COHOMOLOGY OF QUASI-PROJECTIVE STIEFEL MANIFOLDS

A. DUANE RANDALL

- 1. Introduction. Let $V_{n,k}$ denote the Stiefel manifold of orthonormal k-frames in Euclidean n-space. The special orthogonal group SO(2) acts freely on $V_{2n,k}$ via the diagonal embedding of S^1 in U(n) and the standard embedding of U(n) into SO(2n) corresponding to realification $r:BU(n)\to BSO(2n)$. The quasi-projective Stiefel manifold $PV_{2n,k}$ is the quotient space of $V_{2n,k}$ under this action of SO(2). The spaces $PV_{2n,k}$ are classifying spaces for sectioning multiples of a complex line bundle. If X is a finite complex and ξ a complex line bundle over X, then $n\xi$ has k linearly independent real sections if and only if there is a map $f: X \to PV_{2n,k}$ such that $f^*\eta_0 = \xi$ where η_0 is the complex line bundle over $PV_{2n,k}$ associated to the S^1 -fibering $V_{2n,k} \to PV_{2n,k}$. In this paper we determine the cohomology algebras of the spaces $PV_{2n,k}$.
- 2. Preliminaries. We first establish some notation. Let $RE(x_i \mid i \in I)$ denote the exterior algebra over a ring R with generators x_i of degree i. Let $V(x_1, \dots, x_m)$ denote the commutative associative algebra over Z_2 on generators x_1, \dots, x_m such that the monomials $x_1^{\epsilon_1} \dots x_m^{\epsilon_m}$ with $\epsilon_i = 0$ or 1 form an additive basis. Let $\{p_i E_r(X)\}$ denote the mod p Bockstein spectral sequence for X with $p_i E_1(X) = H^*(X; Z_p)$. $C_{r,i}$ denotes the binomial coefficient $\binom{r}{i}$. Let ρ_p denote the universal coefficient map $H^*(\cdot; Z) \to H^*(\cdot; Z_p)$ for any prime p and let p_i denote the map $p_i H^*(\cdot; Z) \to p_i H^*(\cdot; Z) \to p_i H^*(\cdot; Z)$. Denote the image of an integral class p_i under the projection $p_i H^*(X; Z) \to p_i H^*(X; Z)$. Finally let $p_i H^*(X; Z) \to p_i H^*(X; Z)$. We write $p_i H^*(X; Z) \to p_i H^*(X; Z)$ where $p_i H^*(X; Z) \to p_i H^*(X; Z)$ where $p_i H^*(X; Z) \to p_i H^*(X; Z)$ denote the image of an integral class $p_i H^*(X; Z) \to p_i H^*(X; Z)$. We write $p_i H^*(X; Z) \to p_i H^*(X; Z)$ where $p_i H^*(X; Z) \to p_i H^*(X; Z)$ where $p_i H^*(X; Z) \to p_i H^*(X; Z)$ and $p_i H^*(X; Z) \to p_i H^*(X; Z)$ where $p_i H^*(X; Z) \to p_i H^*(X; Z)$ and $p_i H^*(X; Z) \to p_i H^*(X; Z)$ where $p_i H^*(X; Z) \to p_i H^*(X; Z)$ and $p_i H^*(X; Z) \to p_i H^*(X; Z)$ and $p_i H^*(X; Z) \to p_i H^*(X; Z)$.

Recall from [5] the cellular structure of the Stiefel manifold $V_{2n,k}$ obtained from an embedding of real projective space RP^{2n-1} into O(2n) composed with the projection map $O(2n) \to V_{2n,k}$. The image of RP^{2j} determines a class P^{2j} in $H^{2j}(V_{2n,k}; \mathbb{Z})$ of order 2 for every $j \in J_{n,k}$. Set $x_{2j} = \rho_2(P^{2j})$. RP^{2n-k} determines a free integral class y_{2n-k} for k even. Let $x_{2n-k} = \rho_2(y_{2n-k})$ for k even and let x_{2n-k} be the unique class such that $Sq^1x_{2n-k} = x_{2n-k+1}$ for k odd. By [2]

Received by the editors November 18, 1971.

AMS (MOS) subject classifications (1970). Primary 55F40; Secondary 55F25, 55H10.

there is a class $y_{2n-1} \in H^{2n-1}(V_{2n,k})$ such that $\tau(y_{2n-1}) = \chi_{2n}$ where τ denotes transgression in the spectral sequence for the fibration

$$V_{2n,k} \rightarrow BSO(2n-k) \rightarrow BSO(2n)$$

and χ_{2n} is the Euler class. Set $\chi_{2n-1} = \rho_2(y_{2n-1})$. By [1] and [5]

(2.1)
$$H^*(V_{2n,k}; \mathbb{Z}_2) = V(x_{2n-k}, \cdots, x_{2n-1}) \text{ and } Sq^i x_j = C_{j,i} x_{i+j}.$$

For every $j \in J_{n,k}$, there is a class y_{4j-1} in $H^{4j-1}(V_{2n,k})$ such that $\tau(2y_{4j-1}) =$ the Pontryagin class p_j and $\rho_2(y_{4j-1}) = x_{2j}x_{2j-1} + x_{4j-1}$ from [2, 30.10]. By [1]

(2.2)
$$H^*(V_{2n,k})/Torsion = ZE(\bar{y}_{2n-k}, \bar{y}_{2n-1}, \bar{y}_{4j-1} | j \in J_{n,k})$$

where \bar{y}_{2n-k} is omitted for k odd. For integers $s, t \in J_{n,k}$ with s < t let $u_{s,t}$ be the integral class of order 2 such that $\rho_2(u_{s,t}) = x_{2s}x_{2t-1} + x_{2t}x_{2s-1}$. We state the following known

PROPOSITION 2.3. The classes y_{2n-1} , y_{4j-1} , $u_{s,t}$, P^{2j} for $j, s, t \in J_{n,k}$ with s < t, y_{2n-k} for k even, and the unit generate the algebra $H^*(V_{2n,k})$.

