A DIFFERENTIAL CHARACTERIZATION OF MULTIPLICITY SEQUENCES OVER ARBITRARY FIELDS

W. C. BROWN

Introduction. Let (\emptyset, m, k) denote an excellent, local, domain of Krull dimension one with maximal ideal m and residue class field k. We assume that \emptyset is equicharacteristic and geometrically unibranched. Let $\overline{\emptyset}$ denote the integral closure of \emptyset in its quotient field $K(\emptyset)$, and let $\mathscr{G}: \emptyset = \emptyset_0 \to \emptyset_1 \to \emptyset_2 \to \cdots \to \emptyset_n \to \overline{\emptyset}$ be the blow up sequence of \emptyset in $\overline{\emptyset}$. Here the notation has been chosen to mean that \emptyset_n is the last nonregular local ring in the blow up sequence of \emptyset (If \emptyset is regular, we write \mathscr{G} as $\mathscr{G}: \emptyset = \overline{\emptyset}$). Let $\overline{\emptyset}/\overline{m}$ and \emptyset_i/m_i , $i = 0, \ldots, n$, denote the residue class fields of $\overline{\emptyset}$ and \emptyset_i respectively. Set $f_i = [\overline{\emptyset}/\overline{m}: \emptyset_i/m_i]$. Finally, let $D_{\emptyset}^q(\overline{\emptyset})$ denote the $\overline{\emptyset}$ -module of q-th order \emptyset -differentials on $\overline{\emptyset}$.

In [1] and [2], K. Fischer showed that if \mathcal{O} is complete, and k is algebraically closed, then for all $q \gg 1$, $D_{\mathcal{O}}^q(\overline{\mathcal{O}})$ uniquely determines the multiplicity sequence $\{\mu(\mathcal{O}_i)\}$ of \mathcal{S} . In this paper, we shall prove a similar result when \mathcal{O} is not necessarily complete, and k is not necessarily algebraically closed. Specifically, we shall show that if (\mathcal{O}, m, k) is an excellent, local, domain of Krull dimension one, of equal characteristic and geometrically unibranched, then, for all q sufficiently large $(q \gg 1)$, $D_{\mathcal{O}}^q(\overline{\mathcal{O}})$ and the residue class sequence $\{f_0, \ldots, f_n\}$ uniquely determine the multiplicity sequence $\{\mu(\mathcal{O}_i)\}$ of \mathcal{S} . We shall also give an example which shows that $D_{\mathcal{O}}^q(\overline{\mathcal{O}})$ by itself does not determine the multiplicity sequence of \mathcal{S} .

We shall assume that the reader is familiar with the contents of [1] and [4]. We shall use much of the notation from those two papers. In particular, $\mu(\mathcal{O})$ will denote the multiplicity of a local ring \mathcal{O} , and $\lambda(M)$ will denote the length of an \mathcal{O} -module M, and K(A) will denote the total quotient ring of any ring A.

Now let (\mathcal{O}, m, k) be as above. We shall explain why we must assume \mathcal{O} is geometrically unibranched instead of just unibranched. In the theory that we shall present here (as well as that in [1]) the module $I(\overline{\mathcal{O}}/\mathcal{O})$ is the object which plays the principal role in determining $\{\mu(\mathcal{O}_i)\}$. Because of the good functorial properties the module $D_{\mathcal{O}}^q(\overline{\mathcal{O}})$ enjoys, we would like to continue to deal with a class of rings in which $I(\overline{\mathcal{O}}/\mathcal{O}) = D_{\mathcal{O}}^q(\overline{\mathcal{O}})$ for all $q \gg 1$. If k is not algebraically closed, then a unibranched domain $(\mathcal{O}, \mathcal{O})$

Received by the editors on January 8, 1979 and in revised form on February 12, 1979. Copyright © 1981 Rocky Mountain Mathematics Consortium

m, *k*) need not have $D^q_{\bar{U}}(\bar{\mathcal{O}}) = I(\bar{\mathcal{O}}/\mathcal{O})$ for any *q*. The following example illustrates this point.

