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MULTI-PARAMETER SPECTRAL MEASURES, GENERALIZED 
RESOLVENTS, AND FUNCTIONS OF POSITIVE TYPE 

R. SHONKWILER 

1. Introduction. 
1.1. In this paper we extend the development of spectral triples as 

introduced in McKelvey [ 12] to the case of several parameters. Our 
central theme is the study of the interplay of certain classes of func­
tions {E(t)y Q(k), V(s)} whose values are bounded operators on a com­
plex Hilbert space. In the proto-type for the general situation these 
functions arise from a sequence, AJ, j = 1, • • -, m + n, of m + n 
selfadjoint operators in the space H the last n of which are, in addi­
tion, positive. Corresponding to each operator Aj there is defined 
its resolution of the identity E ĵ? — oo < tj < °°, 

A ' = \*dEjj, 

its resolvent function QJ>J? 

Q^ = X>(7 - X>A->) - K Im kj ^ 0 unless kj = 0, 

and the unitary group IJij, 

UJ
sj — e~isi^, — oo < & < oo . 

In case AJ is positive we prefer to work with the semi-group VJJ:, 

Furthermore in this case the resolution of the identity vanishes on the 
half-axis # â 0 and the resolvent is defined on the negative half-axis 
ÏÎ < 0. 

We assume that the operators A7 commute pairwise, that is the 
resolutions of the identity E7 commute pairwise. Then all the oper­
ator families Qi, Uj and Vj commute pairwise and we may define 
the multiparameter operator functions E(t), Q(A), and V(s) accord­
ing to the equations 

m+n 

i = l 
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Q ( x i ( . . % x m + „ ) = j ]Q. i , (xGn; 

and 
i = i 

v( Ä i , . . .,^+n) = n ipaJ n \̂ , (s G r+), 
j= l j=m+l 

where r + = ( ~ o o ? oo)™x[0, oo )» and fl = [(C - R) U {0}]m 

X [ C - (0,oo)]». 
These functions E(f), Q(X) and V(s) are called, respectively, an 

(m, n) — parameter resolution of the identity, resolvent and con­
tinuous semi-group. We denote the class of all such functions by 
£0

(m 'n) (H), So (m,n) (H), and OVm,n) (H), respectively. When under­
stood from the context, we omit the H and the (m, n). Collectively 
these three classes are called the total spectral triples, while indi­
vidually such an operator family is referred to as a total triple function. 
Finally a triple E, Q, V from these classes each corresponding to 
the same sequence of self-adjoint operators Aj is called a total matched 
triple. 

1.2. Now a relation among functions {E(t), Q(X), V(s)} persists, 
and is of significance, for broader classes than those described above, 
at several levels of generality. This is true of compressions (cf. Halmos 
[10] ) or projections (cf. Sz. Nagy [20] ) of total triple functions which 
we now describe. Let the Hilbert space H be a subspace of the Hil­
bert space H and let P be the orthogonal projection of H onto H. 
In general, if T is an operator acting in H, then the operator T defined 
on dorn T fi H by 

r = P T | H = prT 

is called the projection of T onto H and is denoted by the third mem­
ber of this equation. Alternatively we say that T is a dilation of T to 
H which is called a dilation space of H. In either case it is a simple 
consequence of this definition that 

(1) (Tx,y)=(Tx,y),(x,yGH). 

In particular, we call the operator family E(t), Q(k), or V(s) an 
(m, n) — parameter spectral function, a generalized (m, n) — parameter 
resolvent, or an (m, n) — parameter Bochner function, respectively, if it 
is the projection of some (m, n) — parameter resolution of the identity, 
resolvent, or continuous semi-group respectively. We denote the class 
of all such functions by £(m>n) (H),Qim>n) (H), and q/^^ (H) respective­
ly. Collectively these three classes are called the generalized spectral 
triples, while individually such an operator family is referred to as a 
generalized triple function. 
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In § 4 we give intrinsic characterizations of the various triple func­
tions and thereby allow each to be studied in its own right. 

It is easy to see that these projected operator families are in fact 
generalizations of the total triple functions, that is £0 (H) C £(H), 
fio(H) C <2(H), and 0/0(H) C Q/(H). For if H = H, then each gen­
eralized triple function is equal to its corresponding total triple func­
tion. 

