A DIFFERENTIAL CHARACTERIZATION OF MULTIPLICITY SEQUENCES OVER ARBITRARY FIELDS

W. C. BROWN

Introduction. Let $(0, m, k)$ denote an excellent, local, domain of Krull dimension one with maximal ideal *m* and residue class field *k.* We assume that \varnothing is equicharacteristic and geometrically unibranched. Let $\bar{\varnothing}$ denote the integral closure of \emptyset in its quotient field $K(\emptyset)$, and let \mathscr{S} : $\emptyset = \emptyset_0 \rightarrow$ $\mathcal{O}_1 \rightarrow \mathcal{O}_2 \rightarrow \cdots \rightarrow \mathcal{O}_n \rightarrow \overline{\mathcal{O}}$ be the blow up sequence of \mathcal{O} in $\overline{\mathcal{O}}$. Here the notation has been chosen to mean that \mathcal{O}_n is the last nonregular local ring in the blow up sequence of θ (If θ is regular, we write θ as θ : $\theta = \overline{\theta}$). Let $\bar{\varrho}/\bar{m}$ and ϱ_i/m_i , $i = 0, \ldots, n$, denote the residue class fields of $\bar{\varrho}$ and \mathcal{O}_i respectively. Set $f_i = [\overline{\mathcal{O}}/\overline{m}$: $\mathcal{O}_i/m_i]$. Finally, let $D_{\mathcal{O}}^q(\overline{\mathcal{O}})$ denote the $\overline{\varrho}$ -module of *q*-th order ϱ -differentials on $\overline{\varrho}$.

In [1] and [2], *K*. Fischer showed that if \varnothing is complete, and *k* is algebraically closed, then for all $q \gg 1$, $D_{\alpha}^q(\overline{Q})$ uniquely determines the multiplicity sequence $\{\mu(\mathcal{O}_i)\}\$ of \mathcal{S} . In this paper, we shall prove a similar result when *(9* is not necessarily complete, and *k* is not necessarily algebraically closed. Specifically, we shall show that if $(0, m, k)$ is an excellent, local, domain of Krull dimension one, of equal characteristic and geometrically unibranched, then, for all q sufficiently large $(q \gg 1)$, $D_{\phi}^q(\overline{\theta})$ and the residue class sequence $\{f_0, \ldots, f_n\}$ uniquely determine the multiplicity sequence $\{\mu(\mathcal{O}_i)\}\$ of \mathcal{S} . We shall also give an example which shows that $D_{\phi}^{\mathfrak{g}}(\bar{\phi})$ by itself does not determine the multiplicity sequence of \mathfrak{S} .

We shall assume that the reader is familiar with the contents of [1] and **[4].** We shall use much of the notation from those two papers. In particular, $\mu(\mathcal{O})$ will denote the multiplicity of a local ring \mathcal{O} , and $\lambda(M)$ will denote the length of an $\mathcal{O}\text{-module } M$, and $K(A)$ will denote the total quotient ring of any ring \dot{A} .

Now let *{(9,* m, *k)* be as above. We shall explain why we must assume *(9* is geometrically unibranched instead of just unibranched. In the theory that we shall present here (as well as that in [1]) the module $I(\bar{\mathcal{O}}/\mathcal{O})$ is the object which plays the principal role in determining $\{\mu(\varnothing)\}\$. Because of the good functorial properties the module $D_{\phi}^{\alpha}(\bar{\theta})$ enjoys, we would like to continue to deal with a class of rings in which $I(\bar{C}/C) = D_{\bar{C}}^q(\bar{C})$ for all $q \gg 1$. If k is not algebraically closed, then a unibranched domain (0,

Received by the editors on January 8, 1979 and in revised form on February 12, 1979. Copyright © 1981 Rocky Mountain Mathematics Consortium

m, *k*) need not have $D_{\phi}^q(\overline{\phi}) = I(\overline{\phi}/\mathcal{O})$ for any *q*. The following example illustrates this point.

EXAMPLE 1. Let *Q* denote the field of rational numbers. Let *X* and *Y* be indeterminates over Q. Set $f(X, Y) = Y^2 - X^2(X + 2)$. Clearly f is an irreducible polynomial in $Q[X, Y]$ and, thus, $R = Q[X, Y]/(f)$ is a finitely generated integral domain of Krull dimension one. Let *x* and *y* denote the images of *X* and *Y* respectively in *R*. Then $R = Q[x, y]$.