EXAMPLE 1. Let Q denote the field of rational numbers. Let X and Y be indeterminates over Q. Set $f(X, Y) = Y^2 - X^2(X + 2)$. Clearly f is an irreducible polynomial in Q[X, Y] and, thus, R = Q[X, Y]/(f) is a finitely generated integral domain of Krull dimension one. Let x and y denote the images of X and Y respectively in R. Then R = Q[x, y].

If we set z = y/x, then the reader can easily check that Q(z) is the integral closure of R in K(R). The only maximal ideal in Q[z] which lies over (x, y) in R is the principal ideal $(z^2 - 2) = (x)$. Thus, one easily checks that the local ring $\mathcal{O} = R_{(x, y)}$ is a unibranched, local domain with integral closure $\overline{\mathcal{O}} = Q[z]_{(z^2-2)}$. Let m and \overline{m} denote the maximal ideals of \mathcal{O} and $\overline{\mathcal{O}}$ respectively. We pass to the completion $\hat{\mathcal{O}} = Q[[x, y]]$ of \mathcal{O} , and note that the triple $(\hat{\mathcal{O}}, m\hat{\mathcal{O}}, Q)$ is an excellent, equicharacteristic, complete, local domain of Krull dimension one which is unibranched. Since $\overline{\mathcal{O}}/\overline{m} \cong Q(\sqrt{2})$, we see that B, the integral closure of $\hat{\mathcal{O}}$, has the form $B = Q(\sqrt{2})$ [[t]]. Here t can be taken to be x.

Now we claim that $I(B|\hat{\vartheta})$ is not nilpotent. To see this, we consider the following commutative diagram with exact rows.

In (1), π is the natural projection of *B* onto its residue class field $Q(\sqrt{2})$. σ is the obvious map induced by π . One easily checks that σ is surjective, and that $\sigma(I(B/\hat{O})) = I(Q(\sqrt{2})/Q)$. Thus, if $I(B/\hat{O})$ is nilpotent, then $I(Q(\sqrt{2})/Q)$ is also nilpotent. But, $Q(\sqrt{2})$ is a separable algebraic extension of *Q*. Therefore, $D_Q^1(Q(\sqrt{2})) = (0)$. Thus, setting $I = I(Q(\sqrt{2})/Q)$, we have $I = I^2 = I^3 \neq \ldots$. A simple counting argument shows that $I \neq (0)$. Therefore, *I* is not nilpotent. Thus, $I(B/\hat{O})$ cannot be nilpotent. Since

$$D^q_{\mathscr{O}}(B) = I(B/\hat{\mathscr{O}})/I(B/\hat{\mathscr{O}})^{q+1},$$

we see that $I(B/\hat{O}) \neq D^q_{\mathcal{O}}(B)$ for any q.

Recall that a local domain (\mathcal{O}, m, k) is said to be geometrically unibranched if $\overline{\mathcal{O}}$ contains a unique maximal ideal \overline{m} , and $\overline{\mathcal{O}}/\overline{m}$ is purely inseparable over k. The above example is unibranched, but not geometrically unibranched. For geometrically unibranched rings (\mathcal{O}, m, k) , we have the following important lemma. LEMMA 1. If (\mathcal{O}, m, k) is geometrically unibranched, then $I(\overline{\mathcal{O}}/\mathcal{O}) = D^q_{\mathcal{O}}(\overline{\mathcal{O}})$ for all $q \gg 1$.

PROOF. If (\mathcal{O}, m, k) is geometrically unibranched, then $\mathcal{O} \to \overline{\mathcal{O}}$ is a radical extension. Hence it follows from [3; p. 246, Prop. (3. 7. 1)] that $I(\overline{\mathcal{O}}/\mathcal{O})$ is a nil ideal. But, we note that $\overline{\mathcal{O}}$ is finitely generated over \mathcal{O} , and, therefore, $I(\overline{\mathcal{O}}/\mathcal{O})$ is finitely generated as an $\overline{\mathcal{O}}$ -module. Thus, $I(\overline{\mathcal{O}}/\mathcal{O})$ is nilpotent, and the result follows.

