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1. Introduction. Let V,; denote the Stiefel manifold of ortho-
normal k-frames in Euclidean n-space. The special orthogonal group
SO(2) acts freely on V,,, via the diagonal embedding of S! in U(n)
and the standard embedding of U(n) into SO(2n) corresponding to
realification r: BU(n) — BSO(2n). The quasi-projective Stiefel mani-
fold PV, is the quotient space of Vy,; under this action of SO(2).
The spaces PV,,; are classifying spaces for sectioning multiples of
a complex line bundle. If X is a finite complex and & a complex line
bundle over X, then né has k linearly independent real sections if
and only if there is a map f:X — PV,,; such that f¥no= ¢
where 7 is the complex line bundle over PV,,, associated to the
Sl-fibering V,,x — PVy,. In this paper we determine the co-
homology algebras of the spaces PVy,, 4.

2. Preliminaries. We first establish some notation. Let RE(x; | i € I)
denote the exterior algebra over a ring R with generators x; of degree
i. Let V(x,, - - -, x,,) denote the commutative associative algebra over
Z, on generators x), * * *, X,, such that the monomials x;% - - x,m
with €; = 0 or 1 form an additive basis. Let {,E,(X)} denote the
mod p Bockstein spectral sequence for X with ,E\(X) = HXX; Z,).
C,; denotes the binomial coefficient (}). Let p, denote the universal
coefficient map H*(; Z) — H*(; Z,) for any prime p and let p, denote
the map H*(; Z) — H*(; Q). Denote the image of an integral class
x under the projection H*(X; Z) — H*(X; Z)/Tors by %. Finally let
Jnx represent the set of all integers j such that [(2n — k)2] <j<n
where 0 < k < 2n. We write H*(CP~) = Z[f].

Recall from [5] the cellular structure of the Stiefel manifold
Van x obtained from an embedding of real projective space RP?"~! into
O(2n) composed with the projection map O(2n) — Vj, . The image
of RP% determines a class P¥ in H2{(V,, ;; Z) of order 2 for every
J € Jux Set xy; = py(P¥). RP?"~k determines a free integral class
Yon—k for k even. Let x5, x = po(y2n—k) for k even and let x5, i be
the unique class such that Sq'xy, x = %x3,.x4+; for k odd. By [2]

Received by the editors November 18, 1971.
AMS (MOS) subject classifications (1970). Primary 55F40; Secondary 55F25,
55H10.

Copyright © 1973 Rocky Mountain Mathematics Consortium

619



620 A.D. RANDALL

there is a class y,,_; € H>"~1(Vy,,%) such that 7(ys,_;) = Xy, where
7 denotes transgression in the spectral sequence for the fibration
Vaonx = BSO(2n — k) — BSO(2n)
and Xy, is the Euler class. Set x5,_; = pa(ya,—;). By [1] and [5]
H*(Von i Z3) = V(Xon_i> * * *, Xgn—y) and
1) (Vank .2) (Xon—k 2n—1)
Sqix; = Cj iy

For every j € J.; there is a class y,_, in H% (Vy,;) such that
7(2y4_,) = the Pontryagin class p; and po(yy_;) = x99 + x4,
from [2,30.10]. By [1]

(2.2)  H¥Vyup)iTorsion = ZE(Gou—t> Jan—1, Jai—1 | € Juk)

where §,,_; is omitted for k odd. For integers s, ¢ € J,x with s < ¢
let u,, be the integral class of order 2 such that py(u,,) = %%, +
XgiXos_1. We state the following known

ProposiTioN 2.3. The classes yo,_1, Ysj—1, Use, P% for j,s,t € Jox
with s <'t, Yo, for k even, and the unit generate the algebra
H*(V2n,k)-

Consider the following commutative diagram of fibrations.