1.3. An autonomous relation among the generalized triples stems 
from the multi-parameter functional calculus based upon an (m, n)-
parameter spectral function E(t). This calculus is defined in the weak 
operator topology and enjoys all of the usual properties except multi-
plicativity. However multiplicativity is restored under certain condi­
tions, for example in the event that E G £0-

This functional calculus yields the following representations. 

r m+n \j 

(2) <?w= L n7-^—7^)'^°) 
J l+ j = i 1 — ArtJ 

(3) V(s)= f e-^'dE(t),(sEr+) 
J r+ 

where [i] s = (is1, • • -, ism, sm + \ • • -, sm+n), and 

<4> ? ( x ) = J 0 •••Jo [ n ± i e ± i m ] • 

V(+ s\ • • -, + sm, + ism + \ • • -, + fem+n) ds 

for =F Im X> > 0. 
Moreover these three equations may be inverted to obtain E(t) in 

terms of Q(k) or V(s) and V(s) in terms of Q(k) respectively. This is 
achieved for formulas (2) and (3) by repeated application of the in­
version of Stieltjes and Laplace transforms respectively. We carry out 
this process in § 3. Naturally, formula (3) combined with the inversion 
of (2) furnishes V(s) in terms of Q(k). Thus these equations establish a 
one-to-one-to-one correspondence among the spectral triples and are 
referred to as the matching formulas. 

These considerations lead to our first fundamental proposition which 
we prove in § 3. 

THEOREM 1. Each function E(t) G £ (mn)(H), Q(k) £ö ( m ' n ) (H) , or 
V(s) G <V(m'n)(H) belongs to a unique triple of functions from these 
classes, such that the members of the triple are interrelated by the 
matching formulas. 
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A triple of functions, {E(t), Q(k), V(s)} G £, Q, <V, whose members 
are related as in Theorem 1, will be called a matched triple. Similarly 
a triples of classes {£',Q',<!/'} will be called matched if 

(i) £ ' C £9Q' C f i , q / ' C Q / a n d 
(ii) when {E(t), Q(k), V(s)} is a matched triple, then any one of the 

relations E(t) G £ ' , Q(k) G <2 ', V(S) G 0/ ' implies all three. 

In this terminology we have the following. 

THEOREM 2. The triple of classes {£0, Q0, Q/^is matched. 

Not only are the generalized spectral triples matched, but also a 
matched triple possesses a matched dilation. 

THEOREM 3. Let E, Q, V be a matched triple of functions belonging 
to the classes £{m>n)(H), Q<m*\H), and <V(m»\H) respectively. There 
exists a Hilbert space HZ) H and a matched triple E, Q, V belong-
int to the classes £0

(m 'n)(H), £0
(m,n)(H)> ^o (m 'n)(H) respectively 

such that 

E(t) = pr E(0, Ç(X) = pr Q(\), V(s) = pr V(*). 

Moreover H may be chosen to be minimal in the sense that, up tc 
isomorphism, 

H = span {E(t)x :xGH,tGT+} 

= span {Q(k)x : x G H, k G lì} 

= span {V(s)x : x G H, S G T+}. 

1.4. It is possible to define m + n one-parameter triple function! 
given a single multi-parameter function. If E G £<m'n>, Ç G Ç)(m>n>, anc 
V G <7-/(m'n), then the one-parameter operator families 

( 5 ) &tj= £ ( 0 0 , - - ' , 0 0 , ^ , 0 0 , . . . , 0 0 ) , 

m et- ^ ^ . 
and 

(7) V^ = V(0, ». - , 0 ,* ,0 , • • - ,0) 

are their various marginals. The notation ITA. means X1^2 • • • km+i 

while limx/M-_o denotes the strong limit as all the parameters A1, • • • 
km +n tend to zero except kj which remains fixed. 

It is immediate that a total triple function is decomposed into th< 
product of its marginals. However this is not always the case for i 
generalized triple function. Nevertheless, a certain marginal matching 
does hold. 
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THEOREM 4. Let E, Q, V be a generalized matched triple of (m, n)-
parameter functions on H. Then the jth triple of marginals Ej, Qj, 
Vj is a generalized matched triple of one-parameter functions on H. 
Moreover, there exists a common dilation space for all the marginals, 
namely the minimal dilation space of the matched triple given in 
Theorem 3. 

1.5. One situation in which the generalized spectral triples do de­
compose into the product of marginals occurs when the Bochner func­
tion is, in fact, a semi-group. More precisely, by the quadrant, ©, of 
Rm containing t, P ̂  0,j = 1, 2, • • -, m, we mean the set 

© = { s G R m : sign(^) = sign(#) or s> = 0, j = 1, • • -, m}. 

Then an operator-valued function V(s) defined on some quadrant © 
is a continuous semi-group of contractions if 

(i) l|V(*)|| S 1, 
(ii) V(s) is continuous as a function of s and V(0) = I, 

(iii) V(», + s2) = V(Sl)V(s2). 

