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A MAXIMUM PRINCIPLE FOR WEAKLY COUPLED
SYSTEMS OF SECOND ORDER PARTIAL
DIFFERENTIAL EQUATIONS WITH
NONNEGATIVE CHARACTERISTIC FORM

CHRIS COSNER

ABSTRACT. The maximum principle of Fichera for a single second
order partial differential equation with nonnegative characteristic
form is extended to weakly coupled linear systems of such equa-
tions. A Phragmén-Lindel6f principle for such systems, giving
conditions for the maximum principle to hold in unbounded
domains, is proved. Comparison theorems for degenerate para-
bolic semilinear systems in bounded and unbounded domains
are also proved.

1. In recent years there has been considerable interest in second order
partial differential equations with nonnegative characteristic form. This
class of equations includes elliptic and parabolic equations as special
cases. Current interest in the subject began with the work of Fichera
[4], [5]. Fichera stated the appropriate boundary value problem, corres-
ponding to the Dirichlet problem, for a general second order equation
with nonnegative characteristic form, and found conditions for the
existence of a weak solution to that problem. Fichera also proved a
maximum principle for second order equations with nonnegative char-
acteristic form. The object of the present article is to extend Fichera’s
maximum principle and related results to weakly coupled systems of
second order equations with nonnegative characteristic form. This is
done by combining Fichera’s techniques with those used by Protter and
Weinberger [10] to obtain maximum principles for weakly coupled sys-
tems of elliptic and parabolic equations.

Let Q be a bounded domain in R~, with piecewise C2-boundary. Denote
the boundary of 2 by 2. Let

n

Llu]l = 3} a;f(x)uy,,, # 3 b(Xu,, + c(x)u.
ij=1 =1
Assume that the coefficients of L are all bounded and continuous in Q,
and that the matrix ((a;;(x))) is symmetric and positive semi-definite for
all xe Q. Let 20 be the set of points x € 2 so that a vector (v, ..., v,)
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normal to Q exists at x, and }}7;_;a’/y,p; = 0. Then define J* to be the
set of points xy € 20 such that X is given, in a neighborhood of x;, by
F(x) = 0, where F(x) is a C2-function with F(x) > 0 for xeQ, grad
F # 0, and L(F) = 0 at xy. Consider the equation

(1.1) L) =f in Q.

Let o* be the set of points x, € 2* such that in some neighborhood of
Xoin Q, uis C? and (1.1) is satisfied, together with the conditions on the
coefficients of L. The set ¢* is invariant under nondegenerate coordinate
changes. This is proved in [9].

TueoreM (Fichera). Suppose that ue CYQ) N CAQ U o*). Suppose
that ¢ < 0 on Q and that (1.1) is satisfied in Q \J o*. Then

|u(x)| = max{sup[—/;f, max ||}

forall xe Q.

This theorem is proved in [9]. The primary result of §2 is a generaliza-
tion of this theorem to weakly coupled systems of second order equations
with non-negative characteristic form. Let

Lofu] = 30 ag(Xuy,, + 2 bi(u,, a =1, ..., N.
f,J=1 =1

=

Consider the system
N

(1.2) Lefus] + 3 c*fuf = 0.
B=1

For each operator L2, a set g¥ & 2 may be defined in the same way that
o* was defined for L. Suppose that for & # 8, ¢®f(x) 2 0in Q U o¥*. The
main result of section 2 is the following theorem.

THEOREM 1. Suppose that for o = 1, ..., N the functions u* € C%(Q)
C%(Q U o¥) satisfy the inequalities

N
Lofue] + X c*fuf 20 inQ U af,
B=1
u* <0 on2\ok,
and that for some constant cy > 0,
N
Z cab § — ¢ < 0
B=1

inQUo* a=1,..,N.Thenu < 0inQ,a =1, ..., N.

A maximum principle of the same form as Fichera’s follows from
Theorem 1 as a corollary.
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The main result of §3 is a Phragmén-Lindel6f principle which gives
conditions under which Theorem 1 extends to the case where the domain
Q is unbounded.

In §4, results similar to those of §2 and §3 are proved for semi-linear
systems of degenerate parabolic equations. Such systems, also known as
reaction-diffusion equations, are important in many applications. Reac-
tion-diffusion equations are discussed at some length by Fife in [6]; that
article also includes an extensive bibliography. Some of the techniques
used in §4 are adapted from those used by Fife in [7].

