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STIEFEL MANIFOLDS 

A. DU ANE RANDALL 

1. Introduction. Let Vnfc denote the Stiefel manifold of ortho-
normal fc-frames in Euclidean n-space. The special orthogonal group 
SO(2) acts freely on V2njfc via the diagonal embedding of S1 in U(n) 
and the standard embedding of U(n) into SO(2n) corresponding to 
realification r : BU(n) —> BSO(2n). The quasi-projective Stiefel mani
fold PV2nfk is the quotient space of V2n>k under this action of SO(2). 
The spaces PV2nk are classifying spaces for sectioning multiples of 
a complex line bundle. If X is a finite complex and £ a complex line 
bundle over X, then n | has k linearly independent real sections if 
and only if there is a map / : X —> PV2nk such that f*r)0 = £ 
where % is the complex line bundle over PV2nk associated to the 
S o b e r i n g V2riyk —» PV2nk. In this paper we determine the co-
homology algebras of the spaces PV2nk. 

2. Preliminaries. We first establish some notation. Let RE(xi | i G /) 
denote the exterior algebra over a ring R with generators x{ of degree 
i. Let V(xi9 • • -, xm) denote the commutative associative algebra over 
Z2 on generators xi9 • • -,xm such that the monomials xf1 • • • xm

e™ 
with €j = 0 or 1 form an additive basis. Let {pEr(X)} denote the 
modp Bockstein spectral sequence for X with p£i(X) = H*(X; Zp). 
Cri denotes the binomial coefficient (J). Let pp denote the universal 
coefficient map H*( ; Z) —» //*( ; Zp) for any prime p and let p0 denote 
the map ff*( ; Z) —» H*( ; Q). Denote the image of an integral class 
x under the projection H*(X; Z) -> H*(X; Z)/Tors by x. Finally let 
Jnk represent the set of all integers j such that [ (2n — k)l2] <j<n 
where 0 < k < 2n. We write H*(CP°°) = Z[j8]. 

Recall from [5] the cellular structure of the Stiefel manifold 
V2njk obtained from an embedding of real projective space RP2n-1 into 
0(2n) composed with the projection map 0(2n) —> V2n>fc. The image 
of Rpy determines a class P2j in H2j(V2ri}k; Z) of order 2 for every 
J £ Jn,k- Set %2j == PiiP2*)- RP2n~k determines a free integral class 
i/2n-fc f° r ^ even. Let x2n-k = P2(j/2n-fe) f° r & even and let x2n_/t be 
the unique class such that Sq1x2n_k= x2n^k+l for fc odd. By [2] 
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there is a class y2n-i €E H2n~l(V2n)k)
 s u c n that T(j/2n-i) = *2n where 

r denotes transgression in the spectral sequence for the fibration 

V2„,fc -* BSO(2n - k) -+ BSO(2n) 

andX2n is the Euler class. Setx2n_i = P2(j/2n-i)- By [1] and [5] 
H*(y2n,k-, Za) = V(x2fl_fc? • • -, %2n-i) and 

(2.1) . 
SqlXj — Cj}ixi+j. 

For every jE.Jnk, there is a class t/^-i in H4j_1(V2n>fc) such that 
T(%4/-i) = the Pontryagin class pj and p2(y^-i) = %*2j-i + % - i 
from [2,30.10]. By [1] 

(2.2) H*(V2njfc)/Torsion = ZE(y2n_k, y2n_l9 y^_x \j G JnJc) 

where y2n-k is omitted for k odd. For integers s,tŒ Jnk with s < t 
let ust be the integral class of order 2 such that p2(uSft) = x2sx2t_x + 
*2t*2*-i' We state the following known 

PROPOSITION 2.3. The classes y2n-\, y^- i , t/M, P2j for j,s,t (=. Jnk 

with s < t, y2n-k for & et;£n, and £/ie imi£ generate the algebra 
H*(V2n,k). 