Consider the following commutative diagram of fibrations.

Here $\pi: E_{2n,k} \to CP^\infty$ is the principal fibration induced from the fibration $BSO(2n-k) \to BSO(2n)$ by the map $r \circ n\eta: CP^\infty \to BSO(2n)$ classifying the n-fold sum of the Hopf bundle η over CP^∞ regarded as a real vector bundle. By construction $E_{2n,k}$ is the classifying space for finding k independent real sections to the n-fold Whitney sum of a complex line bundle over a finite complex. The method of proof of [3, Proposition 1.3] yields the following

Proposition 2.5. The spaces $PV_{2n,k}$ and $E_{2n,k}$ have the same homotopy type.

Consider the following homotopy commutative diagram of vertical fibrations with m = n - k.

The fibration $S^{2m} \to PV_{2n,2k} \to PV_{2n,2k-1}$ is totally nonhomologous to zero so we obtain

Proposition 2.7. $H^*(PV_{2n,2k}) = H^*(PV_{2n,2k-1}) \otimes H^*(S^{2m})$ as $H^*(PV_{2n,2k-1})$ -modules.

We select X uniquely in $H^{2m}(PV_{2n,2k})$ such that t^*X generates $\overline{H}^*(S^{2m})$ and

$$(2.8) s*\chi_{2m} = 2X + C_{n,k}\omega^m$$

where ω denotes $\pi^*\beta$ for $\pi: PV_{2n,2k} \to CP^{\infty}$ in (2.4). This selection is possible by [6, Theorem A] using the natural map $Y_{n,k} \to PV_{2n,2k}$ where $Y_{n,k}$ denotes the complex projective Stiefel manifold. Since $\chi^2_{2m} = p_m$ in $H^*(BSO(2m))$, it follows that

$$(2.9) 4X^2 = C_{n,k}(1 - C_{n,k})\omega^{2m} - 4C_{n,k}X\omega^m.$$

Thus we consider the spaces $PV_{2n,k}$ primarily for k odd.

We remark that the problem of determining the geometric dimension of m based on $\mathbb{C}P^l$ is equivalent to finding the largest integer k such that $j^{\#}E_{2n,k} \to \mathbb{C}P^l$ has a section where $j^{\#}E_{2n,k} \to \mathbb{C}P^l$ is the fibration in (2.4) induced from π via the standard embedding $j: \mathbb{C}P^l \to \mathbb{C}P^{\infty}$. (See [7] for the case l = n - 1.) Note that $PV_{2n,1}$ is $\mathbb{C}P^{n-1}$.

3. Rational and mod p cohomology of $PV_{2n,k}$. Let F denote Q or Z_p for an odd prime p. From (2.2) and (2.3) $H^*(V_{2n,k}; F) = FE(\tilde{y}_{2n-k}, \tilde{y}_{2n-1}, \tilde{y}_{4j-1} | j \in J_{n,k})$ where \tilde{y}_{2n-k} is omitted for k odd, and $\tilde{}$ denotes the image under $\rho: H^*(; Z) \to H^*(; F)$.

Theorem 3.1. Let k be an odd integer with k < n + 1. Then $H^*(PV_{2n,k}; F) = F[\tilde{\omega}]/(\tilde{\omega}^n) \otimes FE(v_{4j-1} | j \in J_{n,k})$ where $i^*v_p = \tilde{y}_p$ and $\omega = \pi^*\beta$.

PROOF. The Serre spectral sequence for the fibration $V_{2n,k} \stackrel{i}{\to} PV_{2n,k}$ $\stackrel{\pi}{\to} CP^{\infty}$ in (2.4) with coefficients F has $E_2^{*,*} = F[\tilde{\beta}] \otimes FE(\tilde{y}_{2n-1}, \tilde{y}_{4j-1} | j \in J_{n,k})$. Since $\tau(2y_{4j-1}) = p_j(m) = C_{n,j}\beta^{2j}$ in the integral spectral sequence for π , the fiber is transgressively generated over F. By dimensionality d_{2n} is the first nonzero differential and $d_{2n}(\tilde{y}_{2n-1}) = \tau(\tilde{y}_{2n-1}) = \tilde{\chi}(nm) = \tilde{\beta}^n$. Note that the image of the ideal

 $(\tilde{\boldsymbol{\beta}}^n)$ in E_{2n+1}^{*} is 0 and $E_{2n+1}^{*}=E_{2n+1}^{*}$. All the following differentials are trivial so $E_{\omega}^{*}=E_{2n+1}^{*}$. The result follows from [1, Proposition 8.1].

Let l denote the smallest integer in $J_{n,k}$. Given an odd prime p, let N(p) denote the smallest integer j in $J_{n,k}$ such that p does not divide $C_{n,j}$. If no such integer j exists, set $N(p) = \infty$.

