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ON THE INITIAL BOUNDARY-VALUE PROBLEM FOR NON-
HOMOGENEOUS 

INCOMPRESSIBLE HEAT CONDUCTING FLUIDS 

BUI AN TON 

ABSTRACT. The existence of a weak global solution of the following 
system of initial boundary-value problem : 

p(u' + u- V«) - V(e(p)vu) + grad/7 = pf, 
div(w) = 0 on(0, T) x G, 
u(x, 0 = 0 on (0, T) x dG9 u(x, O) = u° on G 

and of 

p' + u- grad p = 0, 
p(x, t) > 0 on (0, T) x G, ,o(x, 0) = p° on G 

with 

p(0' + «-grad 6) - V(%(|O)V0) = pg + h on (0, T) x G, 
6(x, 0 = 0 on (0, D x 9(7,0(*, 0) = 0° on G 

is established by the method of successive approximations. 

The purpose of this paper is to show the existence of a weak global 
solution of the first initial boundary-value problem for non-homogeneous 
viscous, incompressible heat conducting fluids. Let w, p, 0 be the velocity, 
the density and the temperature of the fluid respectively. The motion of 
the fluid is described by the initial boundary-value problem 

Kf? + U'VW) " V < * ( P ) V K ) + S r a d P = Pf> 
( C U ) div(w) = 0 o n ( 0 , r ) x G, 

u(x, 0 = 0 on (0, T) x dG and u(x, 0) = w°(x) on G, 

where G is a bounded open subset of R3. 
The conservation of mass is expressed by 

| f + wgrad p = 0, p(x, 0 > 0 on (0, T) x G, 

p(x, 0) = p\x) on G. 

The conservation of internal energy is described by the initial boundary 
value problem 
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(0 3) K l ? + w * g r a d ö ) - V(x(p)V6) =h + pg on (0, T) x G, 

d(x, 0 = 0 on (0, D x dG and 6(x, 0) = 0O(*) 0 n G. 

In the system (0.3) we have used a standard argument to reduce the case 
of a non-homogeneous boundary condition to that of a homogeneous one. 
The viscosity of the fluid is e(p) and the coefficient of heat conduction is 

lip)-
The system (0.1)-(0.3) does not belong to any of the three traditional 

types of classification of partial differential equations. 
When e{p) is a positive constant, the existence of a weak solution of 

(0.1) — (0.2) has been established by Kajikov [2] and reported in [5], using 
the semi-Galerkin approximation method and a new type of estimates for 
fractional time-derivatives. 

In this paper we shall use the method of successive approximations. The 
notations, the assumptions on e(p) and on %(p) and the main result of the 
paper are given in § 1. A detailed outline of the proof of the theorem is at 
the end ofthat section. 

Acknowledgment. After the original version of the paper was submitted, 
Prof. P. Fife called the attention of the writer to Kajikov's result. The 
writer is indebted to Prof. Fife for pointing out to him the references [2] 
and [5] as well as the physical relevance of the dependence of e, % on p. 

1. Let G be a bounded open subset of R3 with a smooth boundary dG. 
For each triple a = (a\9 ai, a->) of non-negative integers we write 

3 3 

D« = fi D<Xj with \a\ = 2 a; and Dj = d/dxj. 
j=l ' 3=1 

The inner product and the norm in H = L2(G) are denoted by ( •, • ) and 
by || • || respectively. 

The Sobolev space Hk = {</>: <j) in H, Da<p in H for \a\ S k) is a Hilbert 
with the norm 

||0||4i2= [SjD^pJi* 

and the usual inner product. 
7/g is the closure of the set of testing functions in the i/*-norm, We 

denote by H~k the dual of //§ and by abuse of notations, we shall write 
(•, •) for the pairing between H% and its dual. 

Vk is the closure of the set {w: w = (wÌ9 vv2, w3), w in Co°(G), div(w) = 0} 
in the #*-norm. We shall write F for V° and V~k for (F*)*. 
Throughout the paper we shall make repeated uses of the following 
results of the Sobolev imbedding theorem : 
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H2 <= C(cl G) and Hi c # ( £ ) . 