Consider the following commutative diagram of fibrations. 

^2n,fc = ^2n,k = Vlnjk = ^2n,fc 

(2.4) J ÄE2n>* -> E2nM -> £ ' ^ B S O ( 2 n - f c ) 

i 4,77 4 4 

CF X CP- ^3 BU(n) U BSO(2n) 

Here 77 : E2nk —> CP°° is the principal fibration induced from the 
fibration BSO(2n - k) -> BSO(2n) by the map r ° nq\CP™ -> 
BSO(2n) classifying the n-fold sum of the Hopf bundle 77 over CP °° 
regarded as a real vector bundle. By construction E2nk is the classify
ing space for finding k independent real sections to the n-fold Whitney 
sum of a complex line bundle over a finite complex. The method of 
proof of [3, Proposition 1.3] yields the following 

PROPOSITION 2.5. The spaces PV2nk and E2nk have the same homo-
topy type. 

Consider the following homotopy commutative diagram of vertical 
fibrations with m = n — k. 
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$2m = S2m = $2m 

(2.6) •^ PV2n>2fc 4 . BSO(2m) 

V2„,2fc-i "* PV2„,2fc_i -+BSO(2m+ 1) 

The fibration S2m -* PV2nj2)t -* PV2n>2fc_1 is totally nonhomologous 
to zero so we obtain 

PROPOSITION 2.7. tf*(PV2n,2fc) = H*(PV2n>2fc_1) ® tf*(S2m) as 
H*(PV2n<2k-i)-m°dules. 

We select X uniquely in H2m(PV2n2fc) such that t*X generates 
H*(S2m) and 

(2.8) s*X2m = 2X + CBilkffl» 

where co denotes 7r*/3 for TT : PV2n2fc -+ CPœ in (2.4). This selection 
is possible by [6, Theorem A] using the natural map Ynk —» PV2n>2fc 

where Ynfc denotes the complex projective Stiefel manifold. Since 
*2m = Pm hi H*(BSO(2ra)), it follows that 

(2.9) 4X2 = C n f c ( 1 _ cn>fc)eo*» - 4Cn,fcXo>-

Thus we consider the spaces PV2n,k primarily for fc odd. 
We remark that the problem of determining the geometric dimen

sion of mj based on CPl is equivalent to finding the largest integer k 
such that j E2n>fc —> CPl has a section where j E2rlyk —* CPl *s the 
fibration in (2.4) induced from TT via the standard embedding j : CPl —> 
CP00. (See [7] for the case I = n - 1.) Note that PV2n>1 is CPn~l. 

3. Rational and modp cohomology of PV2n>k* Let F denote Q 
or Zp for an odd prime p. From (2.2) and (2.3) H*(V2n>fc; F) = 
FE(y2n-k, yzn-i, yij-i \j €-Jn,k) where t/2n_fc is omitted for k odd, and 
~ denotes the image under p : ff*( ; Z) —» H*( ; F). 

THEOREM 3.1. Let k be an odd integer with k < n + 1. Then 
H*(PV2n>k; F)=F[5>]/(a») ® F E ^ \j G/„,,) tefew i*vp = yp 

and co = 7T*/3. 

PROOF. The Serre spectral sequence for the fibration V2n k —» PV2n,fc 
-^ CP™ in (2.4) with coefficients F has E2*.*= F[j8] ® 
F E ^ n - i ^ ^ - i IJ G/n,fc)- Since T ^ t / ^ ) = ft(mj) = CnJ/3*> in the 
integral spectral sequence for TT, the fiber is transgressively generated 
over F. By dimensionality d2n is the first nonzero differential and 
^2n(î/2n-i) = T(t/2n-i) = ^ ( ^ = ßn* Note that the image of the ideal 
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(j8») in Ehf, is 0 and E ^ = E*^ <8> E2°n*, All the 
following differentials are trivial so Et;* = E*n'*i- The result 
follows from [1, Proposition 8.1]. 