Theorem 3.2. Let k be an odd integer with k > n. If $n \neq 2l$

$$H^*(PV_{2n,k}; Q) = Q[\tilde{\omega}]/(\tilde{\omega}^{2l}) \otimes QE(v_{2n-1}, v_{4j-1} | l < j < n)$$

with $i^*v_s = \tilde{y}_s = \rho_0(y_s)$. If n = 2l,

$$H^*(PV_{2n,k};Q) = Q[\tilde{\omega}]/(\tilde{\omega}^n) \otimes QE(v_{4j-1} | j \in J_{n,k})$$

where $i^*v_{4l-1} = 2\tilde{y}_{4l-1} - C_{n,l}\tilde{y}_{2n-1}$ and $i^*v_s = \tilde{y}_s$ otherwise. If 2N(p) < n,

$$H^*(PV_{2n,k}; Z_p) = Z_p[\tilde{\omega}]/(\tilde{\omega}^{2N(p)})$$

$$\otimes Z_n E(v_{2n-1}, v_{4i-1} | j \in J_{nk}, j \neq N(p))$$

with $i^*v_s = \tilde{y}_s = \rho_p(y_s)$. If 2N(p) > n,

$$H^*(PV_{2n,k}; \mathbb{Z}_p) = \mathbb{Z}_p[\tilde{\omega}]/(\tilde{\omega}^n) \otimes \mathbb{Z}_p E(v_{4j-1} | j \in J_{n,k})$$

with $i^*v_s = \tilde{y}_s$. If 2N(p) = n,

$$H^*(PV_{2n,k}; Z_p) = Z_p[\tilde{\omega}]/(\tilde{\omega}^n) \otimes Z_p E(v_{4i-1} | j \in J_{n,k})$$

where $i^*v_{4N(p)-1} = 2\tilde{y}_{4N(p)-1} - C_{nN(p)}\tilde{y}_{2n-1}$.

Theorem 3.2 follows similarly from the proof of (3.1). From (3.2) and (2.7) we obtain the following

Corollary 3.3. $H^*(PV_{2n,k})$ has p-torsion for an odd prime p if and only if k > n + 2 for n even, k > n + 1 for n odd, and p divides $C_{n,l}$.

The Z_2 cohomology algebra of $PV_{2n,k}$ and module structure over the Steenrod algebra A have essentially been determined up to a small indeterminacy by Gitler and Handel in [3]. Let N denote the smallest integer j with $C_{n,j}$ odd and $2n-k+1 \leq 2j \leq 2n$. Applying the proof of [3, Theorem 2.8] gives the following

THEOREM 3.4. As an algebra

$$\begin{split} H^*(PV_{2n,k}; \, Z_2) &= \, Z_2 \, [\alpha] \, / (\alpha^N) \\ & \otimes \, V(z_{2n-k}, \, \cdots, \, z_{2N-2}, \, z_{2N}, \, \cdots, \, z_{2n-1}) \end{split}$$

where $i^*z_p = x_p$ and $\alpha = \rho_2(\omega)$. If $C_{2n,q}$ is even,

$$\mathrm{Sq}^{i}z_{q-1} = \sum_{k \in K} C_{q-1-2k,i-2k} w_{2k}(n\eta_{0}) z_{q+i-2k-1} + \lambda(q,i).$$

If $C_{2n,q}$ is odd, then q = 2s and

$$\begin{split} \mathrm{S}q^{i}z_{q-1} &= \sum_{k \in \mathcal{K}} C_{q-1-2k,i-2k}w_{2k}(n\eta_{0})z_{q+i-2k-1} \\ &+ \sum_{j,k \in J} C_{2N-1-2k,j-2k} \, \mathrm{Sq}^{i-j}\alpha^{s-N}w_{2k}(n\eta_{0})z_{2N+j-2k-1}. \end{split}$$

Here $\lambda(q, i) = 0$ if q + i is even, and $\lambda(q, i) = \epsilon \alpha^r$ if q + i - 1 = 2r where $\epsilon = 0$ or 1. $K = \{k \mid 0 \le 2k \le i \text{ and } q + i - 2k \ne 2N\}$ and $J = \{j, k \mid 0 \le 2k < j \le i\}$.

Suppose now that k < n+2 for n odd and k < n+3 for n even. We shall show that all torsion in $H^*(PV_{2n,k})$ has order 2. Note from (3.4) that $\operatorname{Sq}^1 z_{2j-1} = z_{2j} + \lambda(2j,1)$ where j < N and 2n-k < 2j. If $\lambda(2j,1) \neq 0$, we define z_{2j} to be $\operatorname{Sq}^1 z_{2j-1}$. Take $s \in J_{n,k}$ with $s \neq N$. If s < N, define

$$Z_{4s-1} = z_{2s-1}z_{2s} + \sum_{\substack{j=2s-n+1\\j\neq 2s-N}}^{s} C_{n,j}\alpha^{j}z_{4s-2j-1} + \lambda_{s}\alpha^{2s-n}z_{2n-1}$$

where

$$\lambda_s = C_{n,2s-N} + \sum_{j=2s-n+1}^{2s-N-1} C_{n,j} C_{n,2s-j} \in \mathbb{Z}_{2.}$$