The above natural injection mappings are all continuous and H2 is an 
algebra with respect to pointwise multiplication. 

L2(0, T; Vk) is the set of equivalence classes of functions w(-, t) from 
(0, T) to K* which are L2-integrable over (0, T). It is a Hilbert space with 
the norm 

r;K* = {£ , | |w(- ,OIIÏ ,^} 1 
U/2 

I |W||L2(0,T;T 

and the usual inner product. 
L°°(0, T; Vk) is silmilary denned with the obvious modification. The 

derivative of w with respect to / is denoted by dw/dt or simply by w' 
when there is no confusion possible. 

The following assumption on the viscosity and on the coefficient of 
heat conduction shall be made throughout the paper. 

ASSUMPTION (I). 

1) 0 < e0 i e(p) ^ c9 0 < xo û l(p) Û c for 0 < a^ p £ b. 
2) \de/dp\, \dx/dp\ g M for 0 < a g p ^ b. 
3) Ifpn-+p *" the weak*-topology of L°°(0, T; L°°{G)) and if pn -> p 

weakly in L2(0, T; H~l), then e(pn) -• e(p), x(pn) -* %{p)ooth in the weak*-
topology of L°°(0, T\ L°°(G)). 

DEFINITION 1. Let u be in L°°(0, T; V) f) L2(0, T; V1) and p* > 0 be 
a scalar function in Lco{G). Then a scalar function p in L°°(0, T; L°°(G)) 
with p > 0 is said to be a weak solution of {0.2) if 

- f r(p. <I>')dt - r V g r a d ^ , p)rf/ = (p°, 0(-, 
v 0 »7 0 

0)) 

for all scalar functions <f> in L2(o, T; Hl) with fi in L2(0, T; H) and <f>(-,T) 
= 0. 

DEFINITION 2. Let f be in L2(0, T; / / ) , u° be in V and p* > 0, be in L°°(G). 
Then {u, p} in {L°°(0, T; V) fl £2(0, T; K1)} x L°°(0, T; L°°(G)) w said 
to be a weak solution of (0.1)-(0.2) // 

(i) p is a weak solution of (0.2) in the sense of Definition 1, and 

(ii) - f (pw, w ' )* + f (e(p)Vu, Vw)dt - \T{pu-S7w, u)dt 

Ï \pf,w)dt + (pOuo,w(-,0)) 

forali vector functions w in L2(0, T; V3) with w' in L2(0, T; V)andw{-, T) 
= 0. 

Finally for the system (0.3) we have the following definition. 
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DEFINITION 3. Let g, h be in L2(0, T; H), 0° in H. Let {u, p} be a weak 
solution o/(0.1)-(0.2) in the sense of Definition 2. Then a scalar function 0 
in L°°(0, T; H) f| L2(0, T; HI) is said to be a weak solution of (0.3) if 

- £ ( p 0 , P)dt + £(xO>)V0, V0)A - £ (p i / . graduo) dt 

= §T
o(pg + h,</,)dt + (p»0O,<P('9O)) 

for all scalar functions cfj in L2(0, T\ H%) with ty in L2(0, T; H) and 

The main result of the paper is the following theorem. 

THEOREM 1.1. Let u° be in V, let p° and 0° be two scalar functions with 0° 
in H and 0 < a ^ p°(x) ^ b on G. Suppose that Assumption (I) is satisfied. 
Then for any {fi g, h} in L2(0, T\ H) there exists a weak solution {u, p, 0} 
tf/(0.1)-(0.3) in the sense of Definitions 2 and 3. Moreover 0 < a ^ p(x, t) 
S bon (0, T) x G. 
Furthermore u is in L°°(0, T; V) fl L2(0, T; V1) and 0 is in L°°(0, T; H) 
fi L2(0, T; HI). 