Let I denote the smallest integer in Jn>k. Given an odd prime p, 
let N(p) denote the smallest integer j in Jnk such that p does not 
divide Cnj. If no such integer j exists, set N(p) = oo. 

THEOREM 3.2. Let k be an odd integer with k> n. lfn^2l 

H*(PV2n>k; Q) = Q[S>]l(a>*1) ® QE(v2n_l9 v ^ \l< j < n) 

with i*vs = ys = po(ys). Ifn = 21, 

H*(PV2n>k; Q) = C[ö] / (ö n ) ® Ç ^ K - i 17 e/n,fc) 

where i*v4t_l = 2j/4*_1 — Cn^jjf2n-i a n ^ **ü« = !/* otherwise. If 
2N(p) < n, 

H*(FV2nJc;Zp) = Zp[&]l(&™<P>) 

<g> ZpE(ü2n_1? ü ^ i I j G Jn>k,j fé N(p)) 

with i*vs = ys = pp(y,). If2N(p) > n, 

H*(PV2nfk;Zp) = Z»[fi]/(fi») <8> Z p E K - . i I; G/nifc) 

with i*vs = ys. If2N(p) = n, 

H*(PV2n,fc; Zp) = Z»[ô]/(ô») ® Z p E ^ I; G/n,fc) 

where PvtNM-i = 2t/4N(p)_1 - Cnf2V(p)y2n-i-

Theorem 3.2 follows similarly from the proof of (3.1). From (3.2) and 
(2.7) we obtain the following 

COROLLARY 3.3. H*(PV2n>k) has p-torsion for an odd prime p if and 
only if k> n + 2 for n even, k > n + 1 for n odd, and p divides 
Cn,i-

The Z2 cohomology algebra of PV2nk and module structure over 
the Steenrod algebra A have essentially been determined up to a 
small indeterminacy by Giti er and Handel in [3]. Let N denote the 
smallest integer j with C n j odd and 2n — fc + 1 = 2 / ' ^ 2n. Applying 
the proof of [3, Theorem 2.8] gives the following 

THEOREM 3.4. As an algebra 

H*(PV2n,k;Z2)=Z2[a]l(a») 

' ' % z2N-2> Z2N> ' ' *> z2n-l) 
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where i*zp = xp and a = p2Ì<*>)- tfCzna ̂ s even> 

Sq%_! = ]T Cq-l-2k,i-2kW2k(™l0)Zq+i-2k-l + A(ç, 0-
fcG/C 

IfC2nfq is odd, then q = 2s and 

Sq%zq-1 = 2 ^q~l-2k,i-2kw2k{m)o)Zq+i-2k-\ 
kGK 

+ S C2N-i-2fc,j-2feSqi-jos-Nti;2fc(ni7o)2;2N+j-2fc-i-
Mei 

Here A(g, i) = 0 if q + i is even, and k(q, Ï) = €a r if q + i — 1 = 2r 
wfcere € = 0 or 1. K = {fc 10 â 2fc g i and q + i - 2k^ 2N} and 
J= {j,k\0^2k<j^i}. 

Suppose now that k < n + 2 for n odd and fc < n + 3 for n even. 
We shall show that all torsion in H*(PV2nfk) has order 2. Note from 
(3.4) that S q 1 * ^ ! = zn + X(2/, 1) where / < N and 2n - fc < 2/. If 
A(2/, 1) 7̂  0, we define z^ to be S q ^ ^ i - Take 5 E. Jnk with s ̂  N. 
Its < N, define 

