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ST. VENANTS COMPATIBILITY CONDITIONS AND 
BASIC PROBLEMS IN ELASTICITY* 

TSUAN WU TING 

1. Introduction. Let G be a bounded multiply connected do­
main in Rn with regular boundary, dG. Let d = {d{j) be a. second-
order symmetric tensor field on G. Our question is this. Under what 
conditions on d is there a vector field v such that d is the symmetric 
part of the gradient of v? That is, given d, when can one find a solu­
tion v of the system, 

(1) \ (vitj + vjti) = dij in G for i, j = 1,2, • • -, n? 

Here the commas stand for partial differentiations. Although (1) is 
an over-determined system for v = (t;»), the question has been par­
tially answered by the well-known St. Venant compatibility condi­
tions. However, the differentiability requirements in St. Venant's 
compatibility conditions are unnecessarily strong. Furthermore, the 
full set of compatibility conditions is still insufficient, if the domain 
G is multiply connected. 

It was found in [11] that the above question leads to an ortho­
gonal decomposition of the Hilbert space of square integrable 
second-order symmetric tensors. The objective here is to present a 
different proof which also shows how the orthogonal decomposition 
theorem is related to the existence problems in elasticity and the 
duality principle in convex analysis. 

Although the above decomposition theorem is a recent one, the 
corresponding theorem for vector fields has been well developed and 
it plays a significant role in the mathematical treatment of fluid 
mechanics [6]. We refer to [11] for additional references. In 
the meantime, under the assumption of "ellipticity", similar de­
composition theorems were established in [1] for which our results 
serve as a non-trivial example. 

2. The decomposition theorem. A second-order symmetric tensor 
field s = (Sij) is said to be solenoidal, if it is divergence free, i.e., if Syj 
= Sjij = 0 in G. The class of all such tensors which are infinitely 
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smooth with compact support in G is denoted by S o (G). Let L2(G) be 
the Hilbert space of all square integrable second-order symmetric ten­
sors. We denote the completion of S ô (G) in L2(G) by S(G). As usual, 
the orthogonal complement of S(G) in L2(G) is denoted by SL(G). 

In what follows, we denote by Hk(G) the Hilbert space of functions 
which together with their distribution derivatives of order ^ k are 
square integrable over G. The usual fc-fold Dirichlet norm on Hk(G) 
is written as || • \\k. We say that a vector or a tensor belongs to Hk(G) if 
each of its components belongs to Hk(G). 

Let D(G) be the closed subspace of L2(G) consisting of tensors d 
for which there exists a vector v in Hl(G) such that the equations in (1) 
hold in the || • ||0-norm. 

THEOREM 1. L2(G) is the direct sum ofD(G) and S(G). 

3. Proof of Theorem 1. By the Riesz projection theorem, L2(G) = 
S(G) © S (G). Hence, we need only to show that 

D(G) = SX(G). 

Proof that D(G) C SX(G). Indeed, if d G D(G), then 

(2) dij = |(Vij + vjti) = ey(v), i,j = 1,2, • • -, n, 

for some v in Hl(G). Hence, for all s in S 0(G), we have from the 
symmetric and solenoidal character of s that 

J dijSij dx = J \(viti + vhi)Sij dx = J t^-fy dx 

where we have adopted the summation convention over repeated 
indices and where the last equality follows from the divergence 
theorem. Since S 0(G) is dense in S(G) relative to || • ||0-norm, the 
assertion follows. 

Proof that D(G) D S^G). To show this we show that if d G S\G) 
then there exists a vector v in Hl(G) such that the equations in (2) 
hold. To this end, we first prove it for all d in SX(G) H Hl(G) and then 
apply a limiting process. Now, for d G S1(G) fì Hl(G), we define 

(3) fi= dijJ,i= 1,2, • • -,n. 

Then, the vector f is square integrable over G. For every point x 
on dG, let n(x) be the unit outward normal to dG at x and define 
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(4) ti= dynp t = 1,2, • • -,n. 

According to the trace theorem [2] , the vector t belongs to L2(dG). 
Consider now the 

Dual problem. Find a symmetric tensor t in Hl(G) which minimizes 
the functional 

(5) ID(t)= f Ujtijdx 
J G 

over the closed convex set, 

r = { m £ H 1 ( G ) , L J - / i = 0 a.e.inG, 
(6) . 

fyn, = U in L2(dG)}. 
We claim that the given tensor d is a minimizer. In fact, for all t in 

the admissible class T in (6), the tensor, t — d, belongs to S(G) fi 
n\G). Hence, 

(7) J dijitij - dq) dx = 0 for all t in T. 

This is, in view of the convexity of lD(t) in t, precisely the necessary 
and sufficient condition for d being a minimizer. Note that it is here 
we have used the fact that d G SV(G). 