Main Results. Throughout this section, (\mathcal{O}, m, k) will denote an excellent, equicharacteristic, local domain of Krull dimension one. We further assume that (\mathcal{O}, m, k) is geometrically unibranched. We shall write the blow up sequence \mathscr{S} of \mathscr{O} in the following form.

(2)
$$\mathscr{G}: \mathscr{O} = \mathscr{O}_0 \to \mathscr{O}_1 \to \mathscr{O}_2 \to \cdots \to \mathscr{O}_n \to \overline{\mathscr{O}}.$$

In (2), the notation has been chosen so that \mathcal{O}_n is the last nonregular local ring in the blow up sequence for \mathcal{O} (we are temporarily ignoring the trivial case when \mathcal{O} is regular). Throughout this section, we shall let $m_i(i = 0, \ldots, n)$ denote the maximal ideal of \mathcal{O}_i . Thus, $m = m_0$. We shall let \overline{m} denote the maximal ideal of $\overline{\mathcal{O}}$. For each $i = 0, \ldots, m$, set $f_i = [\overline{\mathcal{O}}/\overline{m}: \mathcal{O}_i/m_i]$. We shall refer to the sequence $\{f_0, \ldots, f_n\}$ as the residue class sequence of \mathcal{S} . We note that if \mathcal{O} is regular, then the residue class sequence for \mathcal{S} can be taken to be just $\{1\}$.

We can now state the main theorem of this paper.

THEOREM. Let (\mathcal{O}, m, k) be an excellent, equicharacteristic, local domain of Krull dimension one. Assume \mathcal{O} is geometrically unibranched. Let $\mathcal{G}: \mathcal{O} =$ $\mathcal{O}_0 \to \cdots \to \mathcal{O}_n \to \overline{\mathcal{O}}$ be the blow up sequence for \mathcal{O} , and let $\{f_0, \ldots, f_n\}$ be the residue class sequence of \mathcal{G} . Then for all $q \gg 1$, $D_{\mathcal{O}}^q(\overline{\mathcal{O}})$ and $\{f_0, \ldots, f_n\}$ uniquely determine the multiplicity sequence $\{\mu(\mathcal{O}_i)\}$ of \mathcal{O} .

Before proceeding with the proof of the theorem, we shall make three reductions which make the argument considerably easier.

REDUCTION 1. We can, without loss of generality, assume that k is an infinite field. This statement involves the usual procedure. (See [5; p. 17, 18] or [6; p. 10]) of making the flat change of rings $\mathcal{O} \to \mathcal{O}(x)$. Thus, we proceed with the proof of the theorem under the additional hypothesis that k is infinite. This is an important simplification because now it follows from [5; (22.1)] that every open ideal of any \mathcal{O}_i has a transversal element.

REDUCTION 2. We can, without loss of generality, assume that \mathcal{O} is complete. Since quadratic transforms and $D^q_{\mathcal{O}}(\overline{\mathcal{O}})$ behave nicely when passing to the completion $\hat{\mathcal{O}}$, reduction 2 is obvious. Thus, we assume \mathcal{O} is complete and k is infinite.

REDUCTION 3. We can assume, without loss of generality, that \mathcal{O} is Arf-closed in $\overline{\mathcal{O}}$. If \mathcal{O} is not Arf-closed in $\overline{\mathcal{O}}$, then let \mathcal{O}' denote the Arfclosure of \mathcal{O} in $\overline{\mathcal{O}}$. Since \mathcal{O} is complete and equicharacteristic, \mathcal{O} contains a field. It now follows from [4; Cor. 4.8] that O' is just the strict closure of \emptyset in $\overline{\emptyset}$. Thus, if $\delta: \overline{\emptyset} \to I(\overline{\emptyset}/\emptyset)$ denotes the canonical Taylor series map. then $\mathcal{O}' = \{x \in \overline{\mathcal{O}} | \delta(x) = 0\}$. Since $\mathcal{O} \subset \mathcal{O}' \subset \overline{\mathcal{O}}$, we see that \mathcal{O}' is a local domain and a finitely generated O-module. It follows from [4; Theorem 4.2] that $\mu(\mathcal{O}) = \mu(\mathcal{O}')$, and that the residue class field of \mathcal{O}' is just k. If we let m' denote the maximal ideal of \mathcal{O}' , then we have (\mathcal{O}', m', k) is an excellent, equicharacteristic, complete local, domain of Krull dimension one, geometrically unibranched and having infinite residue class field k. By [4; Theorem 3.5] Arf-closure commutes with blowing up. Thus, the blow up sequence \mathscr{S}' of \mathscr{O}' is given by $\mathscr{S}' \colon \mathscr{O}' \to \mathscr{O}'_1 \to \cdots \to$ $\mathcal{O}'_n \to \overline{\mathcal{O}}$. Here \mathcal{O}'_i is just the Arf-closure of \mathcal{O}_i . It follows from the above remarks applied to each \mathcal{O}_i that the multiplicity and residue class sequences for \mathcal{S} and \mathcal{S}' are identical.