Z4S-I = ^ s - l ^ s + 2J ^n,j°^Z4s-2j-l + A * a ' S~n%2n-1 
j=2s-n + l 
j*2s-N 

where 

2 5 - N - l 

K ~ ^n,2s-N + Ar ^n,j^n,2s-j ^ ^2. 
j=2s-n+l 

If s > N, define 

TV—1 

Z 4 S - I = z2s-lz2s + 2^ Cnï7°fets-2j-l 
j=2*-n+l 

+ ^ n , ^ ~ N ^ 2 N ^ - l 

3 N - 2 S - 1 

i=2ZV-n+l 

Note from (3.4) that Z4s_! G ker Sq1, and Z4s_! is not in im Sq1 since 
i*Z4s_x = X2s-iX2s' Clearly Z2

S_1 is in imSq1. Note also that 
Sq1^2n-i = <xn~N%2N a n d , for 0 ^ j < n — N, 



624 A. D. RANDALL 

(ofcav)* = Sq1 ( a * £ «"C^w-a - i ) . 
X l=2N-n+l ' 

Let T denote the graded algebra over Z2 with trivial multiplication 
on generators z2N, z2Nz2n_Y, a n d «2N-n^2n-i- Similar computation 
using (3.4) yields the following for k odd and k < n + 2. 

PROPOSITION 3.5. 

2£2(PV2n,fc) = Z 2 [ a ] / ( ^ ) 

® Z2E(Z4s_x | * G JBffc, s fi N) ® T /1 

u;/iere Z is £he tdeaZ generated by an~N ® 1 ® z2N and a n _ N ® 1 ® 
,x,2N—rw 
<* z2n-l-

COROLLARY 3.6. All torsion in H*(PV2n>k) has order 2 where 
k < n + 2/or n odd and fc < n + 3/or n £U£n. 

PROOF. Assume fc is odd and k < n + 2. To show 2 ^ 2 ( ^ 2 ^ ) = 

2EM(PV2rl)fc), it suffices to define an isomorphism <p : 2^2(^2^*) —* 
//*(PV2n>fe; Q) of graded vector spaces over Z2. Define >̂(<**) = S)s 

for s < N, (p(o^z2N) = œN+s and ^(as+22V-nz2n-i) = ^>^4N-I for O g 
5 < n - IV, ^(aszswz2n_i) = *>*+n-Nt;4N-i for 0 g 5 < IV, and ^ ( Z ^ ) 
= % _ i for j G/n>fc and j ^ N. Extend <p to an isomorphism and 
apply (2.7) for k even. 

4. Integral cohomology. 
Case I. We assume in Case I that k < n + 1 with Zc odd. We 

determine the differentials and E%* for the integral spectral sequence 
for the fibration V2nfc -4> PV2nk -» CP °° in (2.4) and then use the Gysin 
sequence to specify generators for H*(PV2n>k). E2*'* = Z[ß] ® 
# *(V2n,fc). Since T(P2^) = 8wy for the fibration BSO(2n - kj -> 
BSO(2n) where S denotes the integral Bockstein operator, P2J for 
j G/n>fc survives in the integral spectral sequence for n. r(y2n_l) = 
X(mj) = ßn so Eg^i = 0 for p > 2n. All differentials kill 2y4j_l for 
j £Jn,k since T(2J/4 J_1) = Pj(nq). Note that d2N is the first nontrivial 
differential in the integral spectral sequence for IT since d2N is the first 
nontrivial differential in the Z2 spectral sequence by (3.4) and d2n 

is the only nontrivial differential with F coefficients by (3.1). If N = n, 
clearly 

E*-* = Eliti = Z [ / W ) ® H*(V2n>k)l(y2n_x). 