REMARKS. 1) The problem of the unicity of the solution of (0.1)-(0.3) 
is open even in the case of constant density. (Cf. [3] for the Navier-Stokes 
equations). 2) As noted earlier the system (0.1)-(0.3) is not of standard 
type. An application of the Galerkin method or of its variants seems to 
give rise to difficulties. A priori estimates are fairly easy to establish and 
unlike the case of constant density, the difficulty lies in the proof of the 
existence of a local solution of the Galerkin approximating solutions. 
We shall circumvent the difficulty by using the method of successive 
approximations. 

Before going into the details we shall give an outline of the proof of 
Theorem 1.1. 

STEP 1. (to be carried out in §2). Let v be in L°°(0, T; V) (] L2(0, T; F1). 
By a standard method we show the existence of a weak solution of 

( 1 0 P + vg™ap = 0, 
0 < a g p(x, t) S b on (0, T) x G, p(x, 0) = p°(x) on G. 

Moreover 

llp'llL2(0,r;i/-l) + \\(ß(j>)y\\lt(0,T;H-l) 

+ \\(x(p)y\\L2{0,T;H-l) ^ C(l + ||v||L2(o,r;Fl)). 

C is independent of v. 

STEP 2. (to be studied in §3). Let v be as before and let p be a weak 
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solution of (1.1) given by Step 1. The Galerkin approximation method 
gives the existence of a weak global solution of 

p(u' + v-Vw) - V(£(|o)Vw) + grad p = pf, 

(1.2) div(w) = 0 on(0, T) x G, 

u(x, 0 = 0 on (0, T) x 3(?, u(x, 0) = w°(x) on G. 

moreover 

IMIL°°(OCW + £o/2IMlL2(o,r;Fi) ^ C; 
\\{pu)'\\ ^ C(l + | |v | |^ ( 0 ,T .n) . 

C is independent of v and p. 
Similarly there exists a weak global solution of 

a 3) /0(ö' + v 'g r a d d) ~ V ( x ( <° ) V Ö ) = h + Pg o n ( 0 > T) x G' 
1 ' ' 6(x, 0 = 0 on (0, T) x 3G, 0(x, 0) = 6°(x) on G. 

Furthermore 
WOh-iwvn + %J/2IIÖ||i2(o,r;^) ^ Cand 

L2(0,T;//-3) < C(l + ||v||Loo(o,r;F))-

C is independent of v and p. 

STEP 3. We now construct a sequence of successive approximations of 
(0.1)-(0.3). Consider the system 

(1 4) Pn + w"-rgrad ?» = °' P»(x> *) > ° on °̂' r^ x G' 
^„(x, 0) = /?°(A:) on G with w0 = 0» n = U 2 . . . 

and 

|0«(M» + w»-rV«„) - Vfc^JViO + grad/7K = pB/, 
(1.5) div(ww) = 0 on (0, T) x G, 

un(x, 0 = 0 on (0, T) x 9(7, ww(x, 0) = u°(x) on G 

and 

(1 6Ì ^ + w *- 1 ' g r a d ö»} " V W ^ ) V Ö « ) = h + ft»* o n (°' r) x G ' 
0„(x, 0 = 0 on (0 T) x 9G, 0n(x, 0) = Ö°(x) on G. 

It follows from Steps 1 and 2 that 

llw»llL°°(0,r;V) + llMnllL2(0,T;Fi) + \\0n\\L«>{O.T;H) + ll0JU2(O,r;ifJ) 

+ ll^«llL2(0,T;/f-l) + IK^nW
W),|lL2(0,T;F-3) + II(|0W0»)'IIL2(O,7V7-3) 

+ U(e(pJ)lL2(0,r;jy-l) + \\(x(pn))'\\L2(0,T;H-l) = C. 

C is a constant independent of «. Let « -> + oo and by standard compact-
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ness theorems as well as by the compensated compactness arguments of 
Murât (Cf. [5]) we get the theorem. 