If we set $z = y/x$, then the reader can easily check that $Q(z)$ is the integral closure of *R* in *K(R).* The only maximal ideal in *Q[z]* which lies over (x, y) in *R* is the principal ideal $(z^2 - 2) = (x)$. Thus, one easily checks that the local ring $\mathcal{O} = R_{(x,y)}$ is a unibranched, local domain with integral closure $\bar{\varnothing} = Q[z]_{(z^2-2)}$. Let *m* and \bar{m} denote the maximal ideals of $\ddot{\varphi}$ and $\ddot{\varphi}$ respectively. We pass to the completion $\hat{\varphi} = O[fx, y]$ of φ . and note that the triple $(\hat{\emptyset}, m\hat{\emptyset}, Q)$ is an excellent, equicharacteristic, complete, local domain of Krull dimension one which is unibranched. Since $\bar{\ell}/m \approx Q(\sqrt{2})$, we see that *B*, the integral closure of $\hat{\ell}$, has the form $B = Q(\sqrt{2})$ [[t]]. Here *t* can be taken to be *x*.

Now we claim that $I(B/\hat{O})$ is not nilpotent. To see this, we consider the following commutative diagram with exact rows.

0 *>I(B/ê)* > *B®èB > B* >0 **(0 r r** 0 — *>I(QW2)/Q)* — *>QWT)®QQW~T)* — > *QWl)*—*>* 0

In (1), π is the natural projection of *B* onto its residue class field $Q(\sqrt{2})$. σ is the obvious map induced by π . One easily checks that σ is surjective, and that $\sigma(I(B/\hat{O})) = I(Q(\sqrt{2})/Q)$. Thus, if $I(B/\hat{O})$ is nilpotent, then *I*($Q(\sqrt{2})/Q$) is also nilpotent. But, $Q(\sqrt{2})$ is a separable algebraic extension of Q. Therefore, $D_Q^1(Q(\sqrt{2}))=(0)$. Thus, setting $I = I(Q(\sqrt{2}))/Q$, we have $I = I^2 = I^3 \neq \ldots$. A simple counting argument shows that $I \neq (0)$. Therefore, *I* is not nilpotent. Thus, $I(B/\hat{O})$ cannot be nilpotent. Since

$$
D^q_{\hat{v}}(B) = I(B/\hat{v})/I(B/\hat{v})^{q+1},
$$

we see that $I(B/\hat{O}) \neq D_{\phi}^q(B)$ for any q.

Recall that a local domain $(0, m, k)$ is said to be geometrically unibranched if $\bar{\varrho}$ contains a unique maximal ideal \bar{m} , and $\bar{\varrho}/\bar{m}$ is purely inseparable over *k.* The above example is unibranched, but not geometrically unibranched. For geometrically unibranched rings $(0, m, k)$, we have the following important lemma.

LEMMA 1. If $(0, m, k)$ is geometrically unibranched, then $I(\overline{0}/0) = D_{\overline{s}}(\overline{0})$ *for all* $q \gg 1$.

PROOF. If $(0, m, k)$ is geometrically unibranched, then $(0 \rightarrow \overline{0})$ is a radical extension. Hence it follows from [3; p. 246, Prop. (3. 7. 1)] that $I(\overline{\mathcal{O}}/\mathcal{O})$ is a nil ideal. But, we note that $\overline{\mathcal{O}}$ is finitely generated over \mathcal{O} , and, therefore, $I(\overline{\mathcal{O}}/\mathcal{O})$ is finitely generated as an $\overline{\mathcal{O}}$ -module. Thus, $I(\overline{\mathcal{O}}/\mathcal{O})$ is nilpotent, and the result follows.

Main Results. Throughout this section, *(0, m, k)* will denote an excellent, equicharacteristic, local domain of Krull dimension one. We further assume that $(0, m, k)$ is geometrically unibranched. We shall write the blow up sequence $\mathscr S$ of $\mathscr O$ in the following form.