2. Let £ be a bounded domain in R, with piecewise C2-boundary.
Denote the boundary of Q by 2. We consider the system of differential
inequalities

N
.1 Le[us] + 35 cobub 2 0

=1
inQ,a=1, ..., N, where

n n
La[v] = Z 1a;?‘j(x)v,,,.,,l. + Z,'lb;?‘(x)vx‘..
i, j= =
We assume throughout this section that all the coefficients of the system
(2.1) are bounded and continuous in Q. We assume that for each ¢, the
n x n matrix (((a%(x))) is symmetric and positive semi-definite for all
x € 2, and that c*f(x) = Ofora # B. Fora = 1, ..., N define 30 to be the
set of points x € 2 such that a vector (vy, ..., v,), normal to Q, exists at
x and satisfies

2. ag(x)yy; = 0.

£,/=1

Then, for each a, define J} to be the set of points x; € 29 such that J is
is given, in a neighborhood of x,, by F(x) = 0, where F(x) is a C2-function
with F(x) > Ofor x € Q, grad F # 0, and L2[F] = 0 at x;,. Suppose that the
functions u1, ..., uVN satisfy (2.1)in Q, withu, € CY(Q) U C2(Q),a =1, ...,
N. For each qa, define g to be the set of points x; € 2* such that in some
neighborhood of x; in R”, u* is C2 and the ath inequality of (2.1) is
satisfied, with all the conditions on the coefficients remaining true. The
sets g are invariant under nondegenerate changes of independent vari-
ables. The proof is the same as in the case of a single equation, which is
discussed in [9].

THEOREM 1. Suppose that for @ = 1, ..., N the functionsuxe CYQ)
CoQ N o¥) satisfy the inequalities

N
Lefus] + Y] cefuf 2 0 in Q U o¥,
(2.2) A=l
ur =0 on3\g*.
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Suppose also that for some constant ¢, > 0,
N

(2.3) cB(x) = — ¢
=]

inQUo* a=1,...,NThenus <0in,a=1, ..., N.

PROOF. Suppose that for some a, u*(x) > 0 at some point x € Q. Then
sup{ue(x):a =1, ..., N, xe Q} = M > 0. Since Q is compact, for some
7 and for some xg € Q, ur(xy) = M. By the definition of M, ur(x) has its
maximum on @ at x,. Since ur < 0 on Y\g* by hypothesis, it follows that
xo€ Q2 U of. We consider the cases where x,e€ £ and where x;€ of
separately.

Case 1. xye€ Q. In this case u* must have a local maximum at x,, so
uy(xo) = 0fori =1, ..., n and the matrix ((u],(xo)) (L, j =1, ..., n)
must be negative semi-definite. Since the matrix ((af,)) is assumed to be
positive semi-definite and symmetric,

n
Z a;juzixj § 0
7, 7=1
at xg. Further, since ¢*# = 0 for a # 3, and uf < M for each 3 by the
definition of M,

N N
Z crbubf < errur + Z cTBM.
g=1 8=1

BT

At xg, ur = M, so
N
D7 c®B(xp)ub(xg) < cT(xg)M + Y c*b(xg)M

—1 =1
g gvtr

Il

N

M 3 cr(xo)
p=1

§ —MC() <0

by assumption (2.3). Hence, at xo, L7[u"] + X5 cfuf < — Mcy < 0,
which contradicts hypothesis (2.2). Thus we cannot have x; € Q.

Case 11. xy € o¥. Since g} S 2, there exists a function F(x) such that
2 is given, in a neighborhood of x;, by F(x) = 0, with grad F # 0 and
F(x) > 0 for x € Q. We can change coordinates from x = (x, ..., x,)
toy =, ...,y,) With y, = Fi(x) for k =1, ..., n and y, = F/(x) =
F(x). Then X can be written, in a neighborhood of xg, as {y:y, = 0}.In
terms of the new coordinates, we have

(2.4) Lru] = Y] atu,,,, + ) bu,,
f, j=1 i=1

1=
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where

”n
@ = 3% afFLF,
k=1
for i, j =1, ..., n. An inward normal to Q at x; is given by grad F =
(Fz, ..., F7); since xg € g, it follows that

n
2 apFRFy =0
ky/=1
at xo. Thus, since ((a,,)) is positive semi-definite and symmetric, } }z_a; F7,
= Qatxgfor 7 = 1, ..., n. Hence, at x,,