Assume N < n. Now d2N(l <8> t/4 N_i) = /3 N <8> P2JV since 

d 2 N ( l ® x2N_!X2N) = ßN ® x2iV = p 2 ( /3" ® P 2 ") . 
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Similarly, d2N(l ® u) = ßN ® P2j where i* = uj>N if j < N, and 
w = wNj- if N <j. Since d^iy^-i) = image of c,- ® P2j in E|/* in the 
integral spectral sequence for E ' —» BU(n) in (2.4), one checks that 
d2j(y^j-i) = image of Cnéft ® P2j in E|/* in the integral spectral 
sequence for 7r, and d2r(y^_l) = 0 for j < r < 2/ if ^ ( î / ^ - i ) ==: 0. 
Note that for 5, t G JnJk - {N} with s < t, 

(4.1) u9jt = i*t/^ 

where [/M = 8(z2s-iZ2t-i) since 

z2sz2t-i ' %2s-lz2t 

+ Cn^a,-Ak22Vz2t_1 + C ^ a ' - V ^ . j 

by (3.4). Thus E2iy*+i = Z[ß] ® E%£+iIK where K is the ideal 
generated by ß N ® F2j for j G /nfc. The differentials dp are trivial for 
p > 2N and p ^ 2nso it follows that 

(4.2) E*>* = £§„.*! = Z[j8] /(/3") ® E&Ï! / K 

as graded algebras. 
The only nontrivial extension from El '* to H*(PV2n>k) is the non-

trivial extension of Z by Z2. Since r(z2N_i) = p2(ß
N), it follows from 

the universal example for division by 2 that 

(4.3) o)N = 7T*ßN = 2e2N wi th i*e2N = P2N a n d p 2 ( e 2 N ) = z2N, 

Consider the following commutative diagram. 

(4.4) 

v v y 4< 

-»• # i + 1 (V 2 i a ; Z) 4 J/'(PV2ra; Z) IS Hi+2(PV2n,*; Z) -C Hi+2(V2n,*; Z) -* 

4 X 2 | X 2 | X 2 4 X 2 

-* H'+1(V2n>fc; Z) 4 tf'(PV2„,fc; Z) ^ H<+2(PV2„,*; Z) -S H«+2(V2n,*; Z ) -> 

i p 2 4p 2 l p2 4p 2 

-» Hi+1(V2n,*; Z 2 ) 4 tf«(PV2n,t; Z2) -?// i+2(PV2n>j t; Z2)Ì* ff'+2(V2ri(*; Z 2 ) ^ 
^ ^ ^ ^ 

The above rows are the Gysin sequence for the fibration Sx —» V2 n fc 

- » Pv 2 n > f c . 
For s G /„ fc — {N}, we define 

(4.5) y2s = «(««._ !). 
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Note that i*Y2s = P28 andp2(Y2s) = z2s. We define 

(4.6) V, = ô(z2s^z2n^) G H^*-i(PV2n>k). 

Clearly 2VS = 0 and p2(Vs) = z2sz2n_l + an~Nz2Nz2s_l + 
CntSo^-Nz2Nz2n_l. Note that t*V, = F ^ n - i since i*p2(V,) = *2.*2n-i-

For any j G Jnk — {N}, we now show there exists 

(4.7)X4j_1 G HV-l(PV2n*) withi*X4;-_1 = y^x andp2(X4/_1) = ZM_V 

Let w be any class in H4j~l(PV2n}k) with i*w = 1/4,-1. Then p2(w) = 
Z4J-1+ az with z G H*-\PV2riìk;Z2) by (4.4). Sq^az) = 0 s o a z = 
p2(Z), and i*Z = 2V since p2(i*Z) = i*(p2Z) = i*(az) = 0. Select Z ' 
such that i*Z' = V by (4.2). Then Z - 2Z' = o)Z' and X ^ = ti + 
<oZ" satisfies (4.7). 

Take any class u G H4N-l(PV2n>k) with i*u = 2t/4N_1. Then 
p2(w) G ker Sq1 D ker t* so p2(u) = aw with Sq*u; 7̂  0 by (4.4). 
It follows that p2(u) = a2N-nz2n_x + ap2(V) for V G H4"-3(PV2n>fc). 
Define X4N_i = w + wV and note that 

(4.8) i*X4N_l = 2y4N_l and p2(X4N-i) = « 2 N~ n^n-i . 