Such a function V(s) can be extended in a natural way to the opposing 
quadrant of Rm by setting 

(iv) V ( - s ) = V*(s). 

In this case property (iii) holds whenever sx and s2 belong to the same 
quadrant. By an extended continuous semi-group of contractions we 
mean an operator-valued function V(s)9 s G Rm, defined on all of Rm 

which satisfies (i), (ii) and (iv), and (iii) whenever sx and s2 belong to 
the same quadrant. The class of all extended continuous semi-groups 
of contractions will be denoted by Q^ß

m. 

THEOREM 5. Every extended continuous semi-group of contractions 
is also an (m, ^-parameter Bochner function. 

In view of this fact, each function V G <V ™ is part of a matched 
triple E, Q, V of functions interrelated by the matching formulas. Of 
course spectral functions and generalized resolvents corresponding to 
an extended continuous semi-group of contractions have certain special 
properties. Put ft' = ((C — R) U {0}). By the halfplane 4> contain­
ing ix G ft', fijj£ o, all j , we mean the set 

<ï> = {k G ft' : sign(Im X) = sign(Im i*j),j = 1, • • -, m) 

Let a halfplane 4> and a spectral function E G £(m>()> be given. We 
define the class B^(dE) to be all those functions / : Rm -* C such 
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that / can be decomposed 
m 

/(*) = n m 
into the product of m functions fj each of which belongs to McKel-
vey's class B±(dEj) where Ej is the jth marginal of E. The choice 
of + or — depends on whether the imaginary part of the jth coordi­
nate of points in 4> are greater than or less than zero respectively. (A 
complex-valued function f°(t°) of the real variable t° belongs to 
the class B±(dEj) if it is Borei measurable and bounded on the sup­
port of the operator measure dEj and if there exists a function f°(z°) 
of the complex-variable z°, which is bounded and holomorphic on the 
halfplane ± Im z° < 0 and is such that 

lim/()(*° ± i8) = /°(*°), (dEt)). 
810 

Now a function E (E £(m>°) is semi-multiplicative if the equation 

j R m /1W/2M dE(t) = JRm Mt) dE(t) JRm f2(t) dE(t) 

holds in the weak operator topology whenever fx and f2 belong to the 
class B (dE) for the same halfplane. We denote the class of all semi-
multiplicative spectral functions by £M

m. 
On the other hand, the operator-valued function Q(k), \ G f l ' , is 

said to be a fx-resolvent if its restriction S(w) = Q(iu), u G Rm, satisfies 
conditions (i) and (ii) below and also (iii) when uY and u2 belong to the 
same quadrant. 

(i) S(ti*) = S*(u). 
(ii) for each subset {ku • • -, kp} C {1, • • •, m}, the joint limit 

(8) k lim ^ — 

exists in the srong operator topology and 

i- s ( » ) j 
lim —— = I. 

(9) (m) n(w2 - w1)s(%)S(w1) = imnw2nw! A ^ S. 
Here we have used the notation 

where the summation extends over all fcl5 • • -, km+n = 1 or 2. The class 
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of all /z-resolvents will be denoted by QJ71. 

THEOREM 6. There is a one-to-one-to-one correspondence between 
the classes £™, Q™, Q/^™ given by the matching formulas. Given a 
matched triple E, Q, V from these classes, there exists a decomposition 
of each triple function into the product of its marginals. 

E = lift, Q = n<?>, v = n v 
where the triple Ej, Qj, Vj is a one-parameter matched triple of 
functions with Ej G £ß

l, QjGQß
l, and VjGQ/fJL

l. Finally, the 
various marginals commute pairwise. 

1.6. Let us summarize our notational conventions. The topological 
Cartesian products T+ and fi have been given in section 1.1. Put 

r+ = (-0 0 , °°)m x (-oo^o]". 
An m + n-tuple (u1, • • -, um+n) will be denoted by u. The sum u + v 
and the dot product u • v are defined in the usual way. By Ilu we mean 
the product ul * • • um+n and by u* we mean ( — M1, • • -, — um, um + l, 
• • -, um+n). The symbol [i]j will stand for V—1 if 1 = j = m and for 
1 if m H- 1 S= j' = m -h n, while [i]u is to signify (iul, • • *, ium, um + l, 
• • -, um+n). We denote by limu/MJ/_,o, the joint limit as all the variables 
ul, • • -,wm+n tend to zero (in their respective spaces) except uj 

which remains fixed. Finally, the various partial derivatives of an 
operator-valued function S(u) will be denoted by subscripts in the 
usual way, e.g., d2Sldujduk = Skj(u). 

ACKNOWLEDGMENT. The author wishes to express his sincere grati­
tude to Professor Robert McKelvey for his kind interest in this work 
and his valuable suggestions. 