2.5 a, = ay; = Y, @, FrFj = Zj (3 @, Fp)F}, =

ky/=1 /=1 k=1
forj =1, ...,n Now, F3 = Oandthus F = Ofori,j # n,and F7 =
so it follows from (2.4) and (2.5) that at xo, Lr[F~] = b1. Since xq€ o,,
0 < L/[F] = L/[F~] at x,, so b = 0 at x,. We may now change coordi-
nates again, leaving the y,-axis fixed, so that the change diagonalizes the
matrix ((a7,)),i,j = 1, ...,n — 1, at x,. Call the new coordinates (zy, ...,
Z,_1, V»)- In this last coordinate system we have, at the point x,

(2.6) Lr[u] = 2 a, Ty, + Z by u,, + bu,,
7,j=1

with @%; = O0fori # j, d;; 2 0fori =1, ..., n — 1. Now, ur attains its
maximum on  at x,. Since x, € J, u(x) need not have a local maximum
at x; however, the function ur(z,, ..., z,_, 0) with argument restricted to
2 must have a local maximum with respect to z;, ..., z,_; at x,. Thus, at
xp ul, =0and ul,, <O0fori=1,...,n— 1. Also,u, < 0 at x;since
otherwise u7(x) would increase as x moved from x; into Q. Hence, it follows
from (2.6) that at xy, L[ur] < 0. We have, at x,,

Lru] + 2_‘_, cobup < Z crhub £ —Mcy < 0
g=1 8=1
as in Case I, which contradicts (2.3). Thus x, cannot belong to ¢7; this
completes the proof of Theorem 1.

REMARK. Suppose that for each a, ¢} is an open subset of ¢*. If for
each @, u* < 0 on J\z} and the inequality

N
Le[ue] + 3 cobub 2 0
B=1

holds on Q U ¥, then if u* > 0in Q for some «, a contradiction results
just as in the proof of Theorem 1. Thus, Theorem 1 still holds if ¢* is
replaced by z*.
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ExampLE 1. Suppose n = 2. Let Q = (0, 1) x (0, 1). Define a function
S(n) by
0, 0=p=1/2
f(”)_{zp— I, 12<p< L.

Suppose that for ¢ = 1, 2, u* e CO(2) (| C2(Q) and the functions u= satisfy
the following system in Q:

ualflxl +f(x2)u}(2xz — 2ul + u? _2_ 05
ul, + ul, +ul — 3u? 2 0.

For the domain Q and the system (2.7), 2 = 0Q, 29 = (0, 1) x {0},
29=(0,1) x {0} U (0,1) x {1}, and 3F = 2§ = (0,1) x {0}. Since we
assume nothing about the behavior of u! and 2 outside Q, we cannot
determine ¢f and ¢f. However, suppose that for ¢ = 1, 2, u* < 0 on
S\[(0, 1) x {0}]. If xq € Q, there exists a number ¢ satisfying 0 < ¢ < 1/2
such that xye (0, 1) x (e, 1). Let Q, = (0, 1) x (e, 1), and consider the
system (2.7) in Q,. For the system considered in Q,, ¥ = 3§ = (0, 1) x
{e}. Now, the functions «! and u2 were assumed to satisfy (2.7) in Q, and
Q contains Q, |J [0, 1] x {e}], so for the system considered in Q,, of =
of = (0, 1) x {e}. Since 9Q,\o} < J\[(0, 1) x {0}] for @ = 1, 2, the
functions ue satisfy u¢ < 0 on 90Q,\¢c*. The other hypotheses of Theorem
1 are satisfied, so u* < 0 on Q, for ¢ = 1, 2. In particular, u* < 0 at x,
for each . Since x, was an arbitrary point in 2, u* < 0in Q, and hence by
continuity in 0, for each «. Thus, for system (2.7) we may omit data on
(0, 1) x {0} and still conclude that u* < 0 on Q for ¢ = 1, 2, although we
cannot determine ¢§ and ¢§ for (2.7) in Q.
Theorem 1 immediately yields the following results.

