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GREEN'S FUNCTIONS FOR FOCAL TYPE 
BOUNDARY VALUE PROBLEMS 

ALLAN C. PETERSON 

In this paper we will be concerned mainly with the differential equa­
tions 

(1) </«> = Xp(x)y 

where X = ± 1, p(x) > 0 is continuous on [a, b]. Our main result is that 
if (1) is disfocal (see Definition 2 below) on [a, b] and 1 ^ k = n — 1, 
then the Green's function Gk(x9 s) for the fc-focal point problem 

t/"> - Xp(x)y = h(x) 

y^{a) = 0, y^\b) = 0, 

i — 0, • • -, k — 1, / = k, • • -, n — 1, 

h E C[a, b], satisfies 
(-l)»-*Gfc<*>(^s)>0 

on (a, fr) X (a, b) for i = 0, • •, k — 1, where Gk
{i\x, s) denotes the par­

tial derivative di/dxl Gk(x, s). 
At the outset, to be more general, we consider the differential equa­

tion 

(2) t/<»> + p&W»-» + • • • + pn(x)y = 0 

where the coefficients pk(x), k = 1, • • •, n, are assumed to be contin­
uous on [a, b\. The adjoint system [2] of (2) is 

(zpy = VI(X)TP + z1 

(z1)' = -P2(x)z? + z2 

(3) 

(zn~2y = (- i )npn- iW^° + *n _ 1 

(^-7 = (-i)n+V»(*)^ 
Given a scalar function z(x), set 2°(ac) = z(x), z\x) — [z°(x)]f — 

Pifà^x), •••, ^ ( x ) = [zn"2(x)]' - (-lfp^xjzPix), provided z°(x), 
. . . zn~2(x) are successively differentiable on [a, b]. We will say that a 
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scalar function z(x) is a solution of (3) provided z°(x), • -, zn~\x) is a 
solution of (3). We will say a solution z(x) of (3) has a zero of order k 
at x0 provided z\x^ = 0, i — 0, • • -, k — 1. Note that the adjoint sys­
tem of (1) is equivalent to the differential equation 

(4) z^n) = (-l)nXp(x)z 

and **(*) = ék\x\ k = 0, • • -, n - 1. 
Let uk(x, x0), fc = 0, • • •, n — 1, be the solution of the initial value 

problem (2), t^fo) = 8jk, j = 0, • • -, n - 1 (8jk is the Kronecker del­
ta). Similarly, let the scalar function zk(x, x0), k = 0, • • -, n — 1, be the 
solution of the initial value problem (3), zj(x0) = 8jk, j = 0, • • -, n — 1. 

A fundamental relation between (2) and (3) is given by (see [6] and 
the reference given there to Dolan) 

(5) u/»(u) = (-irc:ì(u) 
p, q — 0, • • -, n — 1. 

Before we state some of our results we give some definitions. 

DEFINITION 1. Assume iv • • -, ik, \v • -, \n_k are n distinct integers 
with 0 ^ ip ^ n — 1, p = 1, • • -, t 0 ^ /? ^ n - 1, 9 = 1, - • , n — k. 
We say that (2) is (i1? ' ' ', ik, ìi> ' ' '> /n-fc)_<^s^oca' o n ta> ^1 provided 
there does not exist a nontrivial solution t/(x) and points c < d in [a, fo] 
such that 

t/V(c) = 0, p = 1, • • -, k, yü^d) = 0, q = 1, • • -, n - fc. 

Similarly (3) is (iv • • -, ifc; /1? • • -, /n_fc)-disfocal on [Ö, &] provided there 
is no nontrivial solution z(x) and points c < d in [a, fr] such that zl*(c) 
= 0, p = 1, • • -, A:, zjid) = 0, 9 = 1, • -, n - k. 

We now define disfocal as Nehari did in [3]. 