2. Functional Calculus and Matching Formulas. 

2.1. A resolution of the identity E(t) = TlEj
tjG £0

im+n) defines 
an operator measure dE(B) on the Borei subsets B of I \ (cf. § 4.1 
and Billingsley [4], p. 226). This can be achieved by extending the 
projection-valued function dE( • ) defined on m -h n rectangles 
[h> h) - [tu h1) X ' * ' X [tim+n> km+n) according to the equation 

dE([ti,h))= n ^ - H f y ) 

(10) =S(-1)^E(^, •••,*?.£ ) 
where the summation extends over all choices kh • • *,fcm+n = 1,2. The 
resulting extension satisfies the conditions: 
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0 = dE(4>) ^ dE(B) ^ dE(r+) = I, ( B C T + ) , 

dE(Bi U B2) = dE(Bx) + dE(B2), for disjoint B1? B2), 

dE(B! PI B2) = dE(Bi) dE(B2), (for arbitrary Bx, B2). 

In fact this measure is precisely the product measure 

dE = J] dE' 
of the marginal measures. In view of equation (1) for projections, each 
spectral function E G £(m>n) likewise induces a weak operator measure 
(dE(B)x, y), (x, y G H). Let B(dE) denote the class of all scalar-valued 
functions f(t), t G T+, which are measurable, finite, and defined 
almost everywhere with respect to all the measures (dE( • )x, x), (x G 
H). Then, by a theorem due to Riesz, the integral 

determines an operator F in H with domain consisting of all x for 
which 

J \f(t)\*(dE(t)x,x)< ». 

This functional correspondence, which we indicate by writing F ~ 
f(t), enjoys most of the properties of the usual operator calculus fol­
lowing exactly as in that case. In general though, it is not multiplica­
tive. However multiplicativity is restored whenever £ £ £0 is a reso­
lution of the identity. 

THEOREM. With notation as above, let F ~ f G ~ g, F n ~ / n , and 
Gn ~ gn. Then the functional correspondence: 

(i) is linear: cxF + c2G~ C]f+ c2g, (cl9 c2 scalars), 
(ii) preserves conjugates: F * ~ - / , 

(iii) is positive: f(t) = 0 on supp dE implies F = 0, 
(iv) is norm decreasing: || F || â ess sup|/(£)| on supp(dE) if the 

latter exists, 
(v) preserves limits: when fn(t)—>f(t) boundedly a.e. (dE), then 

Fn^> F strongly, 
and satisfies 

(vi) \\Fx\\^Sr+\f(t)\HdE(t)x,x) 
(vii) when fn(t)—>f(t), as n—><*>, uniformly on supp d£, £nen 

\\Fn-F\\-+0, 
(viii) Z ~ 1. 

If in addition E G £0, A^n £n# correspondence is multiplicative, 
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FG ~ fg, and the inequality in (vi) may be replaced by equality. 

2.2. One important consequence of this theorem in the total setting 
is the simple relationship between a scalar function f(t) G B(dE) 
and its corresponding operator F. If f(t) is a multi-variate poly­
nomial in the variables t1, • • *,£m+n, then it follows from linearity 
and multiplicativity that F is the multi-variate operator obtained from 
f(t) by replacing each occurrence of P by the self-adjoint operator 
A7'. Moreover, in view of the limit properties of the operational cal­
culus, the same can be said for arbitrary f(t) G B(dÉ). Hence we 
may regard the operator F ~ f(t) as the multi-variate function f(A) 
of the "operator" A = (A1, • • -, Am+n). 

THEOREM. For each function f(t) G B(dE) the operator /(A1 , 
. . .? A

m+n) can be represented according to the integral 

f(A)= \r+f(t)dE(t), 

convergent in the strong operator topology. 

As a corollary to this theorem we obtain the matching formulas 
(2)-(4) interrelating a matched triple. 

PROOF OF THE MATCHING FORMULAS. Equations (2) and (3) are im­

mediate from the functional calculus. Equation (4) is a consequence 
of the one-parameter scalar equation, 

- = ±i I" e±islKe±ist ds, (± Im A > 0). 
1 - kt Jo v ; 

Of course the domain of V(s) must be extended to the imaginary axis 
in its last n coordinates. But this is always possible since the same is 
true for a dilation of V to a semi-group. 