Finally, one easily checks from the definitions that $I(\overline{\varrho}/\varrho) = I(\overline{\varrho}/\varrho')$. Thus, Lemma 1 implies that $D^q_{\varrho}(\overline{\varrho}) = D^q_{\varrho'}(\overline{\varrho})$ for all $q \gg 1$. This completes Reduction 3.

PROOF OF THEOREM Let (\mathcal{O}, m, k) be as in the statement of the theorem. By applying the reductions (which we could schematically indicate as $\mathscr{G} \to_1 \mathscr{G}(x) \to_2 \mathscr{G}(x) \to_3 \{\mathscr{G}(x)\}'$), we can assume that k is infinite, that \mathscr{O} is complete and that \mathscr{O} is Arf-closed in $\overline{\mathscr{O}}$.

Since $\overline{\emptyset}$ is complete and equicharacteristic, $\overline{\emptyset}$ has the form $\overline{\emptyset} = F[[t]]$. Here *t* is a uniformizing parameter for $\overline{\emptyset}$, and *F* is a field of representatives of $\overline{\emptyset}/\overline{m}$ in $\overline{\emptyset}$. Let $\nu: K(\overline{\emptyset}) \to \mathbb{Z} \cup \{\infty\}$ denote the canonical, discrete rank one valuation given by $\nu(f) = \operatorname{ord}_t(f)$. For each $i = 0, 1, \ldots, n$, let x_i denote a transversal for m_i . We need the following lemmas.

LEMMA 2. $\mu(\mathcal{O}_i) = f_i \nu(x_i)$ for each i = 0, 1, ..., n.

PROOF. For each i = 0, 1, ..., n, let $s_i = \min\{\nu(y) | y \in m_i\}$. It follows directly from [7; Vol. II, Cor 1, p. 299] that $\mu(\mathcal{O}_i) = f_i s_i$. Since x_i is a transversal for $m_i, \nu(x_i) = s_i$.

We note that Lemma 2 implies the multiplicity sequence $\{\mu(\mathcal{O}_i)\}\$ of \mathcal{O} has the form

$$\mu(\mathcal{O}) \ge \mu(\mathcal{O}_1) \ge \cdots \ge \mu(\mathcal{O}_n) > 1.$$

Since each \mathcal{O}_i in \mathcal{S} is an equicharacteristic, complete local ring, we can choose a field of representative of \mathcal{O}_i/m_i in \mathcal{O}_i . We shall call this field k_i . Thus, $k_i \subset \mathcal{O}_i$, and if $\pi: \overline{\mathcal{O}} \to \overline{\mathcal{O}}/\overline{m}$ denotes the natural projection, then $\pi(k_i) = \mathcal{O}_i/m_i$.

LEMMA 3. For each i = 0, 1, ..., n, $I(\overline{O}/k_i[[x_i]])$ is a free \overline{O} -module of rank $\mu(O_i) - 1$.