(2)
$$
\mathcal{S}: \mathcal{O} = \mathcal{O}_0 \to \mathcal{O}_1 \to \mathcal{O}_2 \to \cdots \to \mathcal{O}_n \to \overline{\mathcal{O}}.
$$

In (2), the notation has been chosen so that \mathcal{O}_n is the last nonregular local ring in the blow up sequence for \varnothing (we are temporarily ignoring the trivial case when \varnothing is regular). Throughout this section, we shall let $m_i(i = 0, \ldots, n)$ denote the maximal ideal of \mathcal{O}_i . Thus, $m = m_0$. We shall let \bar{m} denote the maximal ideal of $\bar{\mathcal{O}}$. For each $i = 0, \ldots, m$, set $f_i = [\overline{\mathcal{O}}/\overline{m}$: \mathcal{O}_i/m_i . We shall refer to the sequence $\{f_0, \ldots, f_n\}$ as the residue class sequence of \mathcal{S} . We note that if \mathcal{O} is regular, then the residue class sequence for $\mathscr S$ can be taken to be just $\{1\}$.

We can now state the main theorem of this paper.

THEOREM. *Let (0, m, k) be an excellent, equicharacteristic, local domain of Krull dimension one. Assume* \emptyset *is geometrically unibranched. Let* $\mathcal{S}: \emptyset =$ $\mathcal{O}_0 \rightarrow \cdots \rightarrow \mathcal{O}_n \rightarrow \overline{\mathcal{O}}$ be the blow up sequence for $\mathcal{O},$ and let $\{f_0, \ldots, f_n\}$ *be the residue class sequence of* \mathcal{S} *. Then for all* $q \gg 1$ *,* $D^q(\bar{\mathcal{O}})$ *and* $\{f_0, \ldots, f_n\}$ f_n uniquely determine the multiplicity sequence $\{\mu(\mathcal{O}_i)\}\$ of \mathcal{O}_i .

Before proceeding with the proof of the theorem, we shall make three reductions which make the argument considerably easier.

REDUCTION 1. We can, without loss of generality, assume that *k* is an infinite field. This statement involves the usual procedure. (See [5; p. 17, 18] or [6; p. 10]) of making the flat change of rings $\mathcal{O} \rightarrow \mathcal{O}(x)$. Thus, we proceed with the proof of the theorem under the additional hypothesis that *k* is infinite. This is an important simplification because now it follows from [5; (22.1)] that every open ideal of any \mathcal{O}_i has a transversal element.

REDUCTION 2. We can, without loss of generality, assume that \varnothing **is** complete. Since quadratic transforms and $D_{\phi}^q(\bar{\theta})$ behave nicely when passing to the completion $\hat{\varrho}$, reduction 2 is obvious. Thus, we assume ϱ is complete and *k* is infinite.

REDUCTION 3. We can assume, without loss of generality, that \varnothing is Arf-closed in $\overline{\emptyset}$. If \emptyset is not Arf-closed in $\overline{\emptyset}$, then let \emptyset' denote the Arfclosure of \emptyset in $\overline{\emptyset}$. Since \emptyset is complete and equicharacteristic, \emptyset contains a field. It now follows from [4; Cor. 4.8] that \mathcal{O}' is just the strict closure of \emptyset in $\overline{\emptyset}$. Thus, if $\delta: \overline{\emptyset} \to I(\overline{\emptyset}/\mathcal{O})$ denotes the canonical Taylor series map, then $\mathcal{O}' = \{x \in \overline{\mathcal{O}} | \delta(x) = 0\}$. Since $\mathcal{O} \subset \mathcal{O}' \subset \overline{\mathcal{O}}$, we see that \mathcal{O}' is a local domain and a finitely generated $\mathcal{O}\text{-module}$. It follows from [4; Theorem 4.2] that $\mu(\emptyset) = \mu(\emptyset')$, and that the residue class field of \emptyset' is just k. If we let m' denote the maximal ideal of \mathcal{O}' , then we have (\mathcal{O}', m', k) is an excellent, equicharacteristic, complete local, domain of Krull dimension one, geometrically unibranched and having infinite residue class field *k.* By [4; Theorem 3.5] Arf-closure commutes with blowing up. Thus, the blow up sequence \mathcal{S}' of \mathcal{O}' is given by $\mathcal{S}' : \mathcal{O}' \to \mathcal{O}'_1 \to \cdots$ $\mathcal{O}'_n \to \overline{\mathcal{O}}$. Here \mathcal{O}'_i is just the Arf-closure of \mathcal{O}_i . It follows from the above remarks applied to each \mathcal{O}_i that the multiplicity and residue class sequences for $\mathscr S$ and $\mathscr S'$ are identical.