If s > N, define

$$\begin{split} Z_{4s-1} &= z_{2s-1} z_{2s} + \sum_{j=2s-n+1}^{N-1} C_{n,j} \alpha^j z_{4s-2j-1} \\ &+ C_{n,s} \alpha^{s-N} z_{2N} z_{2s-1} \\ &+ C_{n,s} \sum_{l=2N-n+1}^{3N-2s-1} C_{n,l} \alpha^{2s-2n+l} z_{4N-2l-1}. \end{split}$$

Note from (3.4) that $Z_{4s-1} \in \ker \operatorname{Sq}^1$, and Z_{4s-1} is not in $\operatorname{im} \operatorname{Sq}^1$ since $i^*Z_{4s-1} = x_{2s-1}x_{2s}$. Clearly Z_{4s-1}^2 is in $\operatorname{im} \operatorname{Sq}^1$. Note also that $\operatorname{Sq}^1z_{2n-1} = \alpha^{n-N}z_{2N}$ and, for $0 \leq j < n-N$,

$$(\alpha^{j}z_{2N})^{2} = \operatorname{Sq}^{1}\left(\alpha^{2j} \sum_{l=2N-n+1}^{N-1} \alpha^{l}C_{n,l}z_{4N-2l-1}\right).$$

Let T denote the graded algebra over Z_2 with trivial multiplication on generators z_{2N} , $z_{2N}z_{2n-1}$, and $\alpha^{2N-n}z_{2n-1}$. Similar computation using (3.4) yields the following for k odd and k < n + 2.

Proposition 3.5.

$$_{2}E_{2}(PV_{2n,k}) = Z_{2}[\alpha]/(\alpha^{N})$$

 $\otimes Z_{2}E(Z_{4s-1} \mid s \in J_{n,k}, s \neq N) \otimes T/I$

where I is the ideal generated by $\alpha^{n-N} \otimes 1 \otimes z_{2N}$ and $\alpha^{n-N} \otimes 1 \otimes \alpha^{2N-n} z_{2n-1}$.

COROLLARY 3.6. All torsion in $H^*(PV_{2n,k})$ has order 2 where k < n + 2 for n odd and k < n + 3 for n even.

PROOF. Assume k is odd and k < n + 2. To show ${}_{2}E_{2}(PV_{2n,k}) = {}_{2}E_{\infty}(PV_{2n,k})$, it suffices to define an isomorphism $\varphi: {}_{2}E_{2}(PV_{2n,k}) \to H^{*}(PV_{2n,k}; Q)$ of graded vector spaces over Z_{2} . Define $\varphi(\alpha^{s}) = \tilde{\omega}^{s}$ for s < N, $\varphi(\alpha^{s}z_{2N}) = \tilde{\omega}^{N+s}$ and $\varphi(\alpha^{s+2N-n}z_{2n-1}) = \tilde{\omega}^{s}v_{4N-1}$ for $0 \le s < n - N$, $\varphi(\alpha^{s}z_{2N}z_{2n-1}) = \tilde{\omega}^{s+n-N}v_{4N-1}$ for $0 \le s < N$, and $\varphi(Z_{4j-1}) = v_{4j-1}$ for $j \in J_{n,k}$ and $j \ne N$. Extend φ to an isomorphism and apply (2.7) for k even.

4. Integral cohomology.

Case I. We assume in Case I that k < n+1 with k odd. We determine the differentials and E_{ω}^{**} for the integral spectral sequence for the fibration $V_{2n,k} \to PV_{2n,k} \to CP^{\infty}$ in (2.4) and then use the Gysin sequence to specify generators for $H^*(PV_{2n,k})$. $E_2^{*,*} = Z[\beta] \otimes H^*(V_{2n,k})$. Since $\tau(P^{2j}) = \delta w_{2j}$ for the fibration $BSO(2n-k) \to BSO(2n)$ where δ denotes the integral Bockstein operator, P^{2j} for $j \in J_{n,k}$ survives in the integral spectral sequence for π . $\tau(y_{2n-1}) = \chi(m) = \beta^n$ so $E_{2n+1}^0 = 0$ for p > 2n. All differentials kill $2y_{4j-1}$ for $j \in J_{n,k}$ since $\tau(2y_{4j-1}) = p_j(m)$. Note that d_{2n} is the first nontrivial differential in the integral spectral sequence for π since d_{2n} is the first nontrivial differential in the Z_2 spectral sequence by (3.4) and d_{2n} is the only nontrivial differential with F coefficients by (3.1). If N = n, clearly

$$E_{\infty}^{*,*} = E_{2n+1}^{*,*} = Z[\beta]/(\beta^n) \otimes H^*(V_{2n,k})/(y_{2n-1}).$$

Assume N < n. Now $d_{2N}(1 \otimes y_{4N-1}) = \beta^N \otimes P^{2N}$ since

$$d_{2N}(1 \otimes x_{2N-1}x_{2N}) = \beta^N \otimes x_{2N} = \rho_2(\beta^N \otimes P^{2N}).$$