2.7)

COROLLARY 2.1. Suppose that for « = 1, ..., N, the functions u* € C%(Q)
N C2Q U o) satisfy the inequalities

N
Lefu] + D c®uf <0 in Q \J o,
05 w) + 3, U
u >0 on2\ok,
and hypothesis (2.3) of Theorem 1 is satisfied. Then u* = 0 on Q.
ProoF. Apply Theorem 1 to the functions —u®, ¢ =1, ..., N.

COROLLARY 2.2. Suppose that foroc = 1, ..., N, the functions u* € CY(Q)
N C2Q U o¥) satisfy the equations

N
2.9) Loue] + ﬁzz:lc“@uﬁ =f« inQU o}

u = g« on 2\o¥,
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where f= and g= are bounded continuous functions on Q |J ¢} and X\o}
respectively for o = 1, ..., N. Suppose that hypothesis (2.3) of Theorem 1
holds for some constant cy. Then for each o, u® satisfies

1 / a
2.10) ue| < max[azsl?ﬂv ((EEIIN 2 18 (x)l]
xEDUaa xEE\aa

in Q. Further, if the functions v= satisfy the system (2.9), with vee CY(Q) N
CQ U o), fora =1, ..., N, then va = u® in (J for each «.

PrOOF. Let

M= max[aif.’f,q (felfeq), sup. Ig“(x)l}

= *
x¥€QUad, LA

Then for each o, u* — M = g« — M < 0 on X\¢*. Also,
N
Lefus — M] + ) c®flub — M]
=1

N N
= Lefue] + Y c*PuP — M ) cof

= =1
gf" + CoM g 0

in Q U o¥. Thus Theorem 1 applies to the functions u* — M, and hence
ue — M <0 or u* £ M in Q. Similarly, Corollary 2.1 applies to the
functions u® + M, so u* 2 — M in Q. It follows that |u?| < M in Q for
a = 1, ..., N, which is precisely (2.10). If the functions v« also satisfy (2.9),
then the functions we = u« — vya satisfy

N
La[we afyf = (O *
@.11) [we] + 2, cobw on QU ez,
we =0 on J\g*

Theorem 1 and Corollary 2.1 both apply to (2.11); so we < 0 in Q2 and
we > 0in Q for each @. Thus u¢ — v# = 0 or u* = v« in () for each a.

Theorem 1 is a weak maximum principle; it asserts that if the functions
u« satisfy the system

N
Lefue] + 33 c*fuf 2 0
£=1

in Q U o and ur has a positive maximum at a point of Q |J ¢, then for
some «, u* must be positive at some point of X\¢¥. Theorem 1 says nothing
about the behavior of ur elsewhere in 2 |J ¢. In contrast, suppose that
u satisfies the uniformly elliptic equation

3 @y, + 3 b, + c(u =0
i =1

7 7=1



66 C. COSNER

in Q with ¥ < 0 on 9, where ¢(x) £ —c¢y < 0. The strong maximum
principle for elliptic equations asserts that if « has a positive maximum at
xg € Q, with u(xy) = M, then u(x) = M in Q. Strong maximum principles
for weakly coupled systems of elliptic and parabolic equations have been
proved by Protter and Weinberger [10]. Their proof is accomplished by
showing that each component w2 of the solution of the system must itself
satisfy a differential inequality. Then, the usual strong maximum principles
for a single equation may be applied. For general second order equations
with nonnegative characteristic form, the question of strong maximum
principles for a single equation is much more complicated than in the
elliptic or parabolic case. However, some very general strong maximum
principles have been proved by Bony and Aleksandrov; these are discussed
in [9]. The following corollary permits the extension to systems of whatever
strong maximum principles are available for a single differential equation
with nonnegative characteristic form.

COROLLARY 2.3. Under the hypotheses of Theorem 1, each of the functions
u® satisfies the inequality

Lefue] + ceour > 0 in Q | of.

PROOF. By assumption, Le[u®] + YK ce#uf = 0in Q U o%. By Theorem
l,up £ 0in Qfor 8 = 1, ..., N; since we assume that c## > 0 for a # 8,
it follows that

N
Lo[u?] + coaye > — Z cobyf > 0,
=
which proves the corollary.
It should be noted that condition (2.3) implies that caa < —¢; < 0.

