
apriori estimates using the conservation equation for the energy density.

Multiplying (3.1) by c;,(¢) and taking the summation with respect to j
from 1 to n, we obtain

(32) (pu;’un) + 60”vun”2 + (pv'vum un) é (pf; un)'

since u, is in C(0, T,; V3), |u,/? is in C(0, T,,; H}). On the other hand p
is a weak solution of (1.1) and thus,

(0's ¢) — (p, v-grad ¢) = 0
for all ¢ in H}. Hence with ¢ = |u,[2, we get

3.3) 265 D) = (o, v-grad |u,?) = 0.
Noting that

oV ity 1) = +(p, v-grad [u?),
we have by adding (3.2)-(3.3)
(3.4) A oty ) + ol V2 < (ofs ).

Therefore 4p|u,|?, which is the kinetic energy, satisfies the following in-
equality:

_;‘(P(" t)un(" t)’ un(" t))
< 1o, 1) + [ Gof, w) e
_;_(pOuO, w0y + % 5 ;(pf, f) dr + %j.;(pu,,, u,) dt

1t
C + -2—j.o(pu,,, u,) dt.

lIA

IIA
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C is a constant independent of n, v and p. It depends on f, u0 and on the
upper bound b of p® on G. In the above estimate we have applied the
Holder inequality. The Gronwall lemma gives

(o(-, Du, (-, 1), u, (-, 1)) £ C.

C is independent of n, v, ¢ and p. It depends only of f, u0 and b. Since
0<azZoplx t)=bon (0, T) x G, it follows that |u,|l <@,y < C.
Returning to (3.4), we get

5(1)/2“un”L2(O,T;V1) =C

The different constants C are as in the lemma.

THEOREM 3.1. Let v, p and p° be as in Theorem 2.1. Suppose all the
hypotheses of Theorem 1.1 are satisfied. Then there exists u in L*(0, T;
V) N L0, T; V1Y), a weak solution of (1.2) in the sense of Definition 2, i.e.,

- 5 " (ou, Wt + j "(c(0)Vu, Vwydr - j (v Tw, ) e
- j' OT(pf, wydt + (0%, w(-, 0))

Sfor all w in L2(0, T; V3) with w' in L2(0, T; V) and w(-, T)=0. Moreover
Null oo,y + €82l 20,751y = C and
1Gow) | 20,7~ < C(1 + [Vl Lo (o, 79 )-

C is a constant independent of v, p but depends on f, u® and on the bounds
of PP on G.

PROOF. 1) Let u, be as in Lemmas 3.1-3.2. From the estimates of Lemma
3.2 we get by taking subsequences: u, — u weakly in L2(0, T; V1) and
in the weak*-topology of L=(0, T'; V). Moreover

lull Lo, rivy + b2l 20,7y = C.

C is as stated in the theorem.
2) By definition, we have

(3.5) (ou,, w;) + (e(©)Vu,, Vw;) + (ov-Vu,, w;) = (of, w;);j < n.
Since p is a weak solution of (1.1) we get
(0, ¢) — (o, v grad ¢) = 0

for all ¢ in H}. But u,-w; is in H} (| H?and hence by taking ¢ = u,-w;
we obtain

3.6) (o', uy-w;) — (p, v-grad u,-w;) = 0.
Adding (3.6) to (3.5) we have
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((pun)la wj) + (5(P)Vum ij) - (PV'VW;‘, un) = (Pf, Wj); ] § n.
Let ¢ be a function in C1(0, T') with ¢(7") = 0. Then

— [Tt gt + [ (@, 9wt = (-4 u )i
= {7t dwpde + (-, 01, wg(O).
Thus, from the first part we obtain by letting n — + oo,
- j (o, ¢'w )it + j (0, §Twy)d ~ j vV,
- f (@fs $wdr + (00, wg(0).
Now by standard arguments we have
—j-OT(pu, w)dt + j'oT(e(p)Vu, Vw)dt — j;(pv-Vw, u)dt

= j Z(pf, w)dt + (p%0, w(-, 0))

for all w in L2(0, T'; V3) with w’ in L2(0, T; V) and w(-, T) = 0.
3) From (3.7) we have

3.7

T
1 — .fo (ou, W')df] =< Iwllzo, vy (Nl 2o, 71y + BI fll 2200, 7201
+ DIVl oo, 7 1l 20, 7391)
for all win CY(0, T, V3).
Taking into account the estimates for # we obtain

! T , i
= [Tt wdt| < 1l s €+ 9l 1)

for all win CY%0, T'; ¥3). Hence

ICGow) 1o, -5 S C(I + V]l Lo, 739)-
C is a constant independent of v, p and depends only on f, u0 and the
bounds of p0 on G.