Similarly, it follows from (4.4) and the fibration V22v-i,fc+2N-2n-i - * 
PV2n,k -* ^V2n>2n_2N+1 that we can choose Y G H2n+2^-1(PV2n^) so 
that 

(4.9) 2Y=eW»-"X4N_1 , i * Y = F 2 % n _ l r and p2(Y) = ^N^n- i -

One checks using (4.4) that 

(4.10) 0,2iV-nY = % X 4 K . , 

Note that H*(PV2nM Q) = Q[&]l(&) ® Ç E t f ^ - i | j £/„,*). In sum
mary we have the following 

THEOREM 4.11. Suppose that k < n + 1 with k odd. If N = n, 
tf*(PV2n;fc) = H*(CP"~l) ® H*(V2n,fc)/(î/2n_1) as aJgeforas. 7/ N < n, 
H*(PV2njfc) is generated by the classes co, e2N? Y2s, Vs, X4j_ l5 C/ŝ  and Y 
where j G /n>k and s j £ /nfc — {N} u;i£n s < t. Relations among the 
generators and the product structure are determined by the rational 
and Z2 cup products. 

REMARK. H*(PV2nk) contains the subalgebra Z[co]/(cün)® 
ZEiX^ljGJ^). 

Case II. We assume that n is even and k = n + 1. Thus n = 21. 
Set di = i Cn>j. Choose X4i_! in H 2 " " 1 ^ ^ , * ) such that 

(4.12) i*X4i_! = î/4i-i ~ dly2n_l and p2(X4i-i) = Z4i-i-



COHOMOLOGY OF STIEFEL MANIFOLDS 627 

Then H*(PV2n,k) is again given by (4.11). 

5. Integral cohomology. 
Case III. Finally we assume 21 < n with k odd. Let dj denote 

2 Cnj for l^j< N. Set b\ = dt and inductively define b{ — 
G . C . D . ( 4 f r i - i ) f o r Z < i < N. 

Set bN= G . C . D . ^ . i , Cn>N). If N = Z, set foN = C^ . Define ty 
inductively for 2N ^ 2/ < n. Suppose fy > 1. Set bj+l = G . C . D . ^ A/) 
where X,- G Zbj is chosen uniquely such that C n j + 1 = 2XJmodfo/. If 
bj; = 1, set fo» = 1 for 2/ < 2i < n. The argument of [6, Proposition 5] 
shows 

PROPOSITION5.1. KerTT* = [hß21, • • -, bß®, • • %ßn]for2l ê 2/ < n. 
KerTf* = [ f e ^ + 1 , ' ' ', bjßV+K • • -,/3"+1] w t e « if : (PV2nM, V2nM) 
-•(CP00,*). 

Set fli = bi^Jbi for 2Z < 2i < n. Set t/42v-i = 2J/4N-I- Recall 
r ^ - V i m i * = Ker^7T*/Ker^7f* where T«-lÇ H«-l(V2njc) denotes 
the subgroup of transgressive elements. Thus we obtain from (5.1) 
the following 

COROLLARY 5.2. 7^/im i* = 0 for 2n ^ q. T4i-llim »* = Za< /or 

2K2i< n. T4l-llim t* = Z. T2n~llim t* = Zb,_2 ifn=2s and Zbs 

ifn = 2 ^ + 1 . 

Thus there exist classes X ^ . ! in H^~~\PV2riik) for 2/ < 2j < n such 
that i*X47_1 = flyi/^-i. If n = 2s + 1, choose X2n_i in f f ^ - ^ P V ^ ) 
such that i*X2n_i = bsy2n_l. If n = 2s? choose X2n_i such that 
**X2„-i = fo*-i!/2n-i> and define X4s_x so that i*X4s_! = y ^ ^ -
dsy2n-i iï s < N and i*X4s_x = t/4s_i — Xsy2n-i if s > N. Select X ^ ! 
so that i*X4j_1 = j/4,-1 for n < 2j < 2n. Choose a fixed set of the 
above classes arbitrarily. Let p be a fixed odd prime and set Ip = 
{j\2l< 2/ < n? p | a,} U {I}. For j G Zp with j ^ N(p), set vij_l = 
Ü^.X from (3.2). Define v^-i = pp(X4j_1) for l< j < n, j $ Ip? 