Similarly, $d_{2N}(1 \otimes u) = \boldsymbol{\beta}^N \otimes P^{2j}$ where $u = u_{j,N}$ if j < N, and $u = u_{N,j}$ if N < j. Since $d_{2j}(y_{4j-1}) = \text{image of } c_j \otimes P^{2j}$ in E_{2j}^* in the integral spectral sequence for $E' \to BU(n)$ in (2.4), one checks that $d_{2j}(y_{4j-1}) = \text{image of } C_{n,j}\boldsymbol{\beta}^j \otimes P^{2j}$ in E_{2j}^* in the integral spectral sequence for π , and $d_{2r}(y_{4j-1}) = 0$ for j < r < 2j if $d_{2j}(y_{4j-1}) = 0$. Note that for $s, t \in J_{n,k} - \{N\}$ with s < t,

$$(4.1) u_{s,t} = i^* U_{s,t}$$

where $U_{s,t} = \delta(z_{2s-1}z_{2t-1})$ since

$$\begin{split} \mathrm{Sq}^{\,\mathrm{l}}(z_{2s-1}z_{2t-1}) &= \, z_{2s}z_{2t-1} \, + \, z_{2s-1}z_{2t} \\ &+ \, C_{n,s}\alpha^{s-N}z_{2N}z_{2t-1} + \, C_{n,t}\alpha^{t-N}z_{2N}z_{2s-1} \end{split}$$

by (3.4). Thus $E_{2N+1}^{*,*} = Z[\beta] \otimes E_{2N+1}^{0,*}/K$ where K is the ideal generated by $\beta^N \otimes P^{2j}$ for $j \in J_{n,k}$. The differentials d_p are trivial for p > 2N and $p \neq 2n$ so it follows that

$$(4.2) E_{\omega}^{**} = E_{2n+1}^{**} = Z[\beta]/(\beta^n) \otimes E_{2n+1}^{0,*}/K$$

as graded algebras.

The only nontrivial extension from E_{ω}^{**} to $H^{*}(PV_{2n,k})$ is the nontrivial extension of Z by Z_{2} . Since $\tau(z_{2N-1}) = \rho_{2}(\beta^{N})$, it follows from the universal example for division by 2 that

(4.3)
$$\omega^N = \pi^* \beta^N = 2e_{2N}$$
 with $i^* e_{2N} = P^{2N}$ and $\rho_2(e_{2N}) = z_{2N}$.

Consider the following commutative diagram.

The above rows are the Gysin sequence for the fibration $S^1 \to V_{2n,k}$ $\to PV_{2n,k}$. For $s \in J_{n,k} - \{N\}$, we define

$$Y_{2s} = \delta(z_{2s-1}).$$

Note that $i^*Y_{2s} = P^{2s}$ and $\rho_2(Y_{2s}) = z_{2s}$. We define

$$(4.6) V_s = \delta(z_{2s-1}z_{2n-1}) \in H^{2n+2s-1}(PV_{2n,k}).$$

Clearly $2V_s = 0$ and $\rho_2(V_s) = z_{2s}z_{2n-1} + \alpha^{n-N}z_{2N}z_{2s-1} + C_{n,s}\alpha^{s-N}z_{2N}z_{2n-1}$. Note that $i^*V_s = P^{2s}y_{2n-1}$ since $i^*\rho_2(V_s) = x_{2s}x_{2n-1}$. For any $j \in J_{n,k} - \{N\}$, we now show there exists

$$(4.7) X_{4i-1} \in H^{4j-1}(PV_{2n,k}) \text{ with } i^*X_{4j-1} = y_{4j-1} \text{ and } \rho_2(X_{4j-1}) = Z_{4j-1}.$$

Let u be any class in $H^{4j-1}(PV_{2n,k})$ with $i^*u = y_{4j-1}$. Then $\rho_2(u) = Z_{4j-1} + \alpha z$ with $z \in H^{4j-3}(PV_{2n,k}; Z_2)$ by (4.4). Sq¹(αz) = 0 so $\alpha z = \rho_2(Z)$, and $i^*Z = 2V$ since $\rho_2(i^*Z) = i^*(\rho_2 Z) = i^*(\alpha z) = 0$. Select Z' such that $i^*Z' = V$ by (4.2). Then $Z - 2Z' = \omega Z''$ and $X_{4j-1} = u + \omega Z''$ satisfies (4.7).

Take any class $u \in H^{4N-1}(PV_{2n,k})$ with $i^*u = 2y_{4N-1}$. Then $\rho_2(u) \in \ker \operatorname{Sq}^1 \cap \ker i^*$ so $\rho_2(u) = \alpha w$ with $\operatorname{Sq}^1 w \neq 0$ by (4.4). It follows that $\rho_2(u) = \alpha^{2N-n} z_{2n-1} + \alpha \rho_2(V)$ for $V \in H^{4N-3}(PV_{2n,k})$. Define $X_{4N-1} = u + \omega V$ and note that

(4.8)
$$i^*X_{4N-1} = 2y_{4N-1}$$
 and $\rho_2(X_{4N-1}) = \alpha^{2N-n}z_{2n-1}$.

Similarly, it follows from (4.4) and the fibration $V_{2N-1,k+2N-2n-1} \to PV_{2n,k} \to PV_{2n,2n-2N+1}$ that we can choose $Y \in H^{2n+2N-1}(PV_{2n,k})$ so that

(4.9)
$$2Y = \omega^{n-N} X_{4N-1}, \quad i^*Y = P^{2N} y_{2n-1}, \quad \text{and} \quad \rho_2(Y) = z_{2N} z_{2n-1}.$$

One checks using (4.4) that

(4.10)
$$\omega^{2N-n}Y = e_{2N}X_{4N-1}.$$

Note that $H^*(PV_{2n,k}; Q) = Q[\tilde{\omega}]/(\tilde{\omega}) \otimes QE(\tilde{X}_{4j-1} | j \in J_{n,k})$. In summary we have the following

Theorem 4.11. Suppose that k < n+1 with k odd. If N = n, $H^*(PV_{2n,k}) = H^*(CP^{n-1}) \otimes H^*(V_{2n,k})/(y_{2n-1})$ as algebras. If N < n, $H^*(PV_{2n,k})$ is generated by the classes ω , e_{2N} , Y_{2s} , V_s , X_{4j-1} , $U_{s,t}$ and $Y_{s,t}$ where $j \in J_{n,k}$ and S_s , $t \in J_{n,k} - \{N\}$ with $S_s < t$. Relations among the generators and the product structure are determined by the rational and Z_2 cup products.