DEFINITION 2. We say that (2) is disfocal on [a, b] provided there is 
no nontrivial solution y(x) of (2) such that each of y(i\x), i — 0, 
n — 1, vanishes at least once on [a, b], 

Note that if (1) is disfocal on [c, d], then (1) is disfocal on 
(c - e, d + c) for some € > 0. For if not, then for each k there is a solu­
tion yk(x) of (1) and points xik, i = 0, • • -, n — 1, in (c - (1/fc), 
d + (1/fc)) such that yk

{i)(xik) = 0. By normalizing the coefficients of t/fc 

with respect to a basis, there is a subsequence of {yk} which converges 
uniformly on compact subintervals to a nontrivial solution y. Then 
there are points ti9 i = 0, • • -, n - 1 in [a, fc] such that t/(i)(^) = 0, 
i = 0, • • -, n — 1 which is a contradiction. Nehari proved [3] that (1) is 
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disfocal on [a, b] iff (4) is disfocal on [a, b]. Another result due to Ne-
hari [3] to keep in mind while reading this paper is that (1) is disfocal 
on [a, b] iff it is (il9 • • -, ik; jl9 • • -, /n_/c)-disfocal on [a9 b] for all pos­
sible (il9 • • -, ik; \v • • -, jn_k), Jc = 1, • • -, n - 1. 

A relationship between (2) and (3) that we will use repeatedly is giv­
en by the following theorem. 

THEOREM 1. The differential equation (2) is (iv • • -, ik; j v • • -, jn_k)-
disfocal on [a, b] iff the adjoint system (3) is (n — jr — 1, • • •, 
rc — in-k ~~ 1' n ~ h ~ 1' ' ' m> n ~ h ~ lydisfocal on [a, b], 

PROOF. The proof follows easily from the following equation which 
we obtain by use of (5) and properties of determinants. 

|f#>(s,t) •••u^Js,t) 

I <">(«, *) • • • <"_-/(*. ') 
I « l ì M 

jctr1^) ••• cb=i<*.»)| 
a = t < s ^ b (note there are no minus signs in this last determinant). 

An interesting question is how are the various types of disfocalness of 
(1) related to each other. To give a result of this nature we first give 
some definitions. 

DEFINITION 3. We say that y(x) is a focal solution of (2) on 
[c, d] C [a, b] provided y(x) is a nontrivial solution of (2) with 
y(i\x^j = 0, i — 0, • • -, n — 1, where c ^ x{ ^ d, i = 0, • • -, n - 1. 

In the next two definitions assume that 1 ^ k ^ n — 1 and that il9 

• • -, ik are distinct integers with 0 ^ ^ = n — 1. 

DEFINITION 4. We say that (2) is (iv • • -, ifc)-disfocal on [a, b] provid­
ed there is no a E [a, b) such that there is a focal solution y(x) with 
y®(Xj) = 0, / = 0, • -, n - 1, where x; = a if / E (i1? • • -, ik] and 
a ^ g, ^ b, / = 0, • • -, n - 1. 

DEFINITION 5. We say that (2) is two point (il9 • -, i/c)-disfocal on 
[a9 b] provided there are not points a < ß in [a, b] such that there is a 
focal solution y(x) such that y{i\x^) — 0, i — 0, • -, n — 1 with xf = a 
for i E (tj, • • -, ik) and x. E {a, ß}9 0 ^ t ^ n — 1. 

<2£ifc'> 
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In terms of our new terminology Nehari [3] proved that (1) is two 
point (iv • • -, ifc)-disfocal for all (t^ • -, ik), 1 = k ^ n — 1 iff (1) is 
disfocal on [a, b]. Using the same techniques we can prove the follow­
ing generalization. 

THEOREM 2. Equation (1) is two point (iv 

iff (1) is (iv • • -, ik)-disfocal on [a, b]. 
•, ik)-disfocal on [a, b] 

PROOF. Assume (1) is not (iv • •-, ifc)-disfocal on [a, b], but is two 
point (i1, • • -, ffc)-disfocal on [a, b]. Then there is an a G [a, b] and a 
focal solution y(x) of (1) with t/(i)(^) = 0, i = 0, • • -, n — 1 where 
t{ = a for i E {iv • • -, ik) and a ^ ^ ^ fo, i = 0, • • -, n — 1. Let /? be 
the infimum of points e E (a, &] such that there is a focal solution y(x) 
and points t{, 0 ^ i ^ n - 1, such that t/*^) = 0, 0 ^ i ^ n - 1, 
where t{ — a for i E (i1? • • -, ifc} and a = t% = c for 0 = i = n — 1. 
By a standard compactness argument we get that there is a focal solu­
tion u(x) and points x4, 0 ë i ë n — 1, such that t^fo) = 0, i = 0, • • -, 
n — 1, xi = a for f E (f̂  • • -, ifc}, a ^ ^ ^ ß(a < ß), 0 ^ i ^ n — 1, 
and j8 G (x0, • • -, xn_1}. Of all such solutions u(x), let AT be the max­
imum number of x/s such that xi E (a, /?}. Without loss of generality 
the above u(x) is such a solution corresponding to AT. Since (1) is two 
point (iv • -, ifc)-disfocal, 1 ^ AT" < n. Choose p E {0, • -, n — 1} 
such that xp E (a, /?). Let i*1(x), • • -, un(x) be a fundamental set of solu­
tions of (1), and set 