3. Generalized Spectral Triples. 

3.1. Proof of Theorem 2. Let E, Q, and V be a matched triple and 
suppose Ç GQ0

(m>nK (The argument for E G E^m^ or V G 0/0
{m>n) 

is similar). Then Q(X) = UQlj and each Qj is a one-parameter resol­
vent for some self-adjoint operator Aj. Letting Ej and Vj denote the 
resolution of the identity and the unitary group (or semi-group depending 
upon j) for AK then E' = IIE> G £0> V = nV^ G q/0, and E\ Q, V 
is a matched triple. To complete the proof it remains to show that 
E' = E a n d V = V. But this is a consequence of the one-to-one nature 
of the correspondence given by the matching formulas. A fact which is 
demonstrated in 3.2 below. 
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3.2. Proof of Theorem 1. Let Q G Q^n\H) be a generalized resol­
vent. It has a dilation to a multi-parameter resolvent Q which, as was 
shown above, is part of a matched triple E, Q, V. Since the projec­
tions E = prE, Q = prQ, and V = prV satisfy the matching for­
mulas, therefore we have proved that each member of Q belongs to at 
least one matched triple. 

Since a similar argument implies the same conclusion when applied 
to £ or <V it remains only to show that the matching is unique. Clearly, 
given E, then Q and V are uniquely determined by the first two match­
ing formulas. The same reasoning applied to the third matching for­
mula shows that Q(k) is uniquely determined by V(s). To complete 
the proof it remains to see that E(t) is uniquely determined by Ç(X). 
For this we proceed by induction o n m + n . 

For m + n = 1 it is a familiar fact that the scalar integral 

/^/ ix x f **• , IT./ ix x f (dE(tl)x,x) 

uniquely determines the integrator (E(^1)ac, ac) under a normalization 
such as our condition (ii) of Theorem 3 (cf. Widder [22], p. 336 or 
Stone [19], p. 163). Here T+ is the set of non-negative real numbers 
if n = 1 and the entire set of real numbers if m = 1. Since this holds 
for all x G H, it follows from the polarization formula that (E(t{)x, y) is 
uniquely determined for all x,y G H, and hence the conclusion holds 
for m H- n = 1 by an application of a well-known theorem of Riesz. 

Next assume the uniqueness holds for all integers up to m -h n — 1 
and let 

(11) dp(*i)= J _ • • • J o n 1_kktfc(dE(t)x,x) 

where the integration is taken over the last m + n - 1 variables t2, • • -, 
tm+n. Naturally p(tl) depends upon A.2, • • -, Xm+n as well as tl; we 
omit this dependence in our notation for convenience. It is easy to see, 
that as a function of t\ p is of bounded variation, continuous from 
below and vanishes at tl = — °°. All these conclusions follow more 
or less directly from the same properties of the integrator and from the 
bound 

I m + n \k I m + n \\k\ 

n —-— ^ n ' Ji2 l-x*t* I " f i | W | 
for the integrand. Therefore by the induction assumption pit1) is 
uniquely determined by the equation 
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But then a second application of the assumption applied to (11) shows 
that (E(t)x9 x) is uniquely determined for each fixed tl from which the 
desired conclusion about E(t) now follows for the integer m + n and 
induction is complete. 

3.3. Proof of Theorem 3. The first part of our argument in § 3.2 
above shows the existence of a simultaneous dilation for a matched 
triple. It remains to be shown that the minimal dilation space may be 
computed up to isomorphism by any of the three formulas. Let H £ = 
span{E(f)x : x G H, tE.T+} and similarly define HQ and H v 

using Q and V respectively in place of E. Let E and V ' be matched 
in HE and let E ' and V be matched in H v . Then it follows from the 
functional calculus that 

H v = span{E'(t)x :xGH,T G T+}. 

Therefore both pairs (H£, E) and (Hv , E ' ) are minimal dilations 
of (H, E) and so are isomorphic (cf. Nagy [20] ). A similar argu­
ment applied to H0 and HE shows they are isomorphic and the 
proof is complete. 

4. Intrinsic Characterizations. 

4.0. It is clear that any attempt to study spectral theory as a multi­
parameter phenomenon will require an intrinsic characterization of the 
various operator families. This has been done for spectral functions by 
Naimark [ 13]. For Bochner functions and generalized resolvents the 
integral representations of the functional calculus are used to reduce 
these problems to analogous questions for scalar functions. As applied 
to Bochner functions, the scalar integrals have been studied by Boch­
ner [5], Akhiezer [2], and Devinatz [7]. As applied to generalized 
resolvents, scalar characterizations have been found by Nevanlinna 
[15], Korânyi [11], and Shonkwiler [16]. 

The process mentioned above for obtaining operator characteriza­
tions based upon scalar ones has been completed for Bochner func­
tions, and generalized resolvents in Shonkwiler [ 17] and [ 18]. For the 
sake of completeness, characterizations of all the triple functions will 
be stated here. 