Remark. $H^*(PV_{2n,k})$ contains the subalgebra $Z[\omega]/(\omega^n)\otimes ZE(X_{4i-1}\mid j\in J_{n,k}).$

Case II. We assume that n is even and k = n + 1. Thus n = 2l. Set $d_l = \frac{1}{2} C_{n,l}$. Choose X_{4l-1} in $H^{2n-1}(PV_{2n,k})$ such that

$$(4.12) i^*X_{4l-1} = y_{4l-1} - d_l y_{2n-1} and \rho_2(X_{4l-1}) = Z_{4l-1}.$$

Then $H^*(PV_{2n,k})$ is again given by (4.11).

5. Integral cohomology.

Case III. Finally we assume 2l < n with k odd. Let d_j denote $\frac{1}{2}C_{n,j}$ for $l \le j < N$. Set $b_l = d_l$ and inductively define $b_i = G.C.D.(d_i, b_{i-1})$ for l < i < N.

Set $b_N = \text{G.C.D.}(b_{N-1}, C_{n,N})$. If N = l, set $b_N = C_{n,l}$. Define b_j inductively for $2N \leq 2j < n$. Suppose $b_j > 1$. Set $b_{j+1} = \text{G.C.D.}(b_j, \lambda_j)$ where $\lambda_j \in Z_{b_j}$ is chosen uniquely such that $C_{n,j+1} = 2\lambda_j \mod b_j$. If $b_j = 1$, set $b_i = 1$ for 2j < 2i < n. The argument of [6, Proposition 5] shows

PROPOSITION 5.1. Ker $\pi^* = [b_l \beta^{2l}, \dots, b_j \beta^{2j}, \dots, \beta^n]$ for $2l \leq 2j < n$. Ker $\bar{\pi}^* = [b_l \beta^{2l+1}, \dots, b_j \beta^{2j+1}, \dots, \beta^{n+1}]$ where $\bar{\pi} : (PV_{2n,k}, V_{2n,k}) \to (CP^*, *)$.

Set $a_i=b_{i-1}/b_i$ for 2l<2i< n. Set $y_{4N-1}=2y_{4N-1}$. Recall $T^{q-1}/\text{im}\ i^*=\text{Ker}^q\pi^*/\text{Ker}^q\bar{\pi}^*$ where $T^{q-1}\subseteq H^{q-1}(V_{2n,k})$ denotes the subgroup of transgressive elements. Thus we obtain from (5.1) the following

COROLLARY 5.2. $T^q/\text{im } i^* = 0$ for $2n \leq q$. $T^{4i-1}/\text{im } i^* = Z_{a_i}$ for 2l < 2i < n. $T^{4l-1}/\text{im } i^* = Z$. $T^{2n-1}/\text{im } i^* = Z_{b_{s-2}}$ if n = 2s and Z_{b_s} if n = 2s + 1.

Thus there exist classes X_{4j-1} in $H^{4j-1}(PV_{2n,k})$ for 2l < 2j < n such that $i^*X_{4j-1} = a_jy_{4j-1}$. If n = 2s + 1, choose X_{2n-1} in $H^{2n-1}(PV_{2n,k})$ such that $i^*X_{2n-1} = b_sy_{2n-1}$. If n = 2s, choose X_{2n-1} such that $i^*X_{2n-1} = b_{s-1}y_{2n-1}$, and define X_{4s-1} so that $i^*X_{4s-1} = y_{4s-1} - d_sy_{2n-1}$ if s < N and $i^*X_{4s-1} = y_{4s-1} - \lambda_sy_{2n-1}$ if s > N. Select X_{4j-1} so that $i^*X_{4j-1} = y_{4j-1}$ for n < 2j < 2n. Choose a fixed set of the above classes arbitrarily. Let p be a fixed odd prime and set $I_p = \{j \mid 2l < 2j < n, \ p \mid a_j\} \cup \{l\}$. For $j \in I_p$ with $j \neq N(p)$, set $\overline{v}_{4j-1} = v_{4j-1}$ from (3.2). Define $\overline{v}_{4j-1} = \rho_p(X_{4j-1})$ for l < j < n, $j \notin I_p$, $j \neq N(p)$. Set $\overline{v}_{2n-1} = \rho_p(X_{2n-1})$ if $p \not | b_{s-1}$. Then

$$\begin{split} H^*(PV_{2n,k};Z_p) &= Z_p\left[\left.\tilde{\boldsymbol{\omega}}\right]/(\tilde{\boldsymbol{\omega}}^{2N(p)}) \\ &\otimes Z_pE(\bar{\boldsymbol{v}}_{4j-1},\bar{\boldsymbol{v}}_{2n-1}\mid j\in J_{n,k},j\neq N(p)), \\ &\qquad \qquad \text{if } 2N(p) < n, \\ &= Z_p\left[\left.\tilde{\boldsymbol{\omega}}\right]/(\tilde{\boldsymbol{\omega}}^n) \otimes Z_pE(\bar{\boldsymbol{v}}_{4j-1}\mid j\in J_{n,k}), \\ &\qquad \qquad \text{if } n\leq 2N(p). \end{split}$$