REMARKS. Suppose that the operators L* in (2.2) are degenerate para-
bolic, that is,

n—1
Lefu] = Z}l aF (Xt + 23 bEXUy, — iy,
i, j= =1
fora =1, ..., N,with ((a%(x))) (i,j = 1, ...,n — 1) positive semidefinite.
If Q is a cylindrical domain, thatis, Q = @ x (0, T) where w is a smooth,
bounded domain in R#-1, then for each «a, Z} contains all of w x {T}
and none of @ x {0}. Which parts of 9w x (0, T) lie in 3} will vary,
depending on Le. If all the operators L« are degenerate parabolic, data
may always be omitted on w x {T}, even though ¢} may not be known.
Theorem 1 may be applied by using the same trick as in example 1.
Further, if the operators L« are degenerate parabolic, condition (2.3) of
Theorem 1 may be omitted. The functions c2 are assumed to be bounded;
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so even without condition (2.3), > }¥,c#® < M in ( for some constant M,
a=1, ..., N.If welet we = ye exp(—(M + 1)x,), and the functions u*
satisfy the system

n—1 N
(2.13) Z agul, + 2 bfud. — ug + Y c®uf = 0
i 7=1 =} =1
in Q U o¥, then the functions w satisfy the system
n—1 n—1 n
(2.13) Dlagws, + Y biws — wi + Y cebwf = 0
£, j=1 =1 =1

in Q| g}, where ¢2# = c2 for o # 8 and ¢a* = c*¢-M- 1. Thus, } I, ¢of
< —1, so condition (2.3) holds for system (2.13). If u= < 0 on 2\g%,
then we < 0 on X\g¥. Thus, Theorem 1 applies to the functions we, so
we < 0inQ,and thusu® £ 0inQ, @ =1, ..., N. Hence, condition (2.3)
may be omitted and Theorem 1 will still apply, in the degenerate parabolic
case.

3. In this section, Q will be an unbounded domain in R», with 9Q
piecewise C2. The operators Le are as in §2, but their coefficients and the
functions c¢## are only assumed to be bounded on each bounded subdo-
main of Q. Thus the coefficients may grow as |x| — o0. Suppose that the
functions u®, ¢ = 1, ..., N, satisfy the system

N
Loy« afyf > i *
G [u]+;é‘lc Wb =20 inQ U o,

u* <0 onJ\gk

THEOREM 2. Suppose that the functions u®, a = 1, ..., N, satisfy the
system (3.1), with uxe CYQ) N C%Q U o¥). Suppose that there exists
a function H(x) such that foree = 1, ..., N.

N
(3.2) Lo[H] + 3] c*H < 0
=1

in Q U o¥, with H(x) > 0 in Q. Assume that for each R > O there is a
constant cy(R) > 0 so that fora = 1, ..., N,

3.3) 3 () S —colR)
f=1
forallxe Q U of with|x| = R. If
(3.4) lim mf[xe sup (u“(x)/H(x))}é

thenu* <0inQ,a =1, ..., N.

PROOF. Suppose x; € Q. Given any ¢ > 0, condition (3.4) implies that
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there exists some R > |xp|such thatfora = 1, ..., N, u*(x) — eH(x) £ 0
for all x ¢ Q with x| = R. Since H > 0 in Q and u* < 0 on 3\¢¥, u* —
eH = 0 on 2\g¥ for each a. Let Qp = Q) {x: |x] < R}. Let ¢}, be
defined for Qy in the same way that ¢¥ was defined for Q in §2. Then
of N {x:1x| < R} € o}, Let ¢} = g¥ (| {x: |x| < R}. Since u* — ¢H
< Ofor [x] = Rand x € X\g¥,

(3.5) u* — eH <0 onoQp\t¥,a=1,...,N.

(By the definition of Q, 8Q; = [2 N {x:|x] = R}] U [ N {x:|x| < R}],
so the only part of 9Q where u* — ¢H is not known to be nonpositive
is o¥ N {x:|x] < R} = ¥). For each a, t¥ S 0%, so by (3.1) and (3.2),

N
(3.6) L[y — ¢H] + Y, co¥(uf — eH) £ 0
=1

in Qp U z¥ a =1, ..., N. Condition (3.3) insures that hypothesis (2.3)
of Theorem 1 holds in Qp, so it follows from the remark at the end of the
proof of Theorem 1 that (3.5) and (3.6) imply u* — ¢eH < 0 in Qp for
a =1, ..., N. In particular, u%(x,) < eH(x). Since ¢ > 0 was arbitrary,
u*(xy) = 0 for each a. Since x; € Q was arbitrary, u* < 0 in Q, and hence
by continuity in Q, forew = 1, ..., N.