2. We shall now carry out the proof of Step 1. 

THEOREM 2.1. Let v be in L°°(0, T; H) (] L2(0, T; V1) and let p° be a 
scalar function in L°°(G) with 0 < a ^ p°(x) ^ b on G. Then there exists 
a weak solution p in L°°(0, T\ L°°(G)) of (I.I) in the sense of Definition 1. 
Moreover 0 < a S p(x, t) ^ b on (0, T) x G and 

ll|0'llz,2(o,7V/-l) + \\(G(P)Y\\IJ*{0,T;H-1) 

+ W(xlp)y\\lH0,TiH-i) è C(l + 1^1^2(0,^1)). 

C is a constant independent of v. 

PROOF. 1) Since v is in L2(0, T; V1) there exists {vn} in C(0, T; C%(G)) 
with div(vw) = 0 and such that vn -• v in L2(0, T\ V1) as n -* + co. 

Consider the initial-value problem 

pH 4- v g r a d pn = 0 on (0, T) x G, pw(.x, 0) = p%x) on G. 

It is standard to show that there exists pn, solution of the above problem. 
Since D/Dt(pn) = pn + vn-gradpB =0 , the Lagrangian derivative of pn 

is zero. Therefore pn is constant along a particle path. On the other hand 
we know that 0 < a ^ pn(x, 0) = p°(x) g bon G. Hence 0 < a g p„(x, /) 
^ 6 on (0, T) x G. 

Let 0 be a scalar function in H^. Then 

(pi, 0) = - (Vgrad pn, 0) = Ovgrad 0, pn). 

Therefore 

1 ( ^ ^ ) 1 ^ iifr(-, olinoli v,(-, on iiç4iii,2-
Hence 

\\pn\\mo,T;H-l) ^ *llv* 11 (̂0,7;̂ ) ^ ^ 0 + II v II £2(0,7^1))-

C is independent of « and v. 
2) Similarly, we have 

(p'n'MPn)ßPn> <I>) + (( V gradp J S ^ ) / ^ , (Jj) = 0. 

Thus, 

((£(/>„))', 0) + ( v g r a d £(pw), ci) = 0. 

Hence 

(Ufa*))', 0) = ( Vgrad 0, e(pj). 

Therefore 
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ll(e(p*))'|lL2(0,T;ff-l) = WIL2(Q,T;#J) Mpn)\\L°°(0,T;L°°(G))' 

It follows from the first part and from Assumption (I) that 

\\(e(Pn)y\\mO,T;H-l) ^ C(l + M LH0,T;V^)) ' 

In exactly the same fashion, we obtain 

W(x(pn)y\\lM0,TiH-l) ^ C(l + I|V||L2(0,T;F1))-

The different constants C are all independent of n and v. 

3) From the above estimates we get by taking subsequences pn -> p in 
the weak*-topology of L°°(0, T; L°°(G)), pn -+ p weakly in L2(0, T; tf"1). 
It is clear that 0 < a g p(;c, /) ^ 6 on(0, T) x G and 

Hp'llL2<0fr;/r-l) ^ Q l + I|V||L2(0,T;Ì71))-

It follows from Assumption (I) and from the estimates of part (2) that 

I IWII + Il(z0»))'ll ^ C(l + l|v||L2(o,r;Fl))-

C is independent of v. 
Let 0 be a scalar function in L2(0, T; Hl) with <j>' in L2(0, T; LT) and 

</>(-, T) = O.Then 

- £(p„, 0 0 * - J / V g r a d 0' Pn)dt = Qfi, 0(-, 0)). 

Let « -» + oo and we get the theorem. 

3. We now proceed to Step 2. 
Let{wy} be a basis of V3 and since u° is in V and V is dense in K3, 

there exist real numbers aJn such that 

n 

H (XjnWj -* W° IH F. 

Set 

n 
"n = S <V„(0W/. 

y=i 

Let p be as in Theorem 2.1 and consider the following system of linear 
ordinary differential equations in cjn(t): 

(3 1) (pu'n9 w^ + ^ V w " ' V H ^ + (Pv 'V w»' w ^ = ^ ' w')> 

LEMMA 3.1. Le/ 6 and p be as in Theorem 2.1. Then for any f in L2(0, 
T; H), there exists a local solution un in C(0, Tn; V3) of the system (3.1). 

