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ALMOST QUASI-PURE INJECTIVE ABELIAN GROUPS 

C. VINSONHALER 

1. Introduction and preliminaries. The quasi-pure projective, quasi­
pure injective and strongly homogeneous torsion free abelian groups of 
finite rank have been classified in [1], [2] and [3]. This note investigates 
the torsion free abelian groups quasi-isomorphic to groups in each of 
the above three classes, and some generalizations. 

In what follows, all groups will be torsion free abelian of finite rank. 
A group G is called almost quasi-pure projective (aqpp) if there is non­
zero integer n such that the index of the image of Hom(G, G) in 
Hom(G, G/A) is bounded by n for every pure subgroup, A, of G. If n 
can be taken to be 1, G is called quasi-pure projective (qpp). In [9] it is 
shown that the class of aqpp groups is closed under quasi-isomorphism 
and that a group G is aqpp if and only f it is qpp. Hence, the class of 
qpp groups is closed under quasi-isomorphism. This result can be ob­
tained by dualizing some results of § 3 and § 4. 

The situation is more complicated in the quasi-pure injective case. A 
group G is called almost quasi-pure injective (aqpi) if there is a non­
zero integer n such that the index of the image of Hom(G, G) in 
Hom(A, G) is bounded by n for every pure subgroup, A, of G. If n can 
be taken to be 1, G is called quasi-pure injective (qpi). Three classes of 
groups arise naturally: Cv the class of qpi groups; C2, the class of 
groups quasi-isomorphic to groups in Ct; C3, the class of aqpi groups. 
W e show that Ct^ C2^ C3 (Example 2 and the remarks following it), 
and characterize the groups in C3. 

Finally, G is called almost strongly homogeneous (ash) if there is a 
non-zero integer n such that given any two pure rank one subgroups A 
and B of G, there is a monomorphism f:G^> G with nB C f(A) Q B. 
If / can be taken to be an automorphism (and hence n — 1), G is called 
strongjiy homogeneous (sh). The ash groups are classified in Theorem 
2.2, and an example is given of an ash group which is not quasi-isomor­
phic to any sh group. 

The standard notions of height (h(x)) and type (r(x)) of an element x 
in a group G will be used. At times £>\G) will be used to denote 
Homz(G, G). Tensor products are all taken over the integers. Finally, G 
quasi-isomorphic to H will be written G ~ H, and if S is any subset of 
a group G, (S)* will denote the pure subgroup generated by S. 

The proofs of some of the theorems, which closely parallel earlier ar-
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guments, will be omitted. 

2. Ash groups. We begin with a lemma which helps justify the "al­
most" definitions. 

LEMMA 2.1. Let G and H be groups with G ~ H. 
(a) / / G is aqpi then H is aqpi. 
(b) If G is ash then H is ash. 

PROOF. We may assume mH Ç G Ç H for some positive integer m. 
Thus if A is a pure subgroup of H and / G Hom(A, H), then A H G is 
pure in G and mf G Hom(A D G, G). 

(a) Let A be pure in H and / : A —• tf. Since G is aqpi, there is a 
non-zero integer n and g : G —• G such that (g — nmf)(A n G) = 0. 
But mg : H—+ H and (mg — nm2f)A = 0. Thus / / is aqpi with associated 
integer nm2. 

(b) Let A and B be pure rank one subgroups of H. Since G is ash 
there is a non-zero integer n and monomorphism g : G —* G with 
n(ß f l G ) Ç g(A H G) Ç £ PI G. Then mg : H —• H is a monomorphism 
and nm2£ Ç nm(£ H G) Ç mg(A H G) C mg(A) Ç g(A H G) C B. That 
is, nm2ß Ç wg(A) Ç B and H is asfo. 