7 / Mp)- S e t ü 2 n _ i = Pp(X2n_1) i f p / b , _ i . Then 

H*(PV2n, fc;Zp)=Zp[ô>]/(â>2^)) 

® ZpE(v^_ly v2n_l \jEJnjcj ^ N(p))9 

if 2N(p) < n, 

= Z>[û]/(o») ® Z p E ( t V i Ij G/„,fc), 

i f n ^ 2 N ( p ) . 

Note that 

file:///jEJnjcj
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H*(PV2n,fc; Q) = Q[à]l(à21) ® Ç £ ( ^ - i , t32n-i \l< j < n) 

where S^.i = p0(X4/_1) and t52n-i = PoPkn-i)- Arrange Ip so that 
Z = t(0) < i(l) < - - • < i(j)< • • • < t(f) and write foi(i) = p r ^ 
where p/ ejt Then r(y) > r(/ H- 1) and b{ = pr{j)e{ for i(j) ^ i < 
i(j + 1) where pj( eit The argument of [6, Lemmas 8, 10] deter
mines the mod p Bockstein spectral sequence via the following 

LEMMA 5.3. The differential dr for pEr(PV2n>k) is trivial unless r = 
</')• dr(ü4io')-i) = 0 for r < r(j). ^ ( û ^ û * ) = fc,&*W+« / 0 
for 0^s< 2[i(j + 1) - «(/)], fc,- GZp. / / n = 2s + 1 = 22V(p) + 1, 
5 = i(t) and dr(t)(v4s-i) = ks(o

2s with ks ^ 0 and dr(t)(v4s_iù>) = 0. 
If n= 2s= 2N(p), then i( t) = s - 1 and dr(,)(ü4,_5) = ktù)2(s~l) ^ 0 
and dr{()(t;45_5û)2) = 0. If 2N(p) > n, ^ ( Ü ^ - I S ) 7̂  0 /or 5 < n 
- 2t(*). / / 2N(p) < n - 1, dr(,)(t;4i(t)-i) = 0. Furtter, H*(PV2n,k)l 
Tors. ® Zp = H*(PV2nfc; Ç) as algebras over Zp. 

We apply Poincaré duality to specify generators for H*(PV2rifk). 
Let t/ denote the fundamental cohomology class for the closed orien
table manifold PV2nk °f dimension -2 k(4n — k — 1) — 1. Fix an 
arbitrary choice of generators for H*(PV2nk; Z2) such that z2s — 
Sqlz2s_i for s G. Jnk. Analogous to Case I, we define 2-torsion classes 

^ x Va, = 8(z2s-i) and U8jt = « ( z^ - i ^ t - i ) 
(5.4) 

for 5, £ G JH}k - {iV} with 5 < t. 

Suppose N = I. Note that n*ß2 = 2#2j where p2{e2i) = z2j. Also 
p2(X4;_1) = ^2j-iz2j + % - i + 7j f° r someyj with i*yy = 0. So 

U= <ul-le2iX2n-i J ! X4;'-i 
/ <j <n 

since ppU j£ 0 for all primes p. Thus we obtain 

PROPOSITION 5.5. For 21 < n with N = I and k odd, 

H*(FV2n,fe)/Tor=Z[cü]/(o)0 

® Z£(e2i, X2n_1? X ^ x I / < j < n). 