Vonk = Vonx = Voni = Vonk
) Vi ) )
(2.4) j “Egngx = Egnx = E' — BSO(2n — k)
) 7 ) )

cpt b cp= ™ Bum) >  BSO@n)

Here 7 : E,y,, — CP~ is the principal fibration induced from the
fibration BSO(2n — k) — BSO(2n) by the map renn:CP* —
BSO(2n) classifying the n-fold sum of the Hopf bundle n over CP~
regarded as a real vector bundle. By construction E,, j is the classify-
ing space for finding k independent real sections to the n-fold Whitney
sum of a complex line bundle over a finite complex. The method of
proof of [3, Proposition 1.3] yields the following

PropositioN 2.5. The spaces PV, and E,, ) have the same homo-
topy type.

Consider the following homotopy commutative diagram of vertical
fibrations with m = n — k.
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s2m —_ S2m — SQm
) _ It !

(2.6) Vonsk — PVaugk —  BSO(2m)
l Ir )

Vaongk—1 = PVapok—1 —> BSO(2m + 1)

The fibration $?™ — PV, ox — PV, 0k is totally nonhomologous
to zero so we obtain

PropositioN 2.7. H*(PVy,0k) = H*(PVauox—1) ® H*(S8*™) as
H*(PVy,, ok, )-modules.

_We select X uniquely in H2™(PVy,q;) such that t*X generates
H*(S?m) and

(2.8) Xom = 2X + C,x0™

where ® denotes 7*B for 7 : PV,, 9 — CP = in (2.4). This selection
is possible by [6, Theorem A] using the natural map Y, , — PVy, ok
where Y, , denotes the complex projective Stiefel manifold. Since
X3m = pm in H¥(BSO(2m)), it follows that

(2.9) 4X2 = C"’k(l - C"’k)wQ'" - 4Cn’kX(0m.

Thus we consider the spaces PV, primarily for k odd.

We remark that the problem of determining the geometric dimen-
sion of nm based on CP! is equivalent to finding the largest integer k
such that j Egnk — CP! has a section where j E2,,k — CP! is the
fibration in (2.4) induced from 7 via the standard embedding j: CP! —
CP~>. (See [7] for the casel = n — 1.) Note that PV,, ; is CP"~L.

3. Rational and modp cohomology of PV,,;. Let F denote Q
or Z, for an odd prime p. From (2.2) and (2.3) H*(Vg,s; F) =
FE(§Jon—k> Jon—1> J4j—1 | j € Jux) where §o,_i is omitted for k odd, and
~ denotes the image under p : H*(; Z) — H*(; F).

Tueorem 3.1. Let k be an odd integer with k<n+ 1. Then
H*(PVyns; F) = F[®]/(&") ® FE(vyj_, |j € Jop) where i*v, = §,
and w = 7*B.

Proor. The Serre spectral sequence for the fibration Vi, x N PVonx
5 CP~ in (24) with coefficients F has E,**= F[f] ®
FE(§on-1, §aj-1 |j € Jux)- Since 7(2y4_,) = py(m) = CM,sz in the
integral spectral sequence for 7, the fiber is transgressively generated
over F. By dlmensmnahty d,, is the first nonzero differential and
don(fan-1) = 7(fan_,) = X(mm) = Br. Note that the image of the ideal
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(B in E%F is 0 and E};F = E}0Q® E2n+1 All  the
following differentials are trivial so E* *= E%;%. The result
follows from [1, Proposition 8.1] .

Let | denote the smallest integer in J,x. Given an odd prime p,
let N(p) denote the smallest integer j in J,, such that p does not
divide C, ;. Ifno such integer j exists, set N(p) =

TueoreM 3.2. Let k be an odd integer with k > n. Ifn # 21
H*(PVanis Q) = Q@] [(&%) ® QE(vgn—1, 04—y [1<j<m)
with i*v, = §, = po(y,). Ifn= 2,
H*(PVau i Q) = Q[@]/(é") ® QE(vy—y |j € Jux)

where i*vy_| = 2§41 — Cpjijon—; and i*v, = §, otherwise. If
2N(p)<n

HY(PVyny; Z,) = Z,[ &] [(@>N®)
® Z,E(van—1, Vg1 |j € Juj # N(p))
with i*v, = §, = p,(y,). If2N(p) > n,
H*(PVonx;Zp) = Z,[ &]/(&") @ Z,E(v4j_y |j € Jux)
with i*v; = §,. If2N(p) = n,
HYPVony; Zy) = Zp[ @] /(&™) @ Z,E(v4j—1 |j € Jug)
where i*04nip)-1 = 2anp-1 = Cane) Fon-1-