REMARKS. Theorem 2 is a Phragmén-Lindel6f principle for weakly
coupled systems of second order equations with nonnegative characteristic
form. Various types of Phragmén-Lindel6f principles have been proved
for elliptic and parabolic equations. Some of these results are discussed
in [10]. In the case of elliptic equations, the condition (3.3) may be modified
or eliminated; how this can be done is discussed in [10]. However, the
techniques used in [10] for elliptic equations cannot be used in equations
with nonnegative characteristic form without modification. (The argu-
ments allowing data to be omitted on ¢¥ are rather delicate, since they
consider the behavior of both the first and second order terms in L=.)

The usefulness of a result such as Theorem 2 depends on whether or
not one can construct an appropriate comparison function H(x). In
general, finding the proper H(x) may be difficult or impossible. However,
if the operators L« are degenerate parabolic and @ is cylindrical, then
comparison functions H(x) can be constructed under a rather wide
range of conditions.

Suppose that fora = 1, ..., N.

n—1

n—1
Lefue) = 3} at(Ou,,, + 2b¥0u,, — u,,
=1

7, 7=1

and Q = @ x (0, T) where @ is an unbounded domain in R#~1, with
Ow piecewise C2. The proof of Theorem 2 may be modified slightly by
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replacing Q = Q ) {x:|x| < R} with wp x (0, T) where wg = w
{(x1, «..s X,-1): (D2=1x3)12 < R}, and replacing (3.4) with the condition
sup | JCIHOT < o

lim lnf[x@ﬁ, 1(X]yen Xpy—1) 1=1
o=

r—oo

=1,...,

The proof of Theorem 2 remains essentially the same, but since wyp X
(0, T) is cylindrical and the operators L degenerate parabolic, hypothesis
(2.3) of Theorem 1 may be omitted, and hence condition (3.3) may be
omitted in Theorem 2. Further, suppose that the coefficients of (3.1)
satisfy, for each «, the conditions

n—1

3 an(0&E; < Ki(l + )R,

7,7=1
65l = Kp(l +r®)V2, i=1,...,n— 1,

and
N
Do et < Ky(l + r2)?
=t

for some, A, Kj, K3, K3 > 0, where r =(} 2 x2)!/2. Then if k and j are
properly chosen positive constants, the function H(x) = exp{k(l +
r2)efxn} will satisfy (3.2) in w x (0, T4) for some T > 0. This particular
H(x) was introduced by Bodanko [1], and used to prove a Phragmén-
Lindeldf principle for systems of parabolic equations. Bodanko’s argu-
ments extend to the degenerate case, but do not allow for the omission
of data on [0w x (0, T)] | oF evenif the form 37 lag(x),&; degenerates.
Comparison functions similar to Bodanko’s but allowing a wider range
of growth conditions on the coefficients of (3.1) have been constructed by
Kusano, Kuroda, and Chen [8], Chabrowski [2], and the author [3].
A detailed analysis of the degenerate parabolic case is given in [3]. The
Phragmén-Lindel6f principle, together with comparison functions, can
be used to study the asymptotic behavior of solutions of weakly coupled
systems of degenerate parabolic equations. This application is discussed
in [3].

4. The object of this section is to extend the results of §2 and §3 to
certain semi-linear systems of degenerate parabolic equations. Let o
be a domain in R~, either bounded or unbounded, with dw piecewise C2.
Let Q = @ x (0, T). In this section the operators L« are assumed to have
the form

4.1) Lefu]l = 30 af(x, Dy, + 25 b3(x, Du,, + c¥(x, hu — u,,
=1

4, 7=1

where 37 ja%(x, 1)§£; 2 0 for (x, t)eQ, EeR*,and ¢ =1, ..., N.
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The type of operator in (4.1) is a special case of the types of operators
considered in §2 and §3. For the operator in (4.1) and the domain @, it is
easy to verify that J* contains all of w x {T}, none of w x {0}, and
may or may not contain points of dw x (0, T). Further, the device of
Example 1 in §2 can often be used to omit data on w x {T}.