«(*) = 

1 «l(*) 

"i(*o) 

« l ( p - 1 , ( * p - l ) 

« l ^ x + l ) 

«/"-"(^-x) 

••• «»(*) 

••• «„w 

• • • "„(p-1)(xp_1) 

• • • «„<'+1>(xp+1) 

••• V"-1^«-!) 

If oo^ß) — 0, then there is a focal solution of (1) contradicting the 
maximality of N, i.e., a nontrivial solution t/ so that y{i\x^j = 0, i ¥= p, 
\^\ß) — 0. Since (^(ß) ¥= 0, œ is a nontrivial solution of (1). Also note 
that w^fo) = 0, i =̂ p. 

For c > 0, sufficiently small, set 
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"«(*) = 

«i(*) 

"i(*o) «»(*o) 

« i 0 - - 1 ^ - ! ) • • • « . Ù - 1 ) ( * p _ 1 ) 

(P + D| 
t*p+l) 

(P+D, 
^ P + l ) 

where .̂ = x, if xi < ß and t5 = /? - € if x,. = ß. Note that v^fa) = 0, 
i ¥= p, and ue(x) —» <o(x) in Cw[a, /?] space as e—*0+. Because of the ex­
istence of the focal solution u(x) (u^fa) — 0, i — 0, • • •, n — 1) we 
have that «^(x ) = 0. If xp is an odd ordered zero of co^x), then for 
e > 0, sufficiently small, Ü£

(P)(X) has a zero near xp. This contradicts the 
definition of ß. Hence, w^+1>(xp) = 0. If p = n - 1, then <o(n)(xp) = 0 
which by (1) implies w(x ) = 0. Therefore we have that co(p+1)(xp) = 0 
where the order of the derivative is interpreted modulo n. Pick 
1 = / < n such that co(p+/)(xp) = 0 (p + / interpreted modulo n) but 
w(p+/+D(Xp) ^ 0. If xp+f+1 (p + / + 1 interpreted modulo n) $ (a, /?} we 
get a contradiction as above with p in the definition of v€(x) replaced 
by p + / + 1 (modulo n). Therefore either co(p+/+1)(a) = 0 or 
W<P+/+I>(0) = 0. By Rolle's theorem and (1) we get that co^+/+2)(x) 
(p + / + 2 interpreted modn) has an odd ordered zero in (a, ß). If 
XP+£+2 $ (a> ß) w e 8 e t a contradiction as above. Hence, either 
co(r>+/+2)(a) _ o o r afp+i+2)(ß) = o, so we can apply Rolle's theorem. 
Continuing like this we finally conclude that co(p+n)(x) = co^x) (because 
of our interpretation of p + n) has an odd ordered zero in (a, ß). But 
w^a) ^ 0 and w^Xß) ^ 0 so we get out final contradiction as above. 

Before we prove our main result we state without proof the follow­
ing lemma. One can easily check this result by showing that the basic 
properties ([1], p. 105) which uniquely determine the Green's function 
are satisfied. See [5] and [6] for the method of construction for this 
form of the Green's function. The reader can easily verify the in­
equality in this lemma using the (0, • -, k — 1; k, • • -, n — l)-dis-
focalness of (2) and a continuity argument. 