PROOF. We have 
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(p"n> Wy) = £ C'kn(t)(pwk9 Wj). 

Since 0 < a ^ p(x, /) g Z> on (0, T) x G, the norm induced by the inner 
product ((w, v)) = (p(-9 t)u, v) is equivalent to the if-norm. By hypotheses 
{wj} is linearly independent in H, thus dct(pwk9 ws) ^ 0. The lemma 
from the Caratheodory theorem. 

LEMMA 3.2. Let v, p and un be as in Lemma 3.1. Then 

I|WJL~(0,T;F) + 4/2||WJIL2(0,T;F1) ^ C. 

C w constant independent of n, v and p. It depends only on f and on the 
bounds ofp° on G as well as on u°. 

PROOF. We shall show that un is a global solution and establish some 
apri ori estimates using the conservation equation for the energy density. 

Multiplying (3.1) by cjn(t) and taking the summation with respect toy 
from 1 to n9 we obtain 

(3.2) (pu'n9un) + eollVwJ2 + (pv-Vii,, un) S (pf, un). 

since u„ is in C(0, Tn\ V3), \un\
2 is in C(0, Tn\ HI). On the other hand p 

is a weak solution of (1.1) and thus, 

(p\ <p) - (p, v-grad^) = 0 

for all (J) in //J. Hence with cjj = |wj2, we get 

(3.3) -^(p\ \un\
2) - i-(p, vgrad \un\

2) = 0. 

Noting that 

(pvVwM, un) = -j(p, vgrad \un\
2), 

we have by adding (3.2)-(3.3) 

( 3-4 ) T Tt (pUn>Un) + e°" V M J | 2 - (pf> Un)' 

Therefore %p\u„\2, which is the kinetic energy, satisfies the following in­
equality: 

- c + T J 1 ( Ì ° W M ' Ww) *• 
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C is a constant independent of«, v and p. It depends on / , w° and on the 
upper bound b of p° on G. In the above estimate we have applied the 
Holder inequality. The Gronwall lemma gives 

(p0,t)un(-,t),un(',t)) ^ C. 

C is independent of n, v, t and p. It depends only off, u° and b. Since 
0 < a g pO, 0 g è on (0, T) x G, it follows that ||wJLoo(0,r;F) g C. 
Returning to (3.4), we get 

4/2||ww||L2(0,r;7i) ^ C -

The different constants C are as in the lemma. 

THEOREM 3.1. Let v, p and p° be as in Theorem 2.1. Suppose all the 
hypotheses of Theorem 1.1 are satisfied. Then there exists u in L°°(0, T; 
V) fi L2(0, T; V1), a weak solution 0/(1.2) in the sense of Definition 2, i.e., 

- | (pu, w')dt + | (e(p)Vu, Vw)dt - | (pv-Vw, w) of/ 

= £ ^ / w ) A + (pOwO)W;(.?o)) 

for all w in L2(0, T; V3) with w' in L2(0, T; V) and w(-, T) = 0. Moreover 

\\U\\L°°ÌO,TIV) + 4/2IIW|IL2(O,T;71) ^ Cand 
11(^)11^(0^^-3) g C(l + ||v||Loo(0,r;F)). 

C w a constant independent of v, p but depends on fi u° and on the bounds 
of p° on G. 

PROOF. 1) Let u„ be as in Lemmas 3.1-3.2. From the estimates of Lemma 
3.2 we get by taking subsequences: u„ -* u weakly in L2(0, T; V1) and 
in the weak*-topology of L°°(0, T; V). Moreover 

\\u\\ L~(0,T;V) + 4/2\M\LH0,T;VI) ^ C. 

C is as stated in the theorem. 
2) By definition, we have 

(3.5) (pu'n, wj) + (e(p)Vun, Vwy) 4- (pv-Vww, wy) = (pfi wj)',j ^ n. 