The first theorem characterizes certain subrings of algebraic number 
fields which appear in subsequent results. Some well-known facts are 
used repeatedly: If it is a subring containing 1 of an algebraic number 
field K, and / is the ring of algebraic integers in K, then the integral 
closure of R is JR = R which is quasi-isomorphic to R. Furthermore R 
is a Dedekind domain, so that any ideal may be uniquely expressed as a 
product of prime ideals. Finally, the symbol Rp is used to denote the 
usual localization of the ring R at the prime ideal P. 

THEOREM 2.2. Let R be an integrally closed integral domain such that 
the quotient field, K, of R is an algebraic number field, and let J be the 
ring of algebraic integers in K. Then the following are equivalent: 

(a) There exists O ^ n E Z such that every 0 ¥= r G R can be written 
r = ks, where k G Z, s G R and nR C sR. 

(b) If p is a rational prime then pR = P P for some maximal ideal P 
of R and 0 = ep G Z, such that ep ^ 1 for all but a finite number of p. 

(c) R — r[p(ESJp where S is a collection of maximal ideals of J such 
that if p is a rational prime with pi — P1

ei • • • Pk
e* a product of powers 

of distinct maximal ideals of /, then at most one Pi is in S and for all 
but a finite number of p, the corresponding e{ — 1. 

PROOF. (a)=> (b). Let p be a prime such that (p, n) = 1. If pR # R, 
choose r G R\pR and write r = ks with k G Z, nR C sR C R. Since 
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r ^ pR, then (p, k) = 1. Hence R D pR + Rr = pR + Rks D 
pR + fcnß = R. Therefore, pß is maximal in R. 

Now suppose n = p*^ with f ^ l , (p, n1) = 1. Let pR = P1 i
e- • • 

Pfc
e* be the product of powers of distinct maximal ideals in R and sup­

pose k ^ 2. Then p'R = P ^ i • • • Pk
te*. Since P1*

ei+1 c pR would imply 
Pj Ç P2, we can choose r G P 1

t e i + 1 \ pß . Write r = is with i G Z , 
nR Ç sR C R. Since r $ pK, (p, /) = 1. But MR Ç hR = rR C P/ e i+ 1 , 
and InR = p%m = (/n1R)(P1

tei • • • Pk
te*). Therefore lnx G Pv and R 

= /rijß + pR Ç P1 a contradiction. Thus pR = P / L 
(b) => (c). Let S be the set of all prime ideals P of J such that 

P = / H M for M a maximal ideal in R. Then 

RQ n jpQ n «*, = *• 
P e S M maximal in R 

Furthermore, for all rational primes p such that R ^ pR is maximal, 
pR H / = P, for some P G S. If P = / fi pR, then RpÄ = Jp, PJP = p / p 

and R/pH s V p / P is a field. Hence, if p / = P / i • • • Pk
ek, then P = Pi 

for exactly one i, and ei — 1. 
(c) => (a). Let O ^ r G / 1 and write r = ks where fc G Z, and 5 has 

minimal (idempotent) height in R. This is possible since any element in 
R has the same type as 1. Then s ^pR if p is a rational prime and 
pR ¥* R. Write sR = Q/i • • • Qm

fm as a product of maximal ideals. 
Now observe that if M ^ S is a maximal ideal of /, then MR = R since 
MJP — Jp for all PES. Hence if {p,}j=1 are the rational primes not 
maximal in R, then for each /, either pfî = R or p5R = P̂ <R for some 
P- G S, ;̂ > 1. Furthermore, each P̂ R is maximal in R and the set of 
Q/s is a subset of the set of P-R's. Thus if n = pxp2 ' ' ' P/> then 
nR Q sR since the multiplicity of Pfi in the factorization of sR must 
be less than e. (otherwise p divides s). 

Any integrally closed ring satisfying one, hence all of the conditions 
of Theorem 2.2 will be said to satisfy condition (f). Such rings appear 
immediately in the following characterization of ash groups, the proof 
of which parallels that of Theorem 1 in [2]. 

THEOREM 2.3. A group G is almost strongly homogeneous if and only 
if G ~ R ®ZH, where H = ®2finiteA for some rank one group and R 
is a subring of an algebraic number field satisfying (f ). 