LEMMA 3. Let Gk(x, s), 1 ^ k ^ n — 1, be the Green's function for 
the k-focal point problem 

!/<»> + Pl(x)tp-v + • • • + pn(x)y = h(x), yV(a) = 0, 

y®(b) = 0, i = 0, • • -, k - 1, / = k, • • -, n - 1 (h E C[a, b]). 
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If (2) is (0, - - -, k — 1; k, • • -, n — l)-disfocal on [a, b], then Gk(x, s) 
exists and 

Gk(x, s) = 
D 

0 uk(x, a) 

uf_x(b,s) u™(b,a) 

<:l\b,s) uk<"-»(b,a) 

on the triangle a = x = s = b and 

wn_i (*, s) uk(x, a) 

tilths) «*<*>(&, a) 

Gk(x, s) = 
D 

t & T ^ M uf-*{b,a) 

on the triante a = s = x = b, where 

u™(b,a) •••uf_1{b,a) 

••<_->, a) 

••<-?(*>, a) 

D = > 0 . 

u«-V(b, a) ••• u*ll\b, a) 

We are now ready for the main result of this paper. 

THEOREM 4. / / (1) is disfocal on [a, b], then 

(-ir-*Gk«\x,s)>0 

on (a, b) x {a, b) for i — 0, • -, k — 1. 

PROOF. Set, for s G (a, h), 

"n_i (x, s) uk(x, a) • • • un_x (x, a) 

u^ihs) ukM(b,a) •••ti?!1(fc,a) 

v(x) 

<ll\hs) (n-l) (b,a) ••• <_-«(&,a) 

and let u(x) be the above determinant with un_1{x, s) replaced by zero. 
By Lemma 3, it suffices to show that ( — l)n-ku(i\x) > 0 on (a, s], 
(-l)»-ty*>(x) > 0 on [s, b) for i = 0, • • -, k - 1. We will first show 
that (-l)n-*u(i)(x) > 0 on (a, s] for i = 0, • • , fc - 1. Note that 



GREEN'S FUNCTIONS 727 

(6) v(x) - u(x) = Du^fas) 

and so u(x) — v(x) — Dun_1(x9 s) is a linear combination of the k + 1 so­
lutions u0(x, b), - - -, w/c_1(x, b), and wn_1(x, s). Set 

(7) wk+i(x) = WK(*> fo)> • • •. «k-ite 6). «„-ite *)], 

the Wronskian of u0(x,b), •• -, «k_1(x, b), un_t(x, s). By use of (5) and 
using properties of determinants we get that 

Wk+1(x) = (-!)< fc-2 

^)(b,x)'"Zn_1(s,x) 

Jn-1) 
zn-2 (b, x) • *n-2 (s,x) 

It follows from this last expression for Wk+1(x) that Wk+1(x0) — 0 at 
x0 E [a, s) iff there is a nontrivial solution z(x) of (4) such that 
*W(x0) = 0, i = 0, • • -, n - k - 2, z(s) = 0, and z<»(b) = 0, j = n - k, 
• • -, n — 1. By Rolle's theorem z(x) is a focal solution of (4) on [x0, b], 
This contradicts the fact that (4) is disfocal. Hence, Wk+1(x) =£ 0 for 
a = x < s. This holds for each s E (a, b]. Let s = b in (7) to obtain 

( - l ) " - * - M y f c + 1 ( * ) | , = 6 > 0 . 

Hence, ( - l ) * " * " 1 ^ 
differential operator /fc by 

jk+i(x) > 0 for a ^ x < s. Now define the fcth order 

4M*)] = 
W[tt0(x, b), • • - , Uk-ijx, b\ y(x)] 

Wk(x) 

where Wk(x) = W[u0(x, b), • • -, uk_x{x, b)]. By the (0, • • -, k - 1; fc, 
• -, n — l)-disfocalness of (1) and since Wk(b) = 1 we have that 

Wk(x) > 0 for a ^ x ^ b. By use of (6) we have that 

Since u(i\a) = 0, i = 0, • • -, k - 1, 

«(*)= £ K(x,r) [-D - ^ - ] * 
where K(x, T) is the Cauchy function for ik[y] — 0 (so K{i\r, r) = ôi k_v 

i — 0, • • •, fc — 1). Now K(x, T) is a linear combination of u0(x, b), • •, 
%_i(*> fc) implies that K0)(b, T) = 0, / = fc, • • -, n - 1. It follows that 
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K(i)(x, T) > 0 for a ^ r < x ^ b, i = 0, • • -, k - 1. From 

u^(x) = J ^ K(i)(x, T) [ -D ™k+1^\ 1 dr, i = 0, -, x 1, 
r/c+r 

* - 1. 