Since p is a weak solution of (1.1) we get 

(p\ $4) - (p, v grad 0) = 0 

for all $ in //J. But ww-vvy is in H\ f] H2 and hence by taking 0 = wM-wy 

we obtain 

(3.6) (p, un'WJ) - (p, v-grad un-wj) = 0. 

Adding (3.6) to (3.5) we have 
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((puny, wj) + (e(p)Vun, Vwy) - (pv- Vwy, un) = (pfi wy); j ^ n. 

Let $ be a function in C^O, r ) with ^ ( r ) = 0. Then 

- I (pun,(j)'Wj)dt 4- I (e(p)Vun,(f)Vwj)dt - \ (pv-<f>Vwj, un)dt 
JO JO JO 

= $[(pf, Wdt + (POWÄ(., 0), wj(f>(0)). 

Thus, from the first part we obtain by letting n -> -f oo, 

- i (pu,$'Wj)dt + I (e(py7u, <fiVwj)dt - \ (0vVwy, ^w)^ 

= £0>/, 0wy)A + (pOWo, W ^ ( 0 ) ) . 

Now by standard arguments we have 

- y (pu, w')dt + j(e(p)Vw, Vw)rfr - Mpv-Vw, w)A 

= £(p / , iv )A + (^iiO,w(.,0)) 

for all w in L2(0, J ; J/3) with w' in L2(0, T; K) and w(-, T) = 0. 
3) From (3.7) we have 

- I (pU, W')dt\ ^ ||w||L2(o,T;F3)(||w||L2(o;T;Fi) + b\\f\\L2{0fT;H) 
\ J 0 

+ *l|v||Loo(0,r;l0llWllL2(0,T;7l)) 

for all w in C?(0, r , K3). 
Taking into account the estimates for u we obtain 

Ì ÇT i 

| - I (pu, w')dt\ S l|w|!L2(o,r;F3) C(\ + ||v||Loo(o,T;F)) 
i »7 0 

for all w in C?(0, T; V*). Hence 

ll(pw)'llLl(0,r;7-3) ^ C ( l + | |v | |Loo ( 0 , r ; 7)) . 

C is a constant independent of v, p and depends only on / , u° and the 
bounds of p° on G. 

THEOREM 3.2 Le/ v, p be as in Theorem 2.1 and suppose all the hypotheses 
of Theorem 1.1 are satisfied. Then there exists 0 in L°°(0, T; H) f| L2(0, 
T; Hi), a weak solution of(\ .3) in the sense of Definition 3. Moreover 

ll0|lL-o(o,r;/f) + xl/2W\mo,T;Hl) ^ C and 
II(IOÖ),|IL2(0,T;^-3) ^ C(\ + ||v||Loo(0,T;F)) 

C is a constant independent of v, p and depends only on fi g, h, u°, 0° and 
the bound ofp° on G. 
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The proof is the same as that of Theorem 3.1. We shall not reproduce 
it. 

4. We now proceed to the proof of Step 3. 

LEMMA 4.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then 
for each n, there exists {uni pm dn}, a solution of the system (1.4)—(1.6) in 
the sense of Definitions 1-3. Moreover 

(i) 0 < a ^ pn(x, t) g b on (0, T) x G9 

Wp'n\\mO,T;H-l) + II OKp«))'II 1,2(0, T;H~l) + W(x(pn)ï\\mO,T;H-^ ^ C. 

(Ü) | | W J L ~ ( 0 , T ; F ) + \\Un\\lßiO,T;Vl) + 11 ( P A ) ' I I £2(0, T;V~*) ^ C-

( » 0 \\On\\L<*>(0,T\H) + WOnWmO, T;H%) + \\(Pn0n)'\\mO,T;H-*) ^ C' 

C is a positive constant independent ofn. 