Finally, one easily checks from the definitions that $I(\overline{\mathcal{O}}/\mathcal{O}) = I(\overline{\mathcal{O}}/\mathcal{O}')$. Thus, Lemma 1 implies that $D^q_{\ell}(\bar{\ell}) = D^q_{\ell}(\bar{\ell})$ for all $q \gg 1$. This completes Reduction 3.

PROOF OF THEOREM Let $(0, m, k)$ be as in the statement of the theorem. By applying the reductions (which we could schematically indicate as $\mathscr{L} \to 1$ $\mathscr{L}(x) \to 2$ $\mathscr{L}(x) \to 3$ { $\mathscr{L}(x)$ }'), we can assume that *k* is infinite, that \emptyset is complete and that \emptyset is Arf-closed in $\overline{\emptyset}$.

Since $\bar{\varrho}$ is complete and equicharacteristic, $\bar{\varrho}$ has the form $\bar{\varrho} = F[[t]]$. Here t is a uniformizing parameter for $\bar{\varrho}$, and F is a field of representatives *of* $\overline{\emptyset}/\overline{m}$ in $\overline{\emptyset}$. Let $\nu: K(\overline{\emptyset}) \to \mathbb{Z} \cup \{\infty\}$ denote the canonical, discrete rank one valuation given by $v(f) = \text{ord}_t(f)$. For each $i = 0, 1, \ldots, n$, let x_i denote a transversal for *m{ .* We need the following lemmas.

LEMMA 2. $\mu(\mathcal{O}_i) = f_i \nu(x_i)$ for each $i = 0, 1, \ldots, n$.

PROOF. For each $i = 0, 1, \ldots, n$, let $s_i = \min\{v(y) | y \in m_i\}$. It follows directly from [7; Vol. II, Cor 1, p. 299] that $\mu(\mathcal{O}_i) = f_i s_i$. Since x_i is a transversal for m_i , $v(x_i) = s_i$.

We note that Lemma 2 implies the multiplicity sequence $\{\mu(\mathcal{O}_i)\}\$ of *(9* has the form

$$
\mu(\mathcal{O}) \geq \mu(\mathcal{O}_1) \geq \cdots \geq \mu(\mathcal{O}_n) > 1.
$$

Since each \mathcal{O}_i in \mathcal{S} is an equicharacteristic, complete local ring, we can choose a field of representative of \mathcal{O}_i/m_i in \mathcal{O}_i . We shall call this field k_i . Thus, $k_i \text{ }\subset \text{ }\mathcal{O}_i$, and if $\pi: \bar{\mathcal{O}} \to \bar{\mathcal{O}}/\bar{m}$ denotes the natural projection, then $\pi(k_i) = \mathcal{O}_i/m_i.$

LEMMA 3. For each $i = 0, 1, \ldots, n$, $I(\overline{\mathcal{O}}/k, [[x_i]])$ is a free $\overline{\mathcal{O}}$ -module of *rank* $\mu(\mathcal{O}_i) - 1$.

PROOF Fix $i = 0, \ldots, n$, and consider the power series ring $k_i[[x_i]] \subseteq \overline{0}$. One easily sees that $\bar{\varnothing}$ is a free $k_i[[x_i]]$ -module of rank $\mu(\varnothing_i)$. In fact, if ${z_1 = 1, z_2, \ldots, z_{f_i}}$ are elements of $\bar{\theta}$ which form a vector space basis of $\overline{\emptyset}/\overline{m}$ over \mathcal{O}_i/m_i , then $\Omega = \{z_j t_{\ell} | j = 1, \ldots, f_i; \ell = 0, \ldots, s_i - 1\}$ is a free basis of $\bar{\varnothing}$ over $k_i[[x_i]]$. Hence, Lemma 2 implies that the rank of $\overline{\varrho}$ over k, [[x,]] is $\mu(\varrho_i)$.

Now consider the following short exact sequence.

(3)
$$
0 \to I(\overline{\mathcal{O}}/k_i[[x_i]]) \to \overline{\mathcal{O}} \otimes_{k_i[[x_i]]} \overline{\mathcal{O}} \xrightarrow{\mathcal{O}} \overline{\mathcal{O}} \to 0.
$$

Since $\bar{\varrho}$ is a free k , [[x_i]]-module of rank $\mu(\varrho_i)$,

$$
\bar{\mathcal{O}} \otimes_{k_i[[x_i]]} \bar{\mathcal{O}}
$$

is a free $\bar{\varrho}$ -module of rank $\mu(\varrho)$. Since (3) splits as $\bar{\varrho}$ -modules, we conclude that $I(\overline{\mathcal{O}}/k_i[[x_i]])$ is a free $\overline{\mathcal{O}}$ -module of rank $\mu(\mathcal{O}_i) - 1$.

Now for each $i = 0, 1, \ldots, n$, set $A_i = k_i[[x_i]]$. Then we have $A_i \subset \mathcal{O}_i$ $\subset \mathcal{O}_{i+1}(\mathcal{O}_{i+1})$ is just $\overline{\mathcal{O}}$ if $i = n$). These inclusions lead to the following commutative diagram with exact rows.

(4)
\n
$$
\begin{array}{ccc}\n0 & \longrightarrow I(\overline{\mathcal{O}}/A_i) & \longrightarrow \overline{\mathcal{O}} \otimes_{A_i} \overline{\mathcal{O}} \longrightarrow \overline{\mathcal{O}} \longrightarrow 0 \\
& \downarrow_{\varphi_1} & \downarrow_{\varphi_1} & \parallel \\
0 & \longrightarrow I(\overline{\mathcal{O}}/\mathcal{O}_i) & \longrightarrow \overline{\mathcal{O}} \otimes_{\mathcal{O}_i} \overline{\mathcal{O}} \longrightarrow \overline{\mathcal{O}} \longrightarrow 0 \\
& \downarrow_{\varphi_2} & \downarrow_{\varphi_2} & \parallel \\
0 & \longrightarrow I(\overline{\mathcal{O}}/\mathcal{O}_{i+1}) \longrightarrow \overline{\mathcal{O}} \otimes_{\mathcal{O}_{i+1}} \overline{\mathcal{O}} \longrightarrow \overline{\mathcal{O}} \longrightarrow 0.\n\end{array}
$$

In (4), φ_1 and φ_2 are the obvious maps induced by the inclusions $A_i \subset \mathcal{O}_i$, and $\mathcal{O}_i \subset \mathcal{O}_{i+1}$. Clearly, both φ_1 and φ_2 are surjective, and one easily checks that $\varphi_1(I(\overline{\mathcal{O}}/A_i)) = I(\overline{\mathcal{O}}/\mathcal{O}_i)$, and $\varphi_2(I(\overline{\mathcal{O}}/\mathcal{O}_i)) = I(\overline{\mathcal{O}}/\mathcal{O}_{i+1})$. Thus, the diagram in (4) gives us the following commutative diagram with exact rows.

(5)
\n
$$
0 \longrightarrow N(\mathcal{O}_i) \longrightarrow I(\overline{\mathcal{O}}/A_i) \xrightarrow{\varphi_1} I(\overline{\mathcal{O}}/\mathcal{O}_i) \longrightarrow 0
$$
\n
$$
\downarrow \varphi_2
$$
\n
$$
0 \longrightarrow N(\mathcal{O}_{i+1}) \longrightarrow I(\overline{\mathcal{O}}/A_i) \xrightarrow{\varphi_2 \circ \varphi_1} I(\overline{\mathcal{O}}/\mathcal{O}_{i+1}) \longrightarrow 0.
$$

In (5), $N(\mathcal{O}_i)$ is the kernel of φ_1 , and $N(\mathcal{O}_{i+1})$ is the kernel of $\varphi_2 \circ \varphi_1$. Thus, the vertical map on the left in (5) is just inclusion.

We need one last lemma before proving the theorem.

LEMMA 4. *Using the notation in diagram* (5), *we have*

$$
x_i N(\mathcal{O}_{i+1}) = N(\mathcal{O}_i).
$$

PROOF. This argument is exactly the same as in [2; p. 514], and therefore we omit it.

We can now proceed with the proof of the theorem. Since $I(\overline{\mathcal{O}}/\mathcal{O})$ (which equals $D_{\phi}^q(\overline{\phi})$ for $q \gg 1$) is a finitely generated module over the principal ideal domain $\overline{\varrho}$, it has a natural set of invariant factors associated with it. The idea of the proof is to write down what the invariant factors of $I(\bar{\phi}/\phi)$ must be, given that we know \mathcal{S} , and then reverse this procedure.

We consider diagram (5) with $i = n$. In this case, (5) becomes

(6)
\n
$$
0 \longrightarrow N(\mathcal{O}_n) \longrightarrow I(\overline{\mathcal{O}}/A_n) \longrightarrow I(\overline{\mathcal{O}}/\mathcal{O}_n) \longrightarrow 0
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
0 \longrightarrow N(\overline{\mathcal{O}}) \longrightarrow I(\overline{\mathcal{O}}/A_n) \longrightarrow I(\overline{\mathcal{O}}/\overline{\mathcal{O}}) \longrightarrow 0.
$$

By Lemma 3, $I(\overline{\mathcal{O}}/A_n)$ is a free $\overline{\mathcal{O}}$ -module of rank $\mu(\mathcal{O}_n) - 1$. Since $I(\overline{\mathcal{O}}/\overline{\mathcal{O}})$ $=(0)$, $N(\bar{\emptyset}) = I(\bar{\emptyset}/A_n)$. By Lemma 4, $x_nI(\bar{\emptyset}/A_n) = N(\mathcal{O}_n)$. We can now conclude from the first row of (6) that a set Γ_1 of invariant factors for the $\overline{\mathcal{O}}$ -module $I(\overline{\mathcal{O}}/\mathcal{O}_n)$ is given by

(7)
$$
\Gamma_1 = \{x_n, \ldots, x_n\}. \n\mu(\mathcal{O}_n) - 1
$$

Now we consider diagram (5) with $i = n - 1$. In this case, (5) becomes

(8)
\n
$$
0 \longrightarrow N(\mathcal{O}_{n-1}) \longrightarrow I(\overline{\mathcal{O}}/A_{n-1}) \longrightarrow I(\overline{\mathcal{O}}/\mathcal{O}_{n-1}) \longrightarrow 0
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
0 \longrightarrow N(\mathcal{O}_n) \longrightarrow I(\overline{\mathcal{O}}/A_{n-1}) \longrightarrow I(\overline{\mathcal{O}}/\mathcal{O}_n) \longrightarrow 0.
$$

We warn the reader that the notation is a bit ambiguous at this point. The module $N(\mathcal{O}_n)$ in diagram (8) is not the same as $N(\mathcal{O}_n)$ in (6). (As long as we keep track of the rank of $I(\overline{\mathcal{O}}/A_i)$ no real confusion will arise.) Now, again by Lemma 3, $I(\overline{\mathcal{O}}/A_{n-1})$ is a free $\overline{\mathcal{O}}$ -module of rank $\mu(\mathcal{O}_{n-1}) - 1$. Thus, the $N(\mathcal{O}_n)$ appearing in diagram (8) can be generated by $\mu(\mathcal{O}_{n-1})$ - 1 elements ([7; vol. I, p. 246]). Therefore, $I(\overline{\mathcal{O}}/\mathcal{O}_n)$ can be represented by a relations matrix of size $(\mu(\mathcal{O}_{n-1}) - 1) \times (\mu(\mathcal{O}_{n-1}) - 1)$. Since a set of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O}_n)$ is given by (7), and $x_{n-1}(N(\mathcal{O}_n)) = N(\mathcal{O}_{n-1})$ by Lemma 4, we conclude from (8) that a set r_2 of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O}_{n-1})$ is given by

(9)
$$
T_2 = \{x_{n-1}, \ldots, x_{n-1}, x_{n-1} \ldots, x_{n-1} \ldots \}
$$

$$
\mu(\mathcal{O}_{n-1}) - \mu(\mathcal{O}_n) \qquad \mu(\mathcal{O}_n) - 1
$$

This argument can obviously be repeated until we obtain a set of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O})$. What we get is the following result. If the blow up sequence for \varnothing is given by (2), then a set \varGamma of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O})$ is given by

(10)
$$
I' = \{x_0, \ldots, x_0, x_0, x_1, \ldots, x_0, x_1, \ldots, x_0, x_1, \ldots, x_n, \ldots, x_0, x_1, \ldots, x_n\}
$$

$$
\mu(\mathcal{C}_0) - \mu(\mathcal{C}_1) \mu(\mathcal{C}_1) - \mu(\mathcal{C}_2) \ldots \mu(\mathcal{C}_n) - 1
$$

Now the invariant factors of $I(\bar{\mathcal{O}}/\mathcal{O})$ are unique up to units in $\bar{\mathcal{O}}$. Hence the above procedure can be reversed in the following manner. Suppose we are given a set $\Gamma = \{e_1, \ldots, e_N\}$ of invariant factors of $I(\overline{\mathcal{O}}/\mathcal{O})$ (wihch equals $D_{\theta}^{s}(\overline{\theta})$ for all $q \gg 1$). If every e_j in Γ is a unit in $\overline{\theta}$, then $I(\overline{\theta}/\theta) = (0)$. It is well known that this implies $\bar{\varnothing} = \bar{\varnothing}$. Thus, \varnothing is regular, and the multiplicity sequence is trivial.

Let us assume that some e_j in Γ is not a unit in $\bar{\varrho}$. Casting out all units from Γ , we can, without loss of generality, assume that no e_j is a unit. Now suppose e is an element of Γ of maximum ν -value. Then by equation (10), *e* must occur (up to unit factors) exactly $\mu(\mathcal{O}_n) - 1$ times in Γ . Thus, $\mu(\mathcal{O}_n)$ is determined. Now by Lemma 2, if x_n is any transversal of m_n , then $\mu(\mathcal{O}_n) = f_n v(x_n)$. Since we are assuming the residue class sequence $\{f_0, f_1\}$ \dots, f_n is known, we have determined $\nu(x_n)$. We next consider the element $e/t^{\nu(x_n)} = e_1$. Again by equation (10), there must be precisely $\mu(\mathcal{O}_{n-1})$ – $\mu(\mathcal{O}_r)$ elements of *f* which have *v*-value $\nu(e_1)$. If no term in *f* has value $\nu(e_1)$, then clearly $\mu(\mathcal{O}_{n-1}) = \mu(\mathcal{O}_n)$. At any rate $\mu(\mathcal{O}_{n-1})$ is determined. Again using the fact that $\mu(\mathcal{O}_{n-1}) = f_{n-1}\nu(x_{n-1})$ (x_{n-1}) is any transversal of \mathcal{O}_{n-1} , we determine $v(x_{n-1})$. We can obviously continue this procedure until we have computed every term in $\{\mu(\mathcal{O}_i)\}\)$. Thus, for all $q \gg 1$, $D^q_{\mathcal{O}}(\overline{\mathcal{O}})$ and $\{f_0, \ldots, f_n\}$ uniquely determine the multiplicity sequence of \emptyset . This completes the proof of the Theorem.

We conclude this paper with an example which shows that $D_{\phi}(\bar{\theta})$ alone will not determine the multiplicity sequence of \varnothing is general.

EXAMPLE 2. Let F denote the Galois field consisting of to elements, and let x be an indeterminate over *F*. Set $k = F(x)$, and let \sqrt{x} and $\sqrt[4]{x}$ denote the square root and fourth root of x in some algebraic closure \bar{k} of k. Let t be an indeterminate over \bar{k} , and consider the discrete rank one valuation ring $\bar{\varnothing} = k(\sqrt[4]{x})[[t]]$. Let P be the subring of $\bar{\varnothing}$ defined by P = $k[[t, \sqrt[4]{x} \ t^2]]$. If we set $u = t$, and $v = \sqrt[4]{x} \ t^2$, then $v/u^2 = \sqrt[4]{x}$. Thus, $K(P) = K(\bar{Q})$. It follows that $(P, M = (u, v), k)$ is an excellent, equicharacteristic, complete local domain of dimension one. $\bar{\varrho}$ is the integral closure of *P* in *K(P),* and, thus, *P* is geometrically unibranched.

By Lemma 2, $\mu(P) = [k(\sqrt[4]{x}) : k] = 4$. We next note that $u = t$ is a transversal for M . To see this, we have

(11)
$$
\lambda_P(P/uP) = \lambda_P(\overline{\mathcal{O}}/u\overline{\mathcal{O}}) = \lambda_P(k(\sqrt[4]{x})) = 4.
$$

The first equality sign on the left in equation (11) follows from $[4; (b)$ p.

657]. It now follows from [4; (a) p. 657] that *u* is a transversal for *M.* Since u is a transversal for M, the first blow up P_1 of P is given by $P_1 = P[v/u] =$ $k[[t, \sqrt[4]{x} t]].$

We again check by Lemma 2, that $\mu(P_1) = 4$. Following the same procedure as in equation (11), we see that *u* is again a transversal for the maximal ideal of P_1 , and that the blow up P_2 of P_1 is just $P_2 = \overline{0}$. Thus, the blow up sequence, residue class sequence and multiplicity sequence for *(P, M, k)* are as follows.

(12)
$$
\mathscr{S}: P = P_0 \to P_1 \to \bar{\mathscr{O}},
$$

$$
\{f_0, f_1\} = \{4, 4\},
$$

$$
\{\mu(P_0), \mu(P_1)\} = \{4, 4\}
$$

It follows from the discussion immediately preceding equation (10) that a set of invariant factors for $I(\overline{\mathcal{O}}/P)$ is $\{t^2, t^2, t^2\}$.

Now, in $\overline{\varrho}$, consider a second subring ϱ given by

$$
\mathcal{O}=k(\sqrt{x})[[t^2, \sqrt[4]{x} t^2, t^3]].
$$

Again we have $K(\mathcal{O}) = K(\overline{\mathcal{O}})$. We easily see that $\overline{\mathcal{O}}$ is the integral closure of \emptyset in $K(\emptyset)$. Thus, if we set $u = t^2$, $v = \sqrt[4]{x} t^2$ and $w = t^3$, then we have $(0, m = (u, v, w), k(\sqrt{x}))$ is an excellent, equicharacteristic, complete, local domain of dimension one which is geometrically unibranched. Again applying Lemma 2, we see that $\mu(\mathcal{O}) = 4$. Using the same methods as in equation (11), we see that $u = t^2$ is a transversal for *m*. Thus, the blow up \mathcal{O}_1 of $\mathcal O$ is given by

$$
\mathcal{O}_1 = \mathcal{O}[v/u, w/u] = \mathcal{O}[\sqrt[4]{x}, t] = \overline{\mathcal{O}}.
$$

Consequently, the blow up sequence, residue class sequence and multiplicity sequence for $(0, m, k(\sqrt{x}))$ are as follows.

(13)
$$
\mathcal{S}: \mathcal{O} = \mathcal{O}_0 \to \overline{\mathcal{O}},
$$

$$
\{f_0\} = \{2\},
$$

$$
\{\mu(\mathcal{O}_0)\} = \{4\}.
$$

Again our discussion preceding equation (10) implies that a set of invariant factors for $I(\overline{\mathcal{O}}/\mathcal{O})$ is $\{t^2, t^2, t^2\}$.

Since the $\bar{\mathcal{O}}$ -modules $I(\bar{\mathcal{O}}/P)$ and $I(\bar{\mathcal{O}}/P)$ have the same set of invariant factors, we conclude that they are isomorphic. Hence, by Lemma 1, $D_{\phi}^{\alpha}(\bar{\mathcal{O}}) \cong D_{\phi}^{\alpha}(\bar{\mathcal{O}})$ for all $q \gg 1$. However, as equations (12) and (13) show, the multiplicity sequences for \emptyset and P are not the same. Thus, if $\overline{\emptyset}/\overline{m} \neq k$, then the module $D_{\phi}(\bar{\theta})$ does not determine the multiplicity sequence of θ . One must also know the residue class sequence $\{f_0, \ldots, f_n\}$ before $\{\mu(\mathcal{O}_i)\}$ can be computed.

MULTIPLICITY SEQUENCES 17

REFERENCES

1. K. Fischer, *The module decomposition I(ÂIA),* Trans. Amer. Math. Soc. **186** (1973), 113-128.

2. $\frac{1}{\sqrt{2}}$, The decomposition of the module of n-th order differentials in arbitrary *characteristics,* Can. J. Math. 30, No. 3, (1978), 512-517.

3. A. Grothendieck and J. A. Dieudonne, *Eléments De Géométrie Algébrique* I, Springer-Verlag, Berlin, 1971.

4. J. Lipman, *Stable ideals and Art-rings,* Amer. J. Math. 93 (1971), 649-685.

5. M. Nagata, *Local Rings,* Interscience, New York, 1969.

6. J. Sally, *Numbers of Generators of Ideals in Local Rings,* **Marcel Dekker, Inc., 1978.**

7. O. Zariski and P. Samuel, *Commutative Algebra* I, II, Van Nostrand, Princeton, N, J., 1958.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MI 48823

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}),\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$