we get that 

(-l)n-*tt(i)(x) > 0 for a < x ^ s, i = 0, 

We now set out to prove that 

\v<k\x) > 0 

for s ^ x < fc. From (6), 

v(x) = w(x) + DUn-ii** s)-

Hence, v(k\x) is a linear combination of the n — k + 1 functions 
u,<*>(x, a), • • -, u^(x, a), u{%(x, s). Set 

(8) «„-*+i(*) = W[Mjt<*>(x, a), • • -, <*>(*, a), u<n*>(x, s)], 

the Wronskian of ufc
(fc)(x, a), • • •, i4t-i(*> a)> M«Ìi(x>s)-

Since uk(x,a), •••, wn_1(x, a), un_1(x, 5) are solutions of (1) we get 
that 

uk«Xx,a) •••u^1(x,a) u^fcs) 

w«-HlW = 
H^\x,a) •••<"_T(^a) <-T(*>*) 

Xp(x) 

M*)uk(x> a) ••• Mx)un-l(x> a) ty>(*K-l(*> a) 

ä i x V x) • • • ( - 1 ) - 1 * V*-i(«. *) ( - 1 ) - 1 + V*- i (* *) 

(-l)"+*-1V"-*-1)(a. *) • • • *oK *) *o(*> *) 

( -1)* 4 - t - 1 ' (a, x) • • • ( - r V t l n x) ( -1 )" -Vi (» . *) 

(-ir-'Xpix) 
V - * - « ( a , x) • • • z0(a, x) z0(s, x)' 

^n-i'^ (a, x) ••• zn_1(a, x) zn_1(s, x) 

It follows that wn_fc+1(x0) = 0 for x0 G (s, b] iff there is a solution z(x) 
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of (4) such that z(s) = 0, *P\a) = 0, i = 0, • •-, n - fc - 1, and 
zß(x0) = 0, / = n — k, • •, n — 2. But then by Rolle's theorem there is 
a point e E (a, x0) such that ^n_1)(c) = 0. This contradicts the fact that 
(4) is disfocal on [a, b]. Hence, oin_k+1(x) ¥= 0 for x E (s, b]. 

Letting x = s in (8) we see that ( — l)n~"fc\cow_fc+1(s) > 0, hence 

( - l ) - * X « l l _ k + 1 ( i ) > 0 

for s = x ^ b. 
Define the (n — fc)-th order operator Mn_fc by 

M r,il - W[Vfc>(^«)> •••,u(
n

fcl1(x,a),y] 

where 

«„-*(*) ^ W[W/>(x, a), • • -, t ^ * , a)] > 0 

on [a, b], by the (0, • -, k — 1; k, • -, n — l)-disfocalness of (1) and 
co _k[o) = 1. 

W Since v{k\x) = u{k\x) + Du<n^(x, s), 

Mn_k[v«\x)] = ^ - ^ -

Since, further, ü(fc)(b) = • • • = v^'^b) = 0, we have that 

where C(x, T) is the Cauchy function for Mn_k[y] = 0 (so ( ^ ( T , T) = 
8ifW-fc-i» « = °> • • -, n - fc - 1). Since W[ufc<*>(x, a), • • -, u<k\x, a)] > 0 
on [a, b] for i = k, • • -, n - 1, Mn_fc[i/] = 0 is disconjugate on [a, b]. 
Since C(x, T) has a zero of order n — k — 1 at r with C(n_fc-1)(T, T) = 1, 
we have that 

(_ l)»-*-iC(x, T) > 0 for x < T < 6. 

Since 

\v<k\x)= £ K-ir-^cfcT)] ^[(-i)n"fe^n_fe+1(x)] dr 

we have that 

Aü(fc)(x) > 0 on [5, b). 

We will now use this last inequality to show that ( - l)n-kv{i\x) > 0 
on [s, b], i = 0, • -, fc — 1. 
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For 0 ^ i ^ k — 1, consider 

, « ^ ( M ) «fc<«(&,a) 
v(t\b) = 

««^(fe, ») « k
( -" (6 , a) 

• <Ub, a) 

• u£r?(b, a) 

By use of (5) and properties of determinants we get that 

Zn-i-i(°. b) %:*-?(a, b) • • • zn_Ua> b) 

©<«(&) = ( _ l )"+*-i 
3»_*_i(*. b) 

z0(s, b) 

J.n-k-1) 
zn-k-

T(a, b) ^n-k- > , b) 

V - ^ f l , ft) • • • *o(«> b) 