PROOF. Consider the system (1.4)—(1.6). From Theorems 2.1, 3.1 and 3.2 
we know that there exists {un, p„, 0n}, a solution of the system (1.4)—(1.6) 
in the sense of Definitions 1-3. From the estimates of Theorem 2.1 we 
have 

0 < a ^ Pn(x, t) ^ b on (0, T) x G and 

\\Pn\\^(0,T;H~i) + \\(e(pn)Y\\mQ,T;H-i) 

+ Kx(Pn)y\\mO{T;H-l) ^ C 0 + HW
W-IIIL2(0,T;F1))-

C is independent of n. 
From Theorem 3.1 we obtain 

IML~(o,r;V) + UWJL2(0,r;Fl) = C a n d 

\\(PnUny\\mo,T;V-t) ^ C ( l + ||ww_i||Loo(0, T;V)). 

C is again independent ofn. 
We get from Theorem 3.2 

H0JL~(O,:T;/J) + ll0jL2(o,r;4) è Cand 

IIWII 
C is independent of«. 

The results stated in the lemma are an immediate consequence of the 
above estimates. 

We need a technical lemma before going into the proof of Theorem 1.1. 

LEMMA 4.2. Let {un, pn} be as in Lemma 4.1. Then there exists a subse­
quence denoted again by {un, pn) such that 

(0 Pn-* p in the weak*-topology ofL°°(0, T; L°°(G))and in L2(0, T; H~l), 
(ii) un -> u in L2(0, T\ V) and weakly in L2(0, T; K1), 

(iii) pnun -• pu weakly in L2(0, T; H) and in L2(0, T; K~i), 
(iv) (e(pn))' -+ (e(p)Y weakly in L2(0, T\ i / 1 ) , 
(v) e(pn)Vun -* e(pWu weakly in L2(0, T; H). 
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PROOF. 1) We have by taking subsequences pn -> p in the weak*-
topology of L°°(0, T; L°°(G)), pn -> p' weakly in L2(0, T; / / - 1 ) . 

The natural injection mapping of / /J into H is compact and hence by 
Schauder's theorem that of/ / into H~l = (Hi)* is also compact. It follows 
from the estimates of Lemma 4.1 and from Aubin's theorem [1] that 
pH-*pmIß(09T;H-i). 

2) We have again by taking subsequences un -> u weakly in L2(0, T; V1) 
and in the weak*-topology of L°°(0, T\ V). It is clear that pnun -• £ in the 
weak*-topology of L°°(0, T; / / ) , and (pnun)' -> £' weakly in L2(0, T\ K~3). 
Thus, as in the first part we have pnun -> £ in L2(0, T; F - 1) . 

We now show that £ = pw. Let 0 be in Cg°(0, T; Q°(G)) with div(^) = 
0. Then 

Hence £ = p w. 
3) We now prove one of the key assertions of the lemma, namely that 

un -+ u in L2(0, T; V). Indeed 

II"« - u\\h(0,T;V) ̂  I (?„("» - "), WK - « ) * 
V 0 

rr rr 

4- I (p„u, u)dt + I (pu, un — u)dt. 

Since pnun — pu -> 0 in L2(0, J ; K_1) and un — u -> 0 weakly in L2(0, 
T\ F1), we have ww - u -> 0 in L2(0, T; K). 

4) It follows from Assumption (I) that (e(pn))' -+ (e(p))' weakly in 
L2(0, T\ H~l). It remains to prove the assertion (v) of the lemma. First let 
us note that 

\\DMpn))\\L°°{0,T;H-i) ^ C a n d 

I I^ (^) ) , HL2(O,T; / / -2 ) ^ C 

C is a constant independent of«. 
Thus, Z)/e(pn)) - Z>/e(p)) weakly in L2(0, T; //-*) and D^fa))' -> 
Dj(e(p))' weakly in L2(0, T; //~2) as n -» +oo. Since un-* u weakly in 
L2(0, T; F1), it now follows from the compensated compactness arguments 
of Murat as applied by Lions in [5] (p.72, relation 1.64) that unDj(e(pn)) -> 
uDj(e(p)) in the distribution sense on (0, T) x G. 