PROOF. (<=). First, R, + is ash. For let X, Y be pure rank one sub­
groups of R. Choose x Œ X, y G Y of minimal (idempotent) height. 
Then nR C yR and n = yy' for some y' G R. Therefore left multi­
plication by xy' is a monic endomorphism of R such that 
nX C xy'Y Q X. 
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Second, R ®z A is ash. Choose O ^ A G A and define i:R—*R®A 
by i(r) = r ® a. Now let X' and Y' be pure rank one subgroups of 
R ® A. Let X and Y be the pure subgroups of R such that 
f(X) = X' H i(R), t(Y) = Y' n t(Ä). Following the first paragraph, 
nX Ç xyT Ç X. It is then easy to show nX' Ç xy'Y' Ç X'. 

Finally, G = R ® H is ash. Let X be a pure rank one subgroup of G, 
and let B = (ÄX)*. Then 2? is an K-pure submodule of G, for using 
property (a) of Theorem 2.2, rg e B implies mg E B for some 
0 ^ m E Z, and hence g E B. Following the methods in Fuchs ([5], p. 
115, Lemma 86.8) we will show that B is a quasi-summand of G. 

Choose O ^ x G X and since G = © 2f=1 ß © Ai? Ai = A, write 
x = 2f=1 if ® ^ where, for all i, a4 E Ai satisfies hp

A(a^j = hp
G(x) for 

all p such that hp
G(x) < oo. Using (f), write ^ = fc^ with nR Q sfi 

such that each si has idempotent height in R. Without loss of generality 
the set {fcj} may be taken to be relatively prime. Hence, as in Fuchs, 
there is a basis x, b2, • • -, bk for the group G' = © 2f_1 (^ ® a j * . 
Furthermore, by the second paragraph above, for each i there is a 
M i G f i such that n<l ® A4>* Ç "*<«* ® A J * Ç <1 ® AJ*. This im­
plies nG Ç (Rx)* ® 2j:_2(Kfoi)* Ç G, the sum being direct since 
each summand is K-pure, and dimFF®RG = k> where F = quotient 
field of R. 

Now let Y be another pure rank one subgroup of G. By the same ar­
gument nG Ç <#Y>* © G' Ç G for some G' = © 2<Hfc/>*. Further­
more, G is homogeneous so that X ~ Y, and this implies RX ~ RY. 
Now n<KX>* C M C <KX>*, for suppose y E <KX>*. Then ty = rx 
with 0 ^ f E Z, r E K, x E X. Using (f ), r = ks with nR Ç sfl. Write 
n = ss'. Then te't/ = knx, implying s'y E X and hence ny = ss't/ E RX. 
The composition of homomorphisms 

2 * 

G - ^ n2G Ç n(RY)* © 2 n<Äfe/>* 

i=2 

k k 

CRY® 2 #<&/>* ̂ flx© 2 W * Ç G , 
i=2 i -2 

is a monic endomorphism / of G such that n2X Ç /(Y) Ç X. 
(=>). First G is irreducible (has no proper pure fully invariant sub­

groups) since any pure rank one subgroup can be mapped to any other 
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pure rank one subgroup. Hence by Reid [8], G ~ © 2^_x G0 where G0 

is strongly indecomposable and irreducible and Q 0 ^(G0) is a division 
algebra with Q-dimension equal to the rank of G0. It is immediate that 
G0 is also ash. 

Let R — #(G0) and A be a pure rank one subgroup of G0. Then the 
map / : R 0 A —* G0 given by f(r 0 a) = ra is a quasi-isomorphism 
since G0 is ash and rank R = rank G0. 