Next, we observe that if t and t ' are any two minimizers of the dual 
problem, then ||f — ̂ '||0 = 0. Indeed, the tensor, (t + t')l2, belongs to 
the admissible class T. Hence, we have 

iD(l(t+t'))^iD(t) = iD(t'). 

This inequality can be written as ID(t — t ') = 0 which is possible only 
when | |f- t'||o = 0. 

Motivated by the second-boundary value problem in elasticity, we 
also consider the 

Primary problem. Find a vector v in H2(G) so as to minimize the 
functional, 

(8) h(tv)= I [e^(w)e^(w) + fiWi] dx - t^ds, 
J G J dG 

over the closed subspace 

(9)W= fw\wGH2(G), J Widx=0,j (witj - whi) dx = 0 j . 

Here, fi and t{ are given by equations in (3) and (4), respectively. 
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Also, eij(w) is defined in (2). Needless to say, the conditions 

Wi dx = 0, [Wij — wjfi\ dx = 0, i,j = 1, 2, • • -, n, 
J Cr J G 

were introduced so as to assure the uniqueness of the minimizer. 
Thanks to Korn's inequality, [2, 3, 8, 11], the primary problem has, 
indeed, a unique solution v in H2(G). 

We assert that if v is the unique minimizer of the primary problem, 
then e%(v) = \ (vi}j + vjfi) is a minimizer of the dual problem. To 
show this, we note that for all w in W, 

[ [0i>K(w -*>) + /*• fa ~ vùì àx 
•* G 

— ti • (Wi — Vi) ds = 0 
J dG 

as a necessary consequence of the minimizing character of v. Upon 
applying the divergence theorem, this variational equality can be 
written as 

JG ifi ' (wi " vi) - eijAv) ' (wi - vi)i dx 

+ I [eijivjrij - ti] • (Wi - Vi)ds= 0. 
J dG 

Since the vector, a> — v, is sufficiently arbitrary, we conclude that 

(10) eijj(v) = fi a - i - i n G for i = 1, 2, • • -, n. 

(11) eij(v)nj = J* in L2(aG) for i = 1, 2, • • -, n. 

The results in (10) and (11) assure us that (e^v)) belongs to the ad­
missible class T in (6). Finally, for all t in T, the tensor, e(v) — t, 
belongs to S(G). Hence 

= J GVi' ^ " 6ij^nj ^ J G ^ÌJJ " ^ ' ^ ' Vi dX 

which ensures that e^v) is also a minimizer of the dual problem. 
Since the minimizer of the dual problem is uniquely determined in 
the || • ||0-norm, it is necessary that 

(12) eij(v) = dij in L2(G) for i,j = 1,2, • • -, n. 
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The assertion is now proved if d belongs to S \G) C\ Hl(G). 
For arbitrary d in S1(G), there is a sequence {D(l/)} in S1(G) D 

Hl(G) such that \\d — ^ | | 0 - > 0 as ^—> oo. Now, for each vy there is 
a vector t;^ in H \G) such that 

(13) \vt}dx = 0, | [t># - t # ] dx = 0. 

(14) <#> = ^(tjW) in the || • ||0-norm for i,j = 1 , 2, • • -, n. 

Moreover, the conditions in (11) enable us to apply Korn's inequality 
to conclude that {v{v)} is a Cauchy sequence in Hl(G). Denote by v 
the || • | | rrimit of Ü H Then d{j = e^(v) in || • ||0-norm for i, j = 1, 2, 
• • *,n. The proof is now compete. 

4. The Beltrami-Michell compatibility conditions. Having estab­
lished the decomposition theorem, we now apply it to derive the 
Beltrami-Michell compatibility conditions for the minimizer of the 
dual problem. According to the sharp form of the trace theorem, [7], 
if g is a function in L2(G), then its restriction to dG belongs to 
H~ll2(dG). Let / and t be given vectors in L2(G) and 
H~1/2(dG), respectively, and let aijhk(x) be a given smooth ten­
sor field on G, which is symmetric in the first two and last two in­
dices and aijhk = ahkij such that for all second-order symmetric 
tensors t in L2(G), a^y^t^ty^^ const, t^ty on G. In its general form, 
the dual problem is to find a second-order symmetric tensor t in L2(G) 
such that it minimizes the functional 

(15) fc(Os J aijhk(x)tijthk dx, 

over the closed convex set 

T* = {t 11 G L2(G\ tijj -fi = 0 a.e. in G, 

fyn,= tiinH-ll2{oG)} 

in L2(G). If T* is non-empty, then it is immediate that the problem 
has a unique solution t. But then for all t* in T*, 

(16) f aijhk(x)thk • (**, - %) dx = 0. 

Since the tensor, t* — t, belongs to S(G), we have from the variational 
equality in (16) and Theorem 1, 
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THEOREM 2. If t is the minimizer of the dual problem in (15), then 
the tensor, aijhkthk, belongs to S1(G). That is, the Beltami-Michell com­
patibility conditions are satisfied by t and hence the existence of a cor­
responding displacement field is assured. 
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