4.1. THEOREM 7. An operator-valued function E(t), t E. F+, is an 
(m, n)-parameter resolution of the identity if and only if 

(i) E(t) is selfadjoint, non-decreasing in each variable, and for each 
m + n-dimensionalrectangle [tl912) = [tl,t2

i) X ' " * x [ * r + V 2
m + n ) 
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the operator dE([tl,t2)) given by the last member of (10) is nc 
negative selfadjoint, 

(ii) E(t) is continuous from below as a function oft, E(t) = 0 if a 
one of the last n coordinates oft vanishes, E(t)—>0 as any one oft 
first m coordinates oft tend to — oo, and E(t)—> I as all coordinates 
t tend to oo (strong limits) and 

(iii) E(fi) E(t2) = E(u) where uk = min^* , t2
k}. 

PROOF. One easily sees that the marginal defined by equation (5 
a one-parameter resolution of the identity. Finally property (iii) assu 
that E = UEJ. 

This theorem admits a restatement in terms of measures. 

THEOREM 8. The operator-valued measure dE defined on the Bo 
subsets of r+ determines an (m, n)-parameter spectral function if a 
if and only if it is non-negative, finite with dE(T+) = I, and for ar 
trary Borei subsets BY and B2ofT+, 

dE(Bl PI B2) = dElBJdElBi). 

The operator-valued function E(t) may be recovered from its m 
sure according to the formula 

(12) E(t) = dE( [ ( -oo , • • -, - o o , 0 , • • .,0),*)). 

4.2. The following characterization is due to Naimark. 

THEOREM 9. An operator-valued measure dE defined on the Be 
subsets ofr+ determines an (m, n)-parameter spectral function if a 
only if it is non-negative and finite with dE(Y+) = I. Moreover, th 
is a minimal dilation dE acting on H, unique up to isomorphii 
given by 

H = span{E(£)x : t G T+, x G H} 

where E is defined by equation (12) of § 4.1. In this case dE(B) = 
ifdE(B) = 0 where Bis a Borei subset oft+. 

Reformulated in terms of spectral functions this theorem reads 
follows. 

THEOREM 10. An operator-valued function E(t), t G T+, is 
(m, n)-parameter spectral function if and only if(i) and (ii) ofTheor 
7 § 4.1 hold. 

4.3. While defined on the entire topological space O, the mu 
parameter resolvent Q(k) is in fact completely determined by its val 
on a somewhat smaller space. Thus we denote by S(w) the restrict 
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of Q(k) to the imaginary axis in its first m coordinates and to the non-
positive real axis in its last n coordinates, 

s(t#) = ç ( [ i ] t i ) , i # e r _ . 

The intrinsic characterization below is proved in Shonkwiler [ 17]. 

THEOREM 11. The operator-valued function S(u), u G r_, is the 
restriction of an (m, n)-parameter resolvent Q(k) if and only if 

(i) S(ti*) = S*(tt), 
(ii) for each subset (ki9 * • -, kp} C {1, • * -, m + n} the joint limit 

lim SiU) 

uK l . . V/'-^O 
n [fl*y 
i = i 

exists in the strong operator topology and 

,. S(ti) . lim-7—— = Z, 
u_* tmn« 

and (iii) for uu u2 G T_ 

n(u2 - M1)S(U2)S(M1) = emujhti A"*S 

where 

(13) A«* S = 2 ( - I ) ^ J S « • • . , * - £ ). 
1 * , , • •• ,*„, + „ =1,2 

The equation in (iii) is the multi-parameter analog of the familiar 
resolvent equation. 

REMARK. The resolvent Q(k) can be reconstructed from S(u) as 
above through the marginals 

S^j= lim n V / , j = 1, - - - , m - h n . 
u/^-o n[ i ] t t 

In fact the selfadjoint operator 

does not depend upon the choice of ujand is thejth operator in the 
defining sequence for Q. Thus Q(k) is the (m, n)-parameter resolvent 
of the operator sequence A1, • • -, Am+n. 

4.4. Just as in the case of a resolvent, the generalized resolvent 
Q(k) may be characterized in terms of its restriction S(w) = Q([i]u), 
u E L The projection of such a restriction may easily be seen to 
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satisfy conditions (i) and (ii) of the Theorem of § 4.3, but not neces­
sarily the resolvent equation (iii). Nevertheless, there is a suitable 
"projection invariant" alternative to (iii) through the use of a certain 
kernel K( *, •) defined on T_ X T_ as follows. With the notation as in 
equation (13) of § 4.3 we put 

if the denominator does not vanish. Otherwise the kernel is defined by 
the joint limit of (14) as the appropriate factors in the denominator 
tend to zero or equivalently as the multiple difference of the resulting 
mixed partial derivative. 