PROOF Fix i = 0, ..., n, and consider the power series ring $k_i[[x_i]] \subseteq \overline{\emptyset}$. One easily sees that $\overline{\emptyset}$ is a free $k_i[[x_i]]$ -module of rank $\mu(\emptyset_i)$. In fact, if $\{z_1 = 1, z_2, ..., z_{f_i}\}$ are elements of $\overline{\emptyset}$ which form a vector space basis of $\overline{\emptyset}/\overline{m}$ over \emptyset_i/m_i , then $\Omega = \{z_j t_i \mid j = 1, ..., f_i; i = 0, ..., s_i - 1\}$ is a free basis of $\overline{\emptyset}$ over $k_i[[x_i]]$. Hence, Lemma 2 implies that the rank of $\overline{\emptyset}$ over $k_i[[x_i]]$ is $\mu(\emptyset_i)$.

Now consider the following short exact sequence.

(3)
$$0 \to I(\overline{\mathcal{O}}/k_i[[x_i]]) \to \overline{\mathcal{O}} \otimes_{k_i[[x_i]]} \overline{\mathcal{O}} \xrightarrow{\mathcal{O}} \overline{\mathcal{O}} \to 0.$$

Since $\overline{\mathcal{O}}$ is a free $k_i[[x_i]]$ -module of rank $\mu(\mathcal{O}_i)$,

$$\overline{\mathcal{O}} \otimes_{k_i[[x_i]]} \overline{\mathcal{O}}$$

is a free $\overline{\mathcal{O}}$ -module of rank $\mu(\mathcal{O}_i)$. Since (3) splits as $\overline{\mathcal{O}}$ -modules, we conclude that $I(\overline{\mathcal{O}}/k_i[[x_i]])$ is a free $\overline{\mathcal{O}}$ -module of rank $\mu(\mathcal{O}_i) - 1$.

Now for each i = 0, 1, ..., n, set $A_i = k_i[[x_i]]$. Then we have $A_i \subset \mathcal{O}_i \subset \mathcal{O}_{i+1}$ (\mathcal{O}_{i+1} is just $\overline{\mathcal{O}}$ if i = n). These inclusions lead to the following commutative diagram with exact rows.

$$(4) \qquad \begin{array}{cccc} 0 & \longrightarrow & I(\overline{\mathcal{O}}/A_i) & \longrightarrow & \overline{\mathcal{O}} \otimes_{A_i} \overline{\mathcal{O}} & \longrightarrow & \overline{\mathcal{O}} & \longrightarrow & 0 \\ & & & & \downarrow & & & & & \\ \varphi_1 & & & \downarrow & \varphi_1 & & & \\ 0 & \longrightarrow & I(\overline{\mathcal{O}}/\mathcal{O}_i) & \longrightarrow & \overline{\mathcal{O}} \otimes_{\mathcal{O}_i} & \overline{\mathcal{O}} & \longrightarrow & 0 \\ & & & & \downarrow & \varphi_2 & & & \\ 0 & \longrightarrow & I(\overline{\mathcal{O}}/\mathcal{O}_{i+1}) & \longrightarrow & \overline{\mathcal{O}} \otimes_{\mathcal{O}_i+1} \overline{\mathcal{O}} & \longrightarrow & \overline{\mathcal{O}} & \longrightarrow & 0. \end{array}$$

In (4), φ_1 and φ_2 are the obvious maps induced by the inclusions $A_i \subset \mathcal{O}_i$, and $\mathcal{O}_i \subset \mathcal{O}_{i+1}$. Clearly, both φ_1 and φ_2 are surjective, and one easily checks that $\varphi_1(I(\overline{\mathcal{O}}/A_i)) = I(\overline{\mathcal{O}}/\mathcal{O}_i)$, and $\varphi_2(I(\overline{\mathcal{O}}/\mathcal{O}_i)) = I(\overline{\mathcal{O}}/\mathcal{O}_{i+1})$. Thus, the diagram in (4) gives us the following commutative diagram with exact rows.

In (5), $N(\mathcal{O}_i)$ is the kernel of φ_1 , and $N(\mathcal{O}_{i+1})$ is the kernel of $\varphi_2 \circ \varphi_1$. Thus, the vertical map on the left in (5) is just inclusion.

We need one last lemma before proving the theorem.

LEMMA 4. Using the notation in diagram (5), we have

$$x_i N(\mathcal{O}_{i+1}) = N(\mathcal{O}_i).$$

PROOF. This argument is exactly the same as in [2; p. 514], and therefore we omit it.