THEOREM 3.2 Let v, p be as in Theorem 2.1 and suppose all the hypotheses
of Theorem 1.1 are satisfied. Then there exists 0 in L0, T; H) ( L%,
T; H}), a weak solution of (1.3) in the sense of Definition 3. Moreover

101 20,72 + X210 20, ;) < C and

1(00) | 2o, 735~ = C(1 + VIl Loogo, 73v)
C is a constant independent of v, p and depends only on f, g, h, u®, 60 and
the bound of p® on G.
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The proof is the same as that of Theorem 3.1. We shall not reproduce
it.
4. We now proceed to the proof of Step 3.

LeEMMA 4.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then
for each n, there exists {u,, p,, 0,}, a solution of the system (1.4)—(1.6) in
the sense of Definitions 1-3. Moreover

H0<as=gp(x,t) b on(0,7T) x G,
lonll 20, 731 + 1(e(on)) 20, 731y + 1(x(0)) 220, 7:-1) < C.

(i) llll oo, 70y + Nttnllzeo, vy + NC0att) 'l 20, 7373 = C.

(i) 1040 200, 7560 + 10ull 2200, 738 + 1(0402) | 2200, 755-5 = C.

C is a positive constant independent of n.

ProOOF. Consider the system (1.4)-(1.6). From Theorems 2.1, 3.1 and 3.2
we know that there exists {u,, p,, 0,}, a solution of the system (1.4)-(1.6)
in the sense of Definitions 1-3. From the estimates of Theorem 2.1 we
have

O<a=px,t)=b on(0,T) x Gand
loull 20, 751y + (eC0a)) Il 20, 7351
+ (o)) 220 351y = C + Nuy—ill 120, 73v1)-
Cis independent of n.
From Theorem 3.1 we obtain
Nl Looo, 737y + Null 2200, 7591y = € and
Conttn)' | 20, 73v -3 = CL + Ntty-1ll Lo g0, 730
C is again independent of n.
We get from Theorem 3.2
1040l L= 0, 7300y + 10allL20, 713 = Cand
1€0n0) | 20, 731-3 S C(1 + lltty-1ll 1= 0, 737
C is independent of n.

The results stated in the lemma are an immediate consequence of the
above estimates.

We need a technical lemma before going into the proof of Theorem 1.1.

LEMMA 4.2. Let {u,, p,} be as in Lemma 4.1. Then there exists a subse-
quence denoted again by {u,, p,} such that
(D) ps = p inthe weak*-topology of L=(0, T; L™(G))and in L?(0, T; H™Y),
(i) u, = uin L20, T; V') and weakly in L2(0, T; V1),
(iii) p,u, — pu weakly in L2(0, T; H) and in L3O, T; V1),
(iv) (e(pn)" — (e(0)) weakly in L2(0, T; H-Y),
) e(p)Vu, = e(p)Vu weakly in L2(0, T; H).
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ProoF. 1) We have by taking subsequences p, — p in the weak*-
topology of L=(0, T'; L~(G)), p, — o’ weakly in L2(0, T; H-1).

The natural injection mapping of H} into H is compact and hence by
Schauder’s theorem that of H into H-! = (H})* is also compact. It follows
from the estimates of Lemma 4.1 and from Aubin’s theorem [1] that
pn — pin L2(0, T; H™Y).

2) We have again by taking subsequences v, — u weakly in L2(0, T; V')
and in the weak*-topology of L=(0, T; V). It is clear that p,u, — & in the
weak*-topology of L>(0, T'; H), and (p,u,)’ — & weakly in L2(0, T; V' -3).
Thus, as in the first part we have p,u, — &in L2(0, T; V'-1).

We now show that & = pu. Let ¢y be in C§(0, T; CH(G)) with div(¢g) =
0. Then

j OT(p,,¢, w)dt — 52(p¢, Wdt = ﬁ(g, .

Hence £ = p u.
3) We now prove one of the key assertions of the lemma, namely that
u, — uin L%0, T; V). Indeed

T
i = el rary S [ oaltn = 1, 0, = w0
T T
= jo(pnun — pu, u, — u)dt — jo(pnun, u)dt
T T
+ jo(pnu, u)dt + 50(pu, u, — udt.