We may now state our next theorem. For further details and the 
proof the reader is referred to Shonkwiler [17]. 

THEOREM 12. The operator-valued function S(u), u G T_, is the 
restriction of a generalized (m, n)-parameter resolvent Q(k), S(u) = 
Q([i] u), if and only if condition (ii) ofTheroem 11 holds and S(u) has 
weakly continuous partial derivatives of up to (m + n)th order and 
the kernel K(u2, uY) defined by (14) is of positive type. 

Moreover, the dilation Q(X) acting on the dilation space H can 
be chosen to be minimal in the sense that 

H = span{Ç(X)x : x G H, K G fi}. 

4.5. The following criteria for multi-parameter semi-groups is com­
pletely analogous to that of the familiar one-parameter case. 

THEOREM 13. The operator-valued junction V(s), s G T+, is a con­
tinuous (m, n) -parameter semi-group if and only if 

(i) V(s*) = V*(s) and \\V(s)\\is uniformly bounded, 
(ii) V(0) = I and V(0, ••- ,*>, • • -, 0 ) -* V(0) weakly as *>->0, 

forj = 1, • • -, m -h n, and 
(iii) V has the semi-group property 

V(Sl + s2) = V(Sl)V(s2). 

PROOF. One easily verifies that the marginals defined by equation 
(7) are the one-parameter component factors of a function V satisfying 
(i)-(iii). The necessity of the conditions is immediate. 

4.6. In connection with the multi-parameter Bochner function we 
repeat here a characterization similar to one which can be found in 
Akhiezer [2], p. 231. As above the conditions are also couched in 
terms of a kernel of positive type. 
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THEOREM 14. The operator-valued function V(s), s G T+, is an 
(m, n)-parameter Bochner function if and only if 

(i) ||v(»)||si,,er+; 
(ii) V(0) = I and the following weak limits obtain as s* -» 0, 

V(0, • • -, sk, • • -, 0, r + 1, • • -, tm+n)-+ V(0, • • -, 0, tm + \ • - -, *m+n) 
tfl^fc^mu?WteV(0, • • -,0, r + 1, • • - , s m + 1, • • -,r+n)-> V(0, • • -, 
0, tm + l, • • -, o, • • -, r+ n) if m + l ^ m + j = ^ m + n ; and 

(iii) the kernel 

(15) K(*2,*i)= V(Sl + s2*) 

is of positive type. 
Moreover, the dilation V(s) acting on the dilation space H can foe 

chosen to be minimal in the sense that 

H = span{V(s)x : x G H, 5 G T+}. 

The proof may be found in Shonkwiler [ 18]. Our result is an 
improvement since condition (ii) is weaker than the weak continuity of 
V(s) required by Akhiezer. 

REMARK. The well-known theorem of Bochner is contained in the 
above (in view of Stone's Theorem on the representation of continuous 
groups). In fact when m = 1 and n = 0 condition (i) is redundant 
and the other two are known to imply Bochner's conditions. 

5. Marginals. 

5.1. PROOF OF THEOREM 4. Let H be the minimal dilation space of 
the matched triple £, Q, V; let E, Q, V be the matched dilation; 
and let Ej, Qj, V j be their triple of jth marginals. If P de­
notes the orthogonal projection of H onto H as usual, then the 
generalized marginals £•>, Q\ Vj are given by the equations 

E ^ = £ ( o o , . . . , * / , - • • , o o ) = P E ( o o , . . . , * / , • • • , oo) 

= prE£ 

Ç { j- ,im - W L hm J^SW 

,i/xJ_0 TA 

V = V(0, • • • ,*> , • • -0) = PV(0, • • - , « , , • • -,0) = prV/}. 
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The conclusions of the theorem now follow immediately. 

5.2. Unlike the situation in the case of total triple functions, the 
product of the m + n marginals of a generalized triple function will 
not in general be that function. Indeed these marginals may not even 
commute as can be seen by a simple example. 

REMARK. While a generalized triple function may fail to be the 
product of its marginals, it is nevertheless possible to recover the 
multi-parameter function from them. Associated with these marginals 
is a single dilation space and an orthogonal projection P. The cal­
culation in the proof of our last theorem shows that the projection P 
of the product, in any order, of the dilations of the marginals is the 
required generalized triple function. 

6. Semi-Multiplicative Case. 

6.1. PROOF OF THEOREMS 5 AND 6. The former is a more-or-less im­
mediate corollary of the latter since each extended continuous semi­
group of contractions is matched with a semi-multiplicative spectral 
function. Evidently the same argument can be applied to a /x-resolvent. 