We can now proceed with the proof of the theorem. Since $I(\overline{\emptyset}/\emptyset)$ (which equals $D^q_{\emptyset}(\overline{\emptyset})$ for $q \gg 1$) is a finitely generated module over the principal ideal domain $\overline{\emptyset}$, it has a natural set of invariant factors associated with it. The idea of the proof is to write down what the invariant factors of $I(\overline{\emptyset}/\emptyset)$ must be, given that we know \mathscr{S} , and then reverse this procedure.

We consider diagram (5) with i = n. In this case, (5) becomes

By Lemma 3, $I(\overline{\emptyset}/A_n)$ is a free $\overline{\emptyset}$ -module of rank $\mu(\emptyset_n) - 1$. Since $I(\overline{\emptyset}/\overline{\emptyset}) = (0)$, $N(\overline{\emptyset}) = I(\overline{\emptyset}/A_n)$. By Lemma 4, $x_n I(\overline{\emptyset}/A_n) = N(\emptyset_n)$. We can now conclude from the first row of (6) that a set Γ_1 of invariant factors for the $\overline{\emptyset}$ -module $I(\overline{\emptyset}/\emptyset_n)$ is given by

(7)
$$\Gamma_1 = \{\underbrace{x_n, \ldots, x_n}_{\mu(\mathcal{O}_n) - 1}\}.$$

Now we consider diagram (5) with i = n - 1. In this case, (5) becomes

We warn the reader that the notation is a bit ambiguous at this point. The module $N(\mathcal{O}_n)$ in diagram (8) is not the same as $N(\mathcal{O}_n)$ in (6). (As long as we keep track of the rank of $I(\overline{\mathcal{O}}/A_i)$ no real confusion will arise.) Now, again by Lemma 3, $I(\overline{\mathcal{O}}/A_{n-1})$ is a free $\overline{\mathcal{O}}$ -module of rank $\mu(\mathcal{O}_{n-1}) - 1$. Thus, the $N(\mathcal{O}_n)$ appearing in diagram (8) can be generated by $\mu(\mathcal{O}_{n-1}) - 1$ elements ([7; vol. I, p. 246]). Therefore, $I(\overline{\mathcal{O}}/\mathcal{O}_n)$ can be represented by a relations matrix of size $(\mu(\mathcal{O}_{n-1}) - 1) \times (\mu(\mathcal{O}_{n-1}) - 1)$. Since a set of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O}_n)$ is given by (7), and $x_{n-1}(N(\mathcal{O}_n)) = N(\mathcal{O}_{n-1})$ by Lemma 4, we conclude from (8) that a set Γ_2 of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O}_{n-1})$ is given by

(9)
$$\Gamma_2 = \{ \underbrace{x_{n-1}, \ldots, x_{n-1}}_{\mu(\mathcal{O}_{n-1})}, \underbrace{x_{n-1}, x_{n-1}, x_{n-1}, x_{n-1}}_{\mu(\mathcal{O}_n)} - 1 \}$$

This argument can obviously be repeated until we obtain a set of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O})$. What we get is the following result. If the blow up sequence for \mathcal{O} is given by (2), then a set Γ of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O})$ is given by

(10)
$$\Gamma = \{\underbrace{x_0, \ldots, x_0}_{\mu(\mathcal{O}_0) - \mu(\mathcal{O}_1)}, \underbrace{x_0 x_1, \ldots, x_0 x_1}_{\mu(\mathcal{O}_1) - \mu(\mathcal{O}_2)}, \ldots, \underbrace{x_0 x_1 \ldots x_n, \ldots, x_0 x_1 \ldots x_n}_{\mu(\mathcal{O}_n) - 1}\}$$

Now the invariant factors of $I(\bar{\emptyset}/\emptyset)$ are unique up to units in $\bar{\emptyset}$. Hence the above procedure can be reversed in the following manner. Suppose we are given a set $\Gamma = \{e_1, \ldots, e_N\}$ of invariant factors of $I(\bar{\emptyset}/\emptyset)$ (which equals $D_{\emptyset}^{\alpha}(\bar{\emptyset})$ for all $q \gg 1$). If every e_j in Γ is a unit in $\bar{\emptyset}$, then $I(\bar{\emptyset}/\emptyset) = (0)$. It is well known that this implies $\bar{\emptyset} = \bar{\emptyset}$. Thus, \emptyset is regular, and the multiplicity sequence is trivial.