Note that

$$H^*(PV_{2n,k};Q) = Q[\tilde{\boldsymbol{\omega}}]/(\tilde{\boldsymbol{\omega}}^{2l}) \otimes QE(\tilde{v}_{4j-1},\tilde{v}_{2n-1} \mid l < j < n)$$

where $\tilde{v}_{4j-1} = \rho_0(X_{4j-1})$ and $\tilde{v}_{2n-1} = \rho_0(X_{2n-1})$. Arrange I_p so that $l = i(0) < i(1) < \cdots < i(j) < \cdots < i(t)$ and write $b_{i(j)} = p^{r(j)}e_j$ where $p \not\mid e_j$. Then r(j) > r(j+1) and $b_i = p^{r(j)}e_i$ for $i(j) \le i < i(j+1)$ where $p \not\mid e_i$. The argument of [6, Lemmas 8, 10] determines the mod p Bockstein spectral sequence via the following

Lemma 5.3. The differential d_r for $_pE_r(PV_{2n,k})$ is trivial unless r=r(j). $d_r(\bar{v}_{4i(j)-1})=0$ for r< r(j). $d_{r(j)}(\bar{v}_{4i(j)-1}\tilde{\omega}^s)=k_j\tilde{\omega}^{2i(j)+s}\neq 0$ for $0\leq s<2\left[i(j+1)-i(j)\right]$, $k_j\in Z_p$. If n=2s+1=2N(p)+1, s=i(t) and $d_{r(t)}(\bar{v}_{4s-1})=k_s\tilde{\omega}^{2s}$ with $k_s\neq 0$ and $d_{r(t)}(\bar{v}_{4s-1}\tilde{\omega})=0$. If n=2s=2N(p), then i(t)=s-1 and $d_{r(t)}(\bar{v}_{4s-5})=k_t\tilde{\omega}^{2(s-1)}\neq 0$ and $d_{r(t)}(\bar{v}_{4s-5}\tilde{\omega}^2)=0$. If 2N(p)>n, $d_{r(t)}(\bar{v}_{4i(t)-1}\tilde{\omega})\neq 0$ for s< n-2i(t). If 2N(p)< n-1, $d_{r(t)}(\bar{v}_{4i(t)-1})=0$. Further, $H^*(PV_{2n,k})/T$ Tors. $\otimes Z_p=H^*(PV_{2n,k};Q)$ as algebras over Z_p .

We apply Poincaré duality to specify generators for $H^*(PV_{2n,k})$. Let U denote the fundamental cohomology class for the closed orientable manifold $PV_{2n,k}$ of dimension $\frac{1}{2}k(4n-k-1)-1$. Fix an arbitrary choice of generators for $H^*(PV_{2n,k}; \mathbb{Z}_2)$ such that $z_{2s} = \operatorname{Sq}^1 z_{2s-1}$ for $s \in J_{n,k}$. Analogous to Case I, we define 2-torsion classes

$$V_{2s} = \delta(z_{2s-1}) \quad \text{and} \quad U_{s,t} = \delta(z_{2s-1}z_{2t-1})$$
 for $s, t \in I_{n,k} - \{N\}$ with $s < t$.

Suppose N = l. Note that $\pi^*\beta^2 = 2e_{2l}$ where $\rho_2(e_{2l}) = z_{2l}$. Also $\rho_2(X_{4j-1}) = z_{2j-1}z_{2j} + z_{4j-1} + \gamma_j$ for some γ_j with $i^*\gamma_j = 0$. So

$$U = \omega^{l-1} e_{2l} X_{2n-1} \prod_{l < j < n} X_{4j-1}$$

since $\rho_p U \neq 0$ for all primes p. Thus we obtain

Proposition 5.5. For 2l < n with N = l and k odd,

$$\begin{split} H^*(PV_{2n,k})/\mathrm{Tor} &= Z[\omega]/(\omega^l) \\ &\otimes ZE(e_{2l}, X_{2n-1}, X_{4j-1} \mid l < j < n). \end{split}$$

If $2l \leq N \leq n$, then $N=2^r$ for some integer r. Set $s=2^{r-1}$ and note that $T^{4N-1}/\text{im }i^*$ is generated by $\frac{1}{2}y_{4N-1}+P^{2N}y_{4s-1}$. Recall that y_{4N-1} was redefined to be twice the generator in (2.3). Let $I_2=\{j \mid 2l < 2j < n, 2 \mid a_j\}U\{l\}$, and arrange I_2 so that

$$(5.6) l = i(0) < i(1) < \cdots < i(t).$$

Note that i(t) = s. Write $b_{i(j)} = 2^{r(j)}g_j$ where $2 \not\mid g_j$. There exist classes $Z_{4j-1} = z_{2j-1}z_{2j} + z_{4j-1} + \gamma_j$ with $i^*\gamma_j = 0$ for $j \in J_{n,k} - \{N\}$ such that in the mod 2 Bockstein spectral sequence we have $d_{r(j)}(Z_{4i(j)-1}) = \alpha^{2i(j)} \neq 0$. Any choice of the classes X_{4j-1} for l < j < n with j not in I_2 satisfies $\rho_2(X_{4j-1}) = Z_{4j-1} + \mu_j$ for some μ_j with $i^*\mu_j = 0$. Classes $X_{4i(j)-1}$ can be chosen so that