Theorem 3.2 follows similarly from the proof of (3.1). From (3.2) and
(2.7) we obtain the following

CoroLLARY 3.3. H*(PVy,) has p-torsion for an odd prime p if and
only if k>n+ 2 for n even, k> n+ 1 for n odd, and p divides

n,l*

The Z, cohomology algebra of PV, and module structure over
the Steenrod algebra A have essentially been determined up to a
small indeterminacy by Gitler and Handel in [3]. Let N denote the
smallest integer j with C,; odd and 2n — k + 1 = 2j = 2n. Applying
the proof of [3, Theorem 2. 8] gives the following

THEOREM 3.4. As an algebra
H*(Pv2n,k; Z,) = Zy[a]l(aM)

® V(Zan—ks * " "> ZaN—2, ZaN> * * > Zan-1)
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where i*z, = x, and a = py(w). If Cap 4 is even,

Sqizg—1 = D Cqo1-aki-akWak(nM0)Zq+i—2k—1 + A(G ©).
k€K

If Cop 4 is 0dd, then g = 2s and

Sqizq—l = 2 Cq—l—2k,i—2kw2k(7m0)zq+i—2k—l
kEK

+ Y Cono1-akj—a2k SG* ot "Nwor(nmo)zon +j—ok—1-
Pk€EJ
Here \q,1) = 0 if g + i is even, and \(q,i) = €a” if g +i— 1= 2r
where € =0 or 1. K= {k|0=2k=1i and q + i — 2k # 2N} and
J={k|0=2k<j=i}

Suppose now that k < n + 2 for n odd and k < n + 3 for n even.
We shall show that all torsion in H*(PV,, ;) has order 2. Note from
(3.4) that Sq'zy;_; = z9; + A(2j, 1) where j < N and 2n — k<2j. If
A(2j, 1) # 0, we define z,; to be Sq'zq;_,. Take s € J,; with s # N.
If s < N, define

s
Zys_y = Zgs_1%2s + Y C,j0iz4_9i 1 + A9,

j=2s—n+1
j*2s—N
where
2s—-N-—1
As = Cn,2s—N + 2 Cn,j Cn,2s—j S Z2.
j=2s—n+1
If s > N, define
N=1
Zys_1 = Rgs_1Zgs + 2 C,j0245_5j1
j=2s—n+1

+ Cn,sas —Nz2Nz2s— 1

3N-2s—1
25— 2n +1
+ Cy 2 Crpo® =24z N o1
l=2N—-n+1

Note from (3.4) that Z,,_, € ker Sq!, and Z,_, is not in im Sq! since
*Zys_1 = Xgs_1%5,. Clearly Z%_, is in imSq! Note also that
8q'z9,—1 = @ Nzgy and, for0 = j < n — N,
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N=1
(e¥zon)* = Sq! <azj Y dCuzava >
l=2N-n+1
Let T denote the graded algebra over Z, with trivial multiplication
on generators Zoy, ZgnZ2n-1, and a®N "zy, ;. Similar computation
using (3.4) yields the following for k odd and k < n + 2.

ProposiTION 3.5.
2Eo(PVonk) = Zya] /(M)
® Z2E(Z4S—l IS E]ﬂ,k,s % N) ® T/1

where 1 is the ideal generated by a" N ® 1Q zyy and a" VN Q1 Q
a21\'—nz2n 1

CoroLLarY 3.6. All torsion in H*(PVy,;) has order 2 where
k<n+ 2fornoddandk < n + 3 forn even.