Let us assume that some e_j in Γ is not a unit in $\overline{\emptyset}$. Casting out all units from Γ , we can, without loss of generality, assume that no e_j is a unit. Now suppose e is an element of Γ of maximum ν -value. Then by equation (10), e must occur (up to unit factors) exactly $\mu(\mathcal{O}_n) - 1$ times in Γ . Thus, $\mu(\mathcal{O}_n)$ is determined. Now by Lemma 2, if x_n is any transversal of m_n , then $\mu(\mathcal{O}_n) = f_n \nu(x_n)$. Since we are assuming the residue class sequence $\{f_0, \ldots, f_n\}$ is known, we have determined $\nu(x_n)$. We next consider the element $e/t^{\nu(x_n)} = e_1$. Again by equation (10), there must be precisely $\mu(\mathcal{O}_{n-1}) - \mu(\mathcal{O}_n)$ elements of Γ which have ν -value $\nu(e_1)$. If no term in Γ has value $\nu(e_1)$, then clearly $\mu(\mathcal{O}_{n-1}) = \mu(\mathcal{O}_n)$. At any rate $\mu(\mathcal{O}_{n-1})$ is determined. Again using the fact that $\mu(\mathcal{O}_{n-1}) = f_{n-1}\nu(x_{n-1})(x_{n-1})$ is any transversal of \mathcal{O}_{n-1}), we determine $\nu(x_{n-1})$. We can obviously continue this procedure until we have computed every term in $\{\mu(\mathcal{O}_i)\}$. Thus, for all $q \gg 1$, $D_{\overline{\nu}}(\overline{\mathcal{O}})$ and $\{f_0, \ldots, f_n\}$ uniquely determine the multiplicity sequence of \mathcal{O} . This completes the proof of the Theorem.

We conclude this paper with an example which shows that $D_{\mathcal{O}}^{q}(\overline{\mathcal{O}})$ alone will not determine the multiplicity sequence of \mathcal{O} is general.

EXAMPLE 2. Let F denote the Galois field consisting of to elements, and let x be an indeterminate over F. Set k = F(x), and let \sqrt{x} and $\sqrt[4]{x}$ denote the square root and fourth root of x in some algebraic closure \bar{k} of k. Let t be an indeterminate over \bar{k} , and consider the discrete rank one valuation ring $\bar{\emptyset} = k(\sqrt[4]{x})[[t]]$. Let P be the subring of $\bar{\emptyset}$ defined by $P = k[[t, \sqrt[4]{x} t^2]]$. If we set u = t, and $v = \sqrt[4]{x} t^2$, then $v/u^2 = \sqrt[4]{x}$. Thus, $K(P) = K(\bar{\emptyset})$. It follows that (P, M = (u, v), k) is an excellent, equicharacteristic, complete local domain of dimension one. $\bar{\emptyset}$ is the integral closure of P in K(P), and, thus, P is geometrically unibranched.

By Lemma 2, $\mu(P) = [k(\sqrt[4]{x}): k] = 4$. We next note that u = t is a transversal for *M*. To see this, we have

(11)
$$\lambda_P(P/uP) = \lambda_P(\overline{\emptyset}/u\overline{\emptyset}) = \lambda_P(k(\sqrt[4]{x})) = 4.$$

The first equality sign on the left in equation (11) follows from [4; (b) p.

657]. It now follows from [4; (a) p. 657] that u is a transversal for M. Since u is a transversal for M, the first blow up P_1 of P is given by $P_1 = P[v/u] = k[[t, \sqrt[4]{x} t]]$.

We again check by Lemma 2, that $\mu(P_1) = 4$. Following the same procedure as in equation (11), we see that u is again a transversal for the maximal ideal of P_1 , and that the blow up P_2 of P_1 is just $P_2 = \overline{\emptyset}$. Thus, the blow up sequence, residue class sequence and multiplicity sequence for (P, M, k) are as follows.