Since p,u, — pu — 0in L20, T; V1) and u, — u — 0 weakly in L2(0,
T; V1), wehaveu,, — u — 0in L2(0, T; V).

4) It follows from Assumption (I) that (e(p,)) — (¢(p))’ weakly in
L2(0, T; H-1). It remains to prove the assertion (v) of the lemma. First let
us note that

C and
C.

| DAe(oa)l Lo, 7:1-1)

<
Do) | 2200, 7301-2) =

Cis a constant independent of n.

Thus, Dj(e(p,) = Dj(e(p)) weakly in L2(0, T; H-') and D(e(p,)’ —
D(e(p))’ weakly in L%0, T; H=?) as n —» +co. Since u, — u weakly in
L2(0, T; V1), it now follows from the compensated compactness arguments
of Murat as applied by Lions in [5] (p.72, relation 1.64) that u,D (e(p,)) —
uD (¢(p)) in the distribution sense on (0, T) x G.

It is clear that by taking subsequences we have e(p,)D;u, — &; weakly
in L2(0, T; H) as n - + . Using the above results we shall show that
e(p)Dju = §&;.

Let ¢ bein C5°(0, T; C5°(G)). Then
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[ eonDjt, 91t = = | D (et}
= — [t I = [ @Dso0), ).

The integrals make sense since u,, is in L=(0, T; V) () L2(0, T; V'1).
Let n —» + oo and it follows from the above arguments that
T
| RECALImYY
T T
— = [ @D - jo uDje(o), ¢) dt.
T T
— — [T Dyige(@pa = j (@D, §) d.
On the other hand
T T
[ ConDiu, gy dr = | (@ ) .

Hence

_f "€, §) dt = jT(e(p)Dju', &) di
0 0

for all ¢ in C3(0, T; C3(G)) and therefore &; = e(p)D;u.
The lemma is proved.

We have a similar result for p,,, 0,.

LemMA 4.3. Let {p,, 0,} be as in Lemma 4.1. Then there exists a subse-
quence denoted again by {p,, 0,,} such that
(1) 0, — 0in LX0, T; H) and weakly in L2(0, T; H}),
(ii) p,0, — pd weakly in L?(0, T; H) and in L%(0, T; HY),
(iii) 1(0,)%0, — 3(0)V0 weakly in L2(0, T; H).

The proof is identical to that of Lemma 4.2. It suffice to replace u, by @,.

ProoF oF THEOREM I.1. 1) Let u,, p, and @, be as in Lemma 4.1. By
definition we have

T T
— [Tom @2t = {1 grad g, )t = 0, 6, )
for all scalar functions ¢ in CY(0, T'; H3) with ¢(-, T) = 0. Since p, — p

in L2(0, T; H-1) and u,_,-grad ¢ — u-grad ¢ weakly in L2(0, T; H}), it
is clear that

T T
_ jo(p, &dt — 5 [-grad g, p)dr = (2, 9(-, 0)

for all ¢ in CY(0, T'; H3) with ¢)(-, T) = 0. By a standard argument we get
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= [16. 9t | wsrad g, e = @0, g, 0)

for all ¢ in L2(0, T; H}) with ¢’ in L2(0, T; H)and ¢ (-, T) = 0.
2) For the system (1.5) we have

= fotounn widr + [Vt Tw)dt = [ (otyos- V. )i

= [ Gouts widt + (@0, (-, 0)

forall win CY0, T; V3) withw(-, T) = 0.
Since u,_y = uin L2(0, T'; V) and p,u, — pu weakly in L2(0, T; H), it is
easy to see that

3 3
-2 jTj o ukDwhdx dt —> — 3] sTs pwukDwk dx dt.
,=1J 0J G sm=dode
Applying Lemma 4.2 we obtain
~ [ wide + [ e@yvu, Twe — [, was

- j OT(p £ wyde + (00, w(-, 0))

for all win CY(0, T; ¥3) and w(-, T) = 0. By a standard argument we have
the above equation for all w in L2(0, T; ¥3) with w’in L2(0, T; V) and
w(-, T) = 0.

3) An argument as in part (2) using Lemma 4.3 shows that 6 is a weak
solution of (0.3).

The theorem is proved.
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