Hence, vil\b)]s = 0 iff there is a nontrivial solution z(x) of (4) such 
that 7P\a) = 0°, t = 0, • • -, n - k - 1 z(s0) = 0, *W(fc) = 0, / = n - k, 

• -, n — 1 but / ¥= n — i — 1. But then by Rolle's theorem there is a 
point e E (a, fr) such that ^n~i~1)(c) = 0. This contradicts the fact that 
(4) is disfocal on [a, b]. Hence, v(i)(b) ¥* 0 for all s E (a, b). Further 

v(i)(b)]s=b = ( - ! ) ' n—& 

Therefore 

uk«\b, a) 

uk<*Kb, a) 

uk«-*(b,a) •••u^?(b,a) 

(_l)»-ty*>(fe)>0 

for a < 5 ^ fo, i = 0, • -, k - 1. 
Since (-1)W-V / C-1 )(5)>0, (-l)n-V f c-1>(fo)>0, and the derivative 

of ( — \)n~kv{k~1\x) is either strictly positive or strictly negative on [s, b), 
it follows that 

(_ l)»-*„<*-i>(x) > 0 for s ^ x ^ b. 

By this same argument and finite mathematical induction we get that 

( -1)»-*Ü<*>(X)>0 

for s ^ x ^ b and i = 0, • • -, fc — 1. 
We then get the following corollary. 
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COROLLARY 5. If the strictly positive assumption on p(x) in Theorem 4 
is replaced by p(x) = 0 on [a, b], then the conclusion becomes 

(-l)n-kGkM(x, s)>0 iora<x^s<b 

(_ l)»-*Gfc
(i>(*, s) ^ 0 for s < x < b. 

PROOF. The proof of the first inequality in this corollary is the same 
as in Theorem 4. To prove the second inequality, consider the differen­
tial equation 

(9) t/*> = Xp€(x)y 

where p€(x) = p(x) + € where € > 0. It is easy to argue that for € > 0, 
sufficiently small, equation (9) satisfies the hypothesis of Theorem 4. Us­
ing this and a limiting argument we get the desired result. 

The differential equation t/(n) = 0 shows that we cannot get the con­
clusion in Theorem 4 with the assumptions of Corollary 5. 

In [4], Nehari gives a concise formula for Gk(x, s) when p(x) = 0 
(note that Nehari uses different notation and considers the operator 
\-\)n-kdn/dxn instead of the operator dn/dxn. 

Theorem 4 can be generalized to the differential equation 

A. 
dx rnV "' dx dx 

(io) PB +I(*) -jz P»(*) -ji • • • -JZ Pi(x)y = Mx)y 

where X — ± 1 and p, p{, 1 ^ i ^ n + 1, are positive continuous func­
tions on [a, b\. Define quasi derivatives Dp 0 = i = n by 

D0y = Pi(*)y 
Diî/ = Pi+i(x)(Di-iyY> * = 1> • • '> n-

We say a solution y(x) of (10) has a zero of order k at a point x0 pro­
vided Djt/^o) = 0, i = 0, • -, Jc - 1. We say (10) is disfocal (see [3]) on 
[a, b] provided there is not nontrivial solution y(x) of (10) such that 
there are points xi9 0 ^ i ^ n — 1, in [a, fo] with D%y{x^ = 0, f = 0, 

• , n - 1. 
Assume (10) is disfocal on [a, b] and let gk(x, s), 1 ^ k ^ n — 1, be 

the Green's function for the fc-focal point problem 

Pn+lft 
d . v d 

Di!/(«) = 0 

D,.</(fo) = 0 

• • ^ Pi(*)y - M*)y = 

i = 0, •••, fc - 1 

; = fc, • • -, n — 1. 

= h(x) 
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In the following theorem we will use the following notation 

Do&(*> s) = Pi(x)ëk(x> s) 

Digk(x> s) = Pi+i(x) ^ Di-igk(
x> »)• 

THEOREM 6. If (10) is disfocal on [a, b], then 

( - r f c D & (M)>o 
on (a, b) X (a, b) for i = 0, • • -, k — 1. 

The proof of Theorem 6 is similar to the development and proof of 

Theorem 4 in this paper. In most places it is a matter of replacing de­

rivatives by the corresponding quasi derivatives and making sure the re­

sults still go through with this change. 
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