Proor. Assume k is odd and k< n + 2. To show E3(PVy,%) =
2E «(PVy,x), it suffices to define an isomorphism ¢ : 3E5(PVy, i) —
H*(PVy,x; Q) of graded vector spaces over Z,. Define ¢(a®) = @
for s < N, p(afzey) = @V** and @(af 2Nz, ) = @v4nv_, for 0 =
s<n— N, ¢(a2onZ0,_1) = @ " Nogy_; for 0=s< N, and ¢(Zy;_,)
= vy_, for jE€J,x and j# N. Extend ¢ to an isomorphism and
apply (2.7) for k even.

4. Integral cohomology.

Case 1. We assume in Case I that k<n + 1 with k odd. We
determine the differentjals and E%* for the integral spectral sequence
for the fibration V,, ; N PVy,x — CP*in (2.4) and then use the Gysin
sequence to specify generators for H*(PV,,;). E,**= Z[B] ®
H*(Vynx). Since 7(P¥) = 8wy for the fibration BSO(2n — k) —
BSO(2n) where § denotes the integral Bockstein operator, P% for
j € Jax survives in the integral spectral sequence for 7. 7(yn_1) =
X(mm) = B™ so EgQ) = 0 for p > 2n. All differentials kill 2y,;_, for
j € Jux since 7(2y,;_;) = pj(nm). Note that d,y is the first nontrivial
differential in the integral spectral sequence for 7 since dyy is the first
nontrivial differential in the Z, spectral sequence by (3.4) and d,,
is the only nontrivial differential with F coefficients by (3.1). If N = n,
clearly

EX* = E3:% = Z[B]I(B") ® H*(Vau i )(y2n—1)-
Assume N < n. Now dyn(1 ® yyn_;) = B¥Y @ PN since
don(1 @ xon_1%on) = BN ® xon = po(BY @ P2N).
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Similarly, don(1® u) =BN® P¥ where u =1y if j<N, and
u = uy;if N<j. Since dyys-,) = image of ¢; ® P¥ in E%* in the
integral spectral sequence for E' — BU(n) in (2.4), one checks that
dyi(y4i—1) = image of C,;# ® P¥ in E%* in the integral spectral
sequence for 7, and dy,(yy_,) = 0 for j<r<2j if dy(ysy-,) = 0.
Note thatfors, t € ], — {N}withs < ¢,

(4.1) U, = i*Uy,

where U, , = 8(2g;-1%2¢—1) Since

5q'(2s-122:-1) = RasRor—1 T Zos-1Zae

+ C",Sa“NZZszt_l + C,,,ta“szNzgs_l

by (3.4). Thus E;}:,*H =Z[B ® Esnii/[K where K is the ideal
generated by BN ® P% for j € J,,. The differentials d,, are trivial for
p > 2N and p # 2n so it follows that

(4.2) E%* = E3;%, = Z[B]/(B") ® Ent./ K

as graded algebras.

The only nontrivial extension from E%* to H*(PVy,) is the non-
trivial extension of Z by Z,. Since 7(zon_;) = po(BY), it follows from
the universal example for division by 2 that

(43) oN = ‘n'*BN = 262N with i*egN = P2N and pg(egN) = Z9oN.

Consider the following commutative diagram.

(4.4)
! | ! L

o> H (Vo Z) 5 Hi(PVaps 2) 3 HV2PVypps Z) 5> HIP(Viyys 7) —
I X2 I X2 I X2 ‘ I x2

> Ho (Vi 2) S HH(PV s Z) -8 HV 2PV 2) S B2V Z)
i P2 l P2 i P2 ” l P2

- Hi+l(V2n,k; Zz)—o’ Hi(PV2n,k; Z,) :gHi+2(PV2n,k; Zz)l—’ Hi+2(V2n,k; Zy)—
| ! | |

The above rows are the Gysin sequence for the fibration S! — V,,
hd PVZn,k'
Fors € J,x — {N}, we define

(4.5) Yo, = 8(295-1)-
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Note that i*Y,, = P2 and py(Ys,) = z9,. We define
(4.6) Vi = 8(225-1220-1) € H> 2~ Y(PVyup,

Clearly 2