(12)

$$\mathscr{G}: P = P_0 \to P_1 \to \overline{\mathcal{O}},$$

$$\{f_0, f_1\} = \{4, 4\},$$

$$\{\mu(P_0), \ \mu(P_1)\} = \{4, 4\}$$

It follows from the discussion immediately preceding equation (10) that a set of invariant factors for $I(\overline{\mathcal{O}}/P)$ is $\{t^2, t^2, t^2\}$.

Now, in $\overline{\mathcal{O}}$, consider a second subring \mathcal{O} given by

$$\mathcal{O} = k(\sqrt{x})[[t^2, \sqrt[4]{x}t^2, t^3]].$$

Again we have $K(\mathcal{O}) = K(\overline{\mathcal{O}})$. We easily see that $\overline{\mathcal{O}}$ is the integral closure of \mathcal{O} in $K(\mathcal{O})$. Thus, if we set $u = t^2$, $v = \sqrt[4]{x} t^2$ and $w = t^3$, then we have $(\mathcal{O}, m = (u, v, w), k(\sqrt{x}))$ is an excellent, equicharacteristic, complete, local domain of dimension one which is geometrically unibranched. Again applying Lemma 2, we see that $\mu(\mathcal{O}) = 4$. Using the same methods as in equation (11), we see that $u = t^2$ is a transversal for *m*. Thus, the blow up \mathcal{O}_1 of \mathcal{O} is given by

$$\mathcal{O}_1 = \mathcal{O}[v/u, w/u] = \mathcal{O}[\sqrt[4]{x}, t] = \overline{\mathcal{O}}.$$

Consequently, the blow up sequence, residue class sequence and multiplicity sequence for $(\mathcal{O}, m, k(\sqrt{x}))$ are as follows.

(13)

$$\mathcal{G}: \mathcal{O} = \mathcal{O}_0 \to \overline{\mathcal{O}},$$

$$\{f_0\} = \{2\},$$

$$\{\mu(\mathcal{O}_0)\} = \{4\}.$$

Again our discussion preceding equation (10) implies that a set of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O})$ is $\{t^2, t^2, t^2\}$.

Since the $\overline{\mathcal{O}}$ -modules $I(\overline{\mathcal{O}}/P)$ and $I(\overline{\mathcal{O}}/\mathcal{O})$ have the same set of invariant factors, we conclude that they are isomorphic. Hence, by Lemma 1, $D^q_{\mathcal{O}}(\overline{\mathcal{O}}) \cong D^q_p(\overline{\mathcal{O}})$ for all $q \gg 1$. However, as equations (12) and (13) show, the multiplicity sequences for \mathcal{O} and P are not the same. Thus, if $\overline{\mathcal{O}}/\overline{m} \neq k$, then the module $D^q_{\mathcal{O}}(\overline{\mathcal{O}})$ does not determine the multiplicity sequence of \mathcal{O} . One must also know the residue class sequence $\{f_0, \ldots, f_n\}$ before $\{\mu(\mathcal{O}_i)\}$ can be computed.

MULTIPLICITY SEQUENCES

References

1. K. Fischer, The module decomposition $I(\bar{A}|A)$, Trans. Amer. Math. Soc. **186** (1973), 113–128.

2.——, The decomposition of the module of n-th order differentials in arbitrary characteristics, Can. J. Math. **30**, No. 3, (1978), 512–517.

3. A. Grothendieck and J. A. Dieudonne, *Eléments De Géométrie Algebrique* I, Springer-Verlag, Berlin, 1971.

4. J. Lipman, Stable ideals and Arf-rings, Amer. J. Math. 93 (1971), 649-685.

5. M. Nagata, Local Rings, Interscience, New York, 1969.

6. J. Sally, Numbers of Generators of Ideals in Local Rings, Marcel Dekker, Inc., 1978.

7. O. Zariski and P. Samuel, *Commutative Algebra* I, II, Van Nostrand, Princeton, N, J., 1958.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MI 48823