COROLLARY. The kernel of each fi-resolvent as given in §4.4 is of 
positive type. 

Now for the proof of Theorem 6. Consider V (E Q/^1 first. It is easy 
to see that its marginals Vj satisfy the conditions of a natural extension 
of a strongly continuous one-parameter semi-group of contractions (cf. 
McKelvey [12]). Moreover 

V(s) = V((sK0, • • -,0) + (0,s2, • • -,0) + • • • + (0,0, • • -,*-)) 

= V(^,0, • • -,0) V(0,«2, . . .,0) • • • V(0,0, • . .,*»») 

= 7TV>J 

since each point (0, •••,$>,•• -, 0) belongs to the same quadrant, namely 
that of s. Finally we observe that 

VJiV?« = V(s\0, ••• ,0)V(0,*2 , - . - , 0 ) 

= V(sKs*) 

= V(0,*2, • • • , 0 ) V ( 5 \ 0 , •••,()) 

= Vf« VJi. 

By a similar calculation for other pairs it follows that the marginals 
commute pairwise. 

Next let Ej and Qj correspond to Vj through the matching for-
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mulas, j = 1, • • -, m. It is known that the triple Ej, Qj, Vj is matched 
and belongs to the triple of classes ê^1, Qß\ <V^ respectively. Put E 
= TTEK Then £ ££(m,o) a n ( j s o n a s a n associated functional cal­
culus. But 

m ç « 

V(*) = 77VJj= TT e-»'''dEÌJ 
j - i J - " 

= JHMff«- toJ 'JdE(t) 

= f e-** dE(t), 
JR'" 

so that E and V are matched. 

To show that E G £M
m, let / j and / 2 have the required properties; 

/ * ( ' ) = 11*3-1 #( . ' ) • Then 

L/i(*) /2(*)dE(0 = n f fij(P)MV)d&tj 
J j = \ - / - o o 

J H r oo Too 

= I l fW)dB,j Mtj)dEltl 
. _ . J _ oo J — o o 

= lnMt)dE(t)j f2(t)dE(t). 

Let Q(k) = P[ QJ where Qj is given above. Then the matching 
formulas hold for Q(k); in particular 

ç oo r oo r- w* -• 

Ç(X) = 1 • • • J I n ±ie*isJ,xJ V(+sl, • • -, + sm) ds 

where + Im \j > 0 depending on<I>, 

in each half-plane 4>. It is easily seen from this formula that the semi­
group property for V implies the resolvent equation for Q in the corre­
sponding half-plane <ï>. Thus Ç G Qß

m. 
Next let E G £ß

m C £<m»°>. The function V defined by 

V(s)= \Rme-*-'dE(t) 

is matched with £. If $! and s2 are in the same quadrant of Rm, then 
there exist functions of the required type showing that e~isi'tJ and 
e~is2ifJ belong to the same class B ± (dEj). Therefore 
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V(s1 + s2) = JR,„e-i(Sl +s>yt dE(t) 

= / R m ( n ^ ^ ) ( n <^j(j )dE{t) 

c m c m 

= jR,„n e-^'dE{t) JRiiiJle-<^'JdE(t) 

= V(*,) V(*2). Therefore, V G <T/M
m. The marginals Vj of V belong to <V'M

1 and 
E-> is matched with V->, then E* G 2^. Moreover, E(f) = ]\ E 
In fact 

V(s) = Y{VÌj= I ] f00 0 " ^ ^ 
J _ 00 

= I e~ist dE\i • • - dEm
m. 

jRm t 

But then by the uniqueness of the integral representation, we ha\ 
that the measure dE(t) is equal to the product measure dE\i • • • dEn

t 

Hence, E = Y[ Ejt Finally, if Ç is defined by the matching formula 
then the desired decomposition and matching follow here as it di 
above for a given V G <^/

/x
m. 

To complete the proof let Ç G QJ*1. By comparing the proof ( 
Theorem 1 in Shonkwiler [17] it is seen that the basic constru« 
tions there may be applied to a given half-plane in the present settin 
to yield a decomposition. 

of Q into the product of m pairwise commuting one-parameter / 
resolvents in that half-plane. Letting Ej and Vj be the triple fun 
tions corresponding to Qj and E = J J Ej, then E G £(m>°> and 

m ç « \ j 

<?w= n^= n j ^ y — ^ 
c m 

= j n -^—dE(t). 
JRm j - i 1 -kW 

Hence, E, Ç and V are matched. To show that E G £™ we procee 
exactly as in an earlier part of this proof. Therefore, also V G <V^ 
and the proof is complete. 
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