Letu=(ul, ..., uN)and let 1 = (1, 1, ..., 1)e R~ Let F(x, ¢, u)
and &(x, t, u) be functions from Q x R” to R#, with components F* and
&« respectively, such that Fe(x, ¢, u) = F(x, t,u) for (x, t) € Q, ue RV,
and @ = 1,..., N. Assume that &(x, ¢, u) is Lipschitz in u, uniformly for
(x, )€ 2, with respect to the norm [u| = sup,_; ylu|. Assume also
that for each a, &=(x, ¢, u) is nondecreasing in each component u# of
u with § # a.

In the following theorem, the operators L= are assumed to satisfy the
same general conditions as in §2.

THEOREM 3. Suppose that w is bounded and Q = o x (0, T). Suppose
also that the vector functions u and u satisfy

Loue] + Fe(x, t,u) < 0

“.2) Loua] + §(x, 1, u) 2 0

inQU o a=1, ..., N. withur, ue CYQ) | C2(Q U o*) for each a,
and that for each a,

(4.3) u* 2 u* on 3\o¥.

Then for each o, u* Z u* inQ,a =1, ..., N.

ProoF. The proof is adapted from that used in [7] for the uniformly
parabolic case. Let g = sup, »<plc®(x, )| + M, where M is the Lips-
chitz constant for &. Then for ¢ = 0, define v by

“4.4) vV=u — ge# 1,

For each a, v* = u* — ge#; so

LAve] = Leue] — eL[e*]

Z —F4x, t, u) + e(pu — c®ert

= —Fx, t, v + eerl) + e(u — c¥em
4.5) = —Fux, t, V) — Meet + e(u — c¥)ent

= —Fx, 1, V) + e(u — c* — M)ex

2 —Fx, 1, V)
for (x, Ve Q U ¢*. Now let w = u — v. Define r € [0, 7] by ¢ = sup{re
[0, T]: we =2 0in& x [0, t] fora = 1, ..., N}. Since we 2 ¢ for 1 = 0,
a =1, ..., N, it follows by continuity that z > 0. Theorem 3 will be

proved by showing that if ¢ < T, a contradiction results.
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Let 7 denote the N — | vector whose components are the functions
u®, a # . Then write Fo(x, 1, w) = F=(x, ¢, 4%, u®). Since by hypothesis
F(x, t, u) is nondecreasing with respect to uf, 8 # «, it follows that on

QU e® N {(x,0):tel0, 7]},
_%a(x’ Z l.l)

Il

_%a(x’ Z, ﬁa, ua)
—3“(3@ t, {’aa ua)
—ga(xa t’ v) + M(ua - va)'

(4.6)

IIATIA

Combining (4.5) and (4.6) and using the definition of w yields, for each a,
Lefwe] = Le[us] — Le[ve]

_Fa(xs Y, ll) + %a(x’ ta V)

—Fx, t, w) + Fx, t,v)

—F(x, t, v) + Mwe + Fx, ¢, V)

in(@ U a¥ N {(x,1):1€[0, z]}. Thus, for each «,

38) (L= — M) [w] < 0

in @Qu 0':) N {(x, t): te[0, T]} Now, we = ge#t = ge # on Z’\gc”:;
sowe — ge~# = 0 on J\g}k. Also,

4.7

A IA 1A

(L — M)[we — ge~rt] = (L — M)[w?] — (L — M)[ce#]
—(u + c® — M)e ¥
0

(4.9)

A TIA

on (2 U ¥ N {(x, #): t€[0, ]}. It follows from corollary (2.1) (or in
fact from Fichera’s original maximum principle, see [4], [5]) that for each
o, we — ge # = 0 or wr = ge# = ee#7> 0 on @ x [0, 7]. (It is easy
to check that boundary data may be omitted on w x {z}, and condition
(2.3) of Theorem 1 is unnecessary since L# is degenerate parabolic; see the
remarks at the end of §2.) But if we = ¢y = ee~# > 0 for all @ on @ X
[0, 7), and ¢ # T, then it follows by continuity that for some § > 0,
we > 0on @ x [0, 7 + 6], contradicting the definition of 7. Thus 7 =T,
so for each @, w* = 0 on Q, or u* — u® + ce# > 0 on Q. Since ¢ > 0
was arbitrary, u* = u® on ( for each ¢, as desired.