(5.7)
$$i^* X_{4i(j)-1} = a_{i(j)} y_{4i(j)-1},$$
 for $0 < j \le t$.

$$\rho_2(X_{4i(j)-1}) = \alpha^{2i(j)-2i(j-1)} Z_{4i(j-1)-1},$$

Also $\rho_2(X_{2n-1}) = z_{2n-1} + \gamma$ and $\rho_2(X_{4N-1}) = z_{2N}Z_{4s-1} + z_{4N-1} + \mu$ with $i^*\gamma = i^*\mu = 0$ for $2l \leq N < n$. If N = n, $\rho_2(X_{2n-1}) = z_{2s-1}z_{2s}$ for some choice of X_{2n-1} . Thus

$$U = \omega^{2l-1} X_{2n-1} \prod_{1 < j < n} X_{4j-1}$$

since $\rho_{\nu}(U) \neq 0$ for all primes p, and we obtain the following

Proposition 5.8.

$$H^*(PV_{2n,k})/Tors = Z[\omega]/(\omega^{2l-1}) \otimes ZE(X_{2n-1}, X_{4j-1} | l < j < n)$$

for $2l \leq N \leq n$ with k odd.

Finally we consider the case l < N < 2l < n where divisibility by 2 occurs among certain products in $H^*(PV_{2n,k})/Tors$. Note that the free class $\pi^*\beta^N = 2e_{2N}$ with $i^*e_{2N} = P^{2N}$ and $\rho_2(e_{2N}) = z_{2N}$. Suppose i(t) < N in (5.6). The higher order mod 2 Bocksteins are given by $d_{r(s)+1}(Z_{4i(s)-1}) = z_{2N}\alpha^{2i(s)-N}$ for $0 \le s \le t$. Thus $X_{4i(j)-1}$ for $1 \le j \le t$ can again be chosen to satisfy (5.7). For proper choices $\rho_2(X_{4N-1}) = \alpha^{2[N-i(t)]}Z_{4i(t)-1}$ and $\rho_2(X_{2n-1}) = z_{2n-1} + \mu$ for some μ with $i^*\mu = 0$. Now

$$U = e_{2N} X_{2n-1} \omega^{2l-N-1} \prod_{l < j < n} X_{4j-1}$$

since $\rho_p(U) \neq 0$ for all primes p. Note that $P^{2N}y_{4j-1}$ for $j \in J_{n,k} - \{N\}$ survives in the integral spectral sequence for π for l < N < 2l < n so there exist classes Y_j in $H^*(PV_{2n,k})$ for $1 \leq j \leq t$ such that

$$i^*Y_j = P^{2N}y_{4i(j)-1} \quad \text{and}$$

$$Y_j\omega^{2[i(j)-i(j-1)]} = e_{2N}X_{4i(j)-1} \quad \text{modulo torsion}.$$

If N = i(t), Y_t is not defined and X_{4N-1} can be chosen so that

 $\rho_2(X_{4N-1}) = \alpha^{2[N-i(t-1)]} Z_{4i(t-1)-1}.$ In summary, we have the following

PROPOSITION 5.10. For l < N < 2l < n and k odd, $H^*(PV_{2n,k})/Tors$ is generated by ω , e_{2N} , X_{2n-1} , X_{4j-1} , and Y_r for l < j < n and $1 \le r \le t$ with Y_t omitted if i(t) = N.

Theorem 5.11. Suppose that 2l < n with k odd. $H^*(PV_{2n,k})$ is generated by the classes ω , e_{2N} , X_{2n-1} , X_{4j-1} , Y_r , V_{2s} , and $U_{s,t}$ for l < j < n and $s, t \in J_{n,k} - \{N\}$ with s < t. $H^*(PV_{2n,k})/Tors$ is given by (5.5), (5.8), and (5.10).

Remark. The known result that the real geometric dimension of m_j based on CP^j must be greater than j-2 follows from the fact that $\pi^*\beta^{2l}$ is in Tor $H^*(PV_{2n,k})$.

REFERENCES

- 1. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207. MR 14, 490.
- 2. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. II, Amer. J. Math. 81 (1959), 315-382. MR 22 #988.
- 3. S. Gitler and D. Handel, The projective Stiefel manifolds. I, Topology 7 (1968), 39-46. MR 36 #3373a.
- 4. S. Gitler, *The projective Stiefel manifolds*. II. Applications, Topology 7 (1968), 47-53. MR 36 #3373b.
- 5. C. Miller, *The topology of rotation groups*, Ann. of Math. (2) 57 (1953), 90-114. MR 14, 673.
- 6. C. Ruiz, The cohomology of the complex projective Stiefel manifold, Trans. Amer. Math. Soc. 146 (1969), 541-547. MR 40 #3584.
- 7. B. Steer, Une interprétation géométrique des nombres de Radon-Hurwitz, Ann. Inst. Fourier (Grenoble) 17 (1967), 209-218. MR 37 #3590.

University of Notre Dame, Notre Dame, Indiana 46556