Now let R be the integral closure of R. Then R ~ R so that 
GO = R 0 Ä G O ~ G O . Thus G0 is ash by Lemma 2.1. Furthermore 
R C End(G0) in a natural way, and since R ~ End(G0), there is an in­
teger t > 0 such that tEnd(G0) Ç R Ç End(G0). We will show R satis­
fies (f). Let O ^ r G f i , X a pure rank one subgroup of G0, and 
Y = (rX)*. Since G is ash, let n > 0 be the associated integer, and pick 
s G R such that fri Y Ç sX Q Y. Since r, s E: Hom(X, Y) which has rank 
one, there are relatively prime integers a, b such that ar = bs. Write 
ia + mfo = 1. Then s = /a« + mfrs = a(/s H- mr) = as', where 
s' — h + mr satisfies fnY Q s'X Q Y and r = bs'. Now choose u G R 
such that mX Ç_wY Ç X. Then {tnfX Ç fnuY Ç us'X Q uY Q X. It 
follows that (tn)2R C us'R : consider (trìfx for some 0 ^ x G X. By the 
above, (trifx — us' c/d x for some relatively prime integers c and d such 
that c/d x G X. It is sufficient to consider the case where none of the 
primes dividing d are units in R. Choose xx G X such that 
p\d=> hp(x^) — 0. Then (tnfx1 = us' Cj/dj xx where (c1? dx) = 1 and 
c1/d1 xt G X. Clearly (dv d) = 1. But since Ç) 0 R is a division ring> 
(tri)2 — us' c1/d1 — us' c/d. It follows that d1 = d = 1 and c± — c. Thus 
(tn)2R. We now have r = bs' with (tn)2R Q s'R Therefore R satisfies 

(t). 
As in Arnold [2], the fact R = Hom(G0, G0), R 0 A - G0 and Ç ® R 

a division algebra imply R ~ Homz(R, R). By a result of Reid [8] this 
implies R, hence R is a full subring of an algebraic number field. 

EXAMPLE 1. Let £ be a primitive root of xpr — 1 = 0, for some prime 
p and r ^ 1. Let / be the ring of integers in Ç)(£). Then in /, (p) = P0^r> 
where <j> is the Euler ^-function ([6], p. 74). Thus in the localization, Jp, 
of / at P, all primes except p are units, and pjp = (PJp)^^, so Jp satis­
fies the condition (b) of Theorem 2.2. Furthermore, Jp is not quasi-iso-
morphic to any ring in which (p) is maximal and the other primes are 
units, hence by Theorem 2.3 and Proposition 5 of [2], is an example of 
a group which is ash, but not quasi-isomorphic to a strongly homo­
geneous group. 
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3. Strongly indecomposable aqpi groups. 

THEOREM 3.1. The following are equivalent for a group G: 
(a) G is strongly indecomposable, homogeneous, and aqpi; 
(b) G is ash and every pure subgroup is strongly indecomposable; 
(c) G ~ R ®ZA where 

(i) R is a subring of an algebraic number field and satisfies (f ), 
(ii) A is a rank one group with type (< (̂A)) = type (R), 

(iii) For all 0 ^ r E R there is a rational prime p, with pR ¥= R, and 
a E R fi Q such that r — a E pR. 

PROOF, (a) => (b). As in [1], Theorem B. 

(b) => (c). Since G is strongly indecomposable, by Theorem 2.3 and its 
proof, we need only show R satisfies (iii). Let r ŒR\R fi Q. Then by 
(b), B = ( r ) * © R H Q is not pure in R. Thus there is a prime p with 
pR ¥= R and x E ß \ ß such that px E B. That is px = c/d r + a for 
some relatively prime integers c and J, and a E ß D Q. Since x ^ £, it 
follows that (p, c) = 1 and r E # D Ç + p ß . 

(c)=> (a). As in [1] it can be shown that for any pure subgroup H of 
R, + and / : H —» R, then n / is just left multiplication by an element of 
R. Therefore R, hence R ® A, hence G, is strongly indecomposable, 
homogeneous and aqpi. 

The final result of this section covers the non-homogeneous case. 

THEOREM 3.2. group G is strongly indecomposable and aqpi if and 
only if G is a torsion free R module such that 

(i) R is quasi-isomorphic to a ring with (f ), and satisfies (iii) of The­
orem 3.1 above, 

(ii) HomÄ(X, Y) = 0 for every pair X, Y of distinct Z-pure R sub-
modules of G of R-rank one, 

(iii) For all pure rank one subgroups A of G, type £*(A) = type R. 