If 2Z § 2V â n, then N = 2r for some integer r. Set s = 2 r _ 1 and note 
that T4N-Vimi* is generated by i y4N-i + P2Ny4s-i> Recall that 
t/4N_1 was redefined to be twice the generator in (2.3). Let I2 = 
{j I 21 < 2/ < n, 2 I aj}U{l}, and arrange I2 so that 

(5.6) I = t(0) < i(l) < < i(t). 
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Note that i(t) = s. Write bi(j) = 2r^gj where 2/g,-. There exist 
classes Z^_x = Zy-iZy + z^_x + y, with i*yj — 0 for j E/n>fc — {N} 
such that in the mod 2 Bockstein spectral sequence we have 
drffliZtfty-i) = a2i(j) ^ 0. Any choice of the classes X4j_l for I < j < n 
with j not in l2 satisfies P2(X4J-_1)

 = Ẑ — x 4- Pj for some p, with 
i*fij = 0. Classes X4i{j)_i can be chosen so that 

/ t - r \ * ^ 4 t ( / ) - l = ût(/')?/4i(;)-l> 

(5-7) f o r 0 < j ^ * . 

Also p2(X2n_i) = 22n_i + y and p2(X4N-i) = z2NZ4s_l + z42V_i + p 
with i*y = i*p = 0 for 2/ ̂  N < n. If N = n, p2(X2n_i) = z2s_lz2s 

for some choice of X2n_i. Thus 

[ / = û , 2 ' - i x 2 n _ 1 n x*-i 
l<j<n 

since Pp( C7) jt 0 for all primes p, and we obtain the following 

PROPOSITION 5.8. 

H*(PV2n,fc)/Tors = Z [OI ] / (OI 2 ' - 1 ) ® Z E ( X 2 B _ 1 , X ^ | J < j < n) 

/or 2 i ^ N ^ n witfi fc odd. 

Finally we consider the case I < N < 2l< n where divisibility by 
2 occurs among certain products in H *(PV2rifk)ITors. Note that the 
free class 7r*ßN = 2e2N with i*e2N

 = P2N and p2(e2N) = 22N- Suppose 
i(f) < N in (5.6). The higher order mod 2 Bocksteins are given by 
dr(.)+i(Z4«„-i) = z2N«2i(s)-N for 0 ̂  5 ̂  f. Thus X ^ ^ for 1 g j ^ t 
can again be chosen to satisfy (5.7). For proper choices P2(X4N_x) = 
a2[N~i(t)]Z4i{t)_i and P2(X2n_i) = z2n_l + P f° r some p with i*p = 0. 
Now 

l<j<n 

since Pp(C7) ^ 0 for all primes p. Note that P2Ny4j_l for j G/n>fe — 
{N} survives in the integral spectral sequence for TT for / < N < 21 < n 
so there exist classes Yj in H*(PV2n>k) forl^j^t such that 

i * Y = F 2 N a n d 

(5.9) J y ü) 

y.û)2[t(;)-i(;-i)] == e2NX4i(j)_l modulo torsion. 

If N = i(f), Y, is not defined and X4H_I can be chosen so that 
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p2(X4iV_1) = a2[N i{t i)]Z4i(t_1)_l. In summary, we have the following 

PROPOSITION 5.10. For l< N < 21 < n and k odd, H*(PV2n,fc)/Tors 
is generated by o>, e2N? ^2n-i> ^4/-i> an& ^rfor l<j< n and 1 = r = t 
with Yt omitted ifi(t) = N. 

THEOREM 5.11. Suppose that 21 < n with k odd. H*(PV2njfc) is 
generated by the classes a),e2N, ^2n-i> Xq-i* ^r> ̂ 2*?

 and Ust for 
l< j < n and s,t EL Jnk— {N} with s < t. H*(PV2n,fc)/Tors is given 
by (5.5), (5.8), and (5.10). 

REMARK. The known result that the real geometric dimension of 
Wf) based on CPj must be greater than j — 2 follows from the fact that 
7T*j32/ is in Tor H*(PV2n,fc). 
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