It is clear that by taking subsequences we have e(pn)DjUn -» £y weakly 
in L2(0, J ; / / ) as n -> +oo. Using the above results we shall show that 
e(p)DjU = £y. 

Let ^ be in Cg°(0, T; Cg°(G)). Then 
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I (e(pn)DjUH, </>)dt = - | (un9 Dj{e(pn)(J>})dt 
j o J o 

= - I ("„, e(pn)Dj(/))dt - I (unDje(pH)9 cjj)dt. 
JO JO 

The integrals make sense since un is in L°°(0, 7; V) f| L2(0, 7; V1). 
Let n -> + oo and it follows from the above arguments that 

J (e(p„)i>yMn» ^) dt 

* ~ Jo^' £^D^dt ~ j^(MZV(p)> 0) *• 
• - T ( W , Z)y{<fe(p)})dt = {%(p)Dju, <P) dt. 

JO JO 

On the other hand 

^\e(pn)DjUm 0) dt -+ £ ( f y, 0) A. 

Hence 

£(fy, 0) dt = J (̂p)Z>yrf, 0) A 

for all <J) in Cg°(0, 7; Cg°(G)) and therefore f y = e(p)Dju. 
The lemma is proved. 

We have a similar result for pn, On. 

LEMMA 4.3. Let {pm On) be as in Lemma 4.1. 7/ze/7 there exists a subse­
quence denoted again by {pn, 6n} such that 

(i) On-+d in L2(0, 7; H) and weakly in L2(0, 7; //J), 
00 pnOn -* pO weakly in L2(0, 7; / / ) AW/ m L2(0, 7; / / - i ) , 

(iii) Z(pÄ)Vflw - x(p)VO weakly in L2(0, 7; / / ) . 

The proof is identical to that of Lemma 4.2. It suffice to replace un by dn. 

PROOF OF THEOREM 1.1. 1) Let un, pn and 6n be as in Lemma 4.1. By 
definition we have 

- Pip» <I>')dt - f W r g r a d <fi, pn)dt = (pO, ^(., 0)) 
*l 0 JO 

for all scalar functions cp in C*(0, 7; tf3) with ^(- , 7) = 0. Since pw -> p 
in L2(0, 7; H~l) and w„_!-grad 0 -> w-grad <p weakly in L2(0, 7; 7/J), it 
is clear that 

- ( \ , <f>')dt - fVgrad 0, p¥> = (p0, ^(-, 0)) 
•Jo Jo 

for all 0 in 0 ( 0 , 7; H3) with < (̂-, 7) = 0. By a standard argument we get 
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- fo(p, <J>')dt - J V g r a d ^ , p)dt = (po, <£(., 0)) 

for all 0 in L2(0, T; //J) with $' in L2(0, T; H) and 0( . , T) = 0. 

2) For the system (1.5) we have 

- Jo(<°A> W ')A + Jo(^(Pn)Vwn, Vw)A - | (/Mn-i-Vw, «„)* 

= £ ( p , / , w)dt + ((Pifl, w(-, 0)) 

for all w in 0 ( 0 , T; K3) with w(-, T) = 0. 
Since wM_! -• w in L2(0, T; V) and pn«w -> pu weakly in L2(0, T; H), it is 

easy to see that 

~ " Z ] l l Pniiii-iUÌDjWk dx dt -+ - S i l pujukDjWk dxdt. 
ij=iJ0jG j,k=lJ0JG 

Applying Lemma 4.2 we obtain 

fr er CT 
- I (pw, w')dt + 1 0(p)Vw, Vw)dt - I (pw-Vw, w)rff 

= £ ( p / , w ) A + (pOMo>w(.90)) 

for all w in C^O, T; V3) and w(-, T) — 0. By a standard argument we have 
the above equation for all w in L2(0, T; V3) with w' in L2(0, J7; K) and 
w ( . , r ) = 0. 

3) An argument as in part (2) using Lemma 4.3 shows that 0 is a weak 
solution of (0.3). 

The theorem is proved. 
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