PROOF. AS in [1], Theorem D. 

EXAMPLE 2. If R is the ring Jp of Example 1 and G = (R, + ) then by 
the above theorem G is aqpi and by Theorem B of [1] G is not quasi-
isomorphic to any qpi group. We remark that by Theorem A of [1] it 
follows that there are groups quasi-isomorphic to qpi groups which are 
not qpi. 

4. Decompositions. In this section we complete the study of aqpi 
groups by characterizing the decomposable ones. The first result deals 
with those homogeneous, strongly indecomposable aqpi groups H such 
that © 2 H is aqpi. These are characterized by 
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CONDITION DOP. If x and y are independent elements of a group H 
then (x, y)*/(y)* — Q. 

REMARK. It can be shown that if H is ash then H satisfies DOP if and 
only if E(H)/E(H) D Q is divisible. The latter condition on the endo-
morphism ring, rather than the DOP condition of the group is used in 

THEOREM 4.1. Let H be strongly indecomposable, homogeneous and 
aqpi and G ~ © 2 ^ H, m S 2. Then G is aqpi if and only if H has 
DOP. 

PROOF. Suppose H does not satisfy DOP. It suffices to show H © H 
is not aqpi. Assume the converse and let n be the aqpi integer. Then 
choose a prime p, positive integer k, and independent elements 
x, y G H such that pk \ n, height x = height y, p — height x = 0, and 
\/p x + ay $ H for any a G Q. This implies A = ((x, pkx))* © ((y, 0))* 
is pure in H © H. But fix, pkx) = (0, x), fiy, 0) = (0, 0) defines a map 
f:A-^H®H such that nf cannot be lifted. 

The proof in the converse direction goes through as in [1], Theorem 
C. 

We are now ready to give the main decomposition theorem. 

THEOREM 4.2. Let G be a reduced group of finite rank. Then G is 
aqpi if and only if 

(*) G - Hx © H2 © • • • © Hn © Xx © • • • © Km 

where: (1) each Hi is homogeneous, (2) H% = © ^n)-x^ij w i t n Ay aqpi, 
strongly indecomposable and mutually quasi-isomorphic for fixed i, and 
with n i > 1 only if AXj satisfies DOP, (3) each Kj is aqpi, non-homo­
geneous and strongly indecomposable and (4) if X and Y are pure rank 
one subgroups of distinct summands of (*), then T(X) U T(Y) = T(Q). 

PROOF. Assume G is aqpi. Since G is of finite rank, 
G ~ Gt® G2® • • • © G/ where each G{ is strongly indecomposable. 
By grouping together the quasi-isomorphic summands and applying 
Theorem 4.1 and adapting Lemma 1.1 and Theorem A of [1], the result 
follows. 

Conversely, assume G = Hx ® • • • © Hn ® Kx ® • • • © Km with 
H^s and K;'s satisfying the conditions of the theorem and let 
IIj : G —> H{, II ; : G —> Kj be the natural projections. Then given a pure 
subgroup A of G and / G Hom(A, G), it suffices to construct 
hi Ghom«n iA>*, H,), ft G Hom«n iA>*, Kf) such that hjlfa) = 
IiJ(a), gjUj(a) = Hjf(a) for all a G A, as these maps can be quasi-lifted 
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to the corresponding summands and the sum will provide a quasi-lifting 
of / . The h{ and ĝ  are constructed in a straightforward manner, exactly 
as in the proof of Theorem A of [1]. 

REMARKS. It is shown in [9] that for groups of finite rank, aqpp is 
equivalent to qpp. This result can be obtained by applying the Warfield 
duality of [10] to the above results on aqpi. At the suggestion of the 
referee, details are omitted. 

The author would like to thank Dave Arnold for many useful sugges­
tions and ideas concerning this paper. 
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