RemARK. The remarks following the proof of Theorem 1 also apply
here; so ¢¥ may be replaced by any open subset of ¢ in (4.2) and (4.3).

The following theorem extends Theorem 3 to unbounded domains, just
as Theorem 2 extends Theorem 1. Here the operators L= are assumed to
satisfy the same general conditions as in §3; in particular, their coefficients
are assumed to be bounded on any bounded subset of 2. The functions F
and & are assumed to satisfy the same hypotheses as for Theorem 3.
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THEOREM 4. Suppose that w is unbounded, and Q = o x (0, T). Suppose
that the vector functions u and u satisfy the inequalites (4.2) and (4.3), with
us, ure C%D) N C2(Q U o*) for each a. Let M > 0 be the Lipschitz
constant for &§. Assume that the operators L= are such that there exists a
function H(x, t) > 0in Q such that for each a,

(4.10) (L* + M)[H] <0

in Q] o¥, and

(4.11) lim SUP[(x - {we(x, ) — ux(x, 0)/H(x, t)}} >0
Thenu* 2 w*inQ,a =1, ..., N.

ProOF. Theorem 4 follows from Theorem 3 essentially as Theorem 2
follows from Theorem 1. Some of the notation developed in the proof of
Theorem 2 will be used here. Given ¢ > 0, let v = uw — H1. Then it
follows as in (4.5) that for each a,

Lefve] = Le[ue] — eLo[H]
= —Fx, t,u) — elo[H]
(4.12) > —3%x, 1, V) — MeH — eLa[H]
z —Fx t,v) — e(L* + M)[H]
= —Fx, t,v)

in Q |J o*. (Thelast step follows from (4.10).) Thus, the vector functions u
and v satisfy the system

Lefu] + Fo(x, t,u) <0

(4.13) Le[ve] + §o(x, t,v) = 0

in QU o¥ a=1,..., N. Now, suppose that (xy, #y) € 2. Condition
(4.11) implies that there exists some R > |xo| such that fora =1, ..., N,
u® —y* = y* — u® + ¢H > 0 for all (x, t) e Q with |x| = R. Let Qp =
QN {xeR":|x| < R}, and let g}, be defined for Q as g¥ was for Q.
Then, by the same reasoning as in the proof of Theorem 2, u® — v« = 0
on a set containing 9Qz\o%,, and (4.13) holds on the remainder of Q5 , for
each «. Thus it follows from Theorem 3 (see also the remarks at the end of
the proof of Theorem 1) that u* — v« = 0 on Qp, and in particular at
(x0, tp)- Thus, at (xq, tg),u* — v@ = u* — u* — ¢eH =z 0,fora =1,..., N.
Since ¢ > 0 was arbitrary, u* — u* = 0 at (xg, #,). Since (xg, #y) € Q was
aribitrary, u* — u# = 0in Q and thus by continuity in Q.

REMARKS. If Theorem 3 or Theorem 4 is to be used to analyze the be-
havior of solutions of a given system Lo[u®] + Fe(x, t,u) 2 0in Q U oF,
a =1, ..., N, it is necessary to construct another system, Lo[us] —
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Fo(x, t,u) <0in Q U 0¥, a =1, ..., N, such that u and u may be
compared. Furthermore, enough must be known about u so that the com-
parison actually yields some information. Methods of constructing such
systems are discussed in [7]. Also, for Theorem 4 to apply, it is necessary
to construct the function H. In the remarks at the end of §3, some condi-
tions are given under which such a function can be constructed. The
function H may only satisfy the required conditions in a strip, @ x [0, T7]
but Theorem 4 can be applied first in @ x [0, 7], then again with a new H
in@ x [T}, T,], and so on. Conditions under which this process exhausts
@ and more general ways of constructing H are discussed in [3]. Condi-
tion (4.11) is of course satisfied if the inequalities

;ﬂ[(x’t)gg}?x_,e (Jus(x, t)|/H(x, t))} =0, a=1,...,N
and the corresponding inequalities for the functions ue hold; however,
(4.11) is a weaker condition. Finally, the same sort of analysis used in
Theorems 3 and 4 can be used to obtain comparison results in which the
Lipschitz condition is imposed on F rather than &; such a variation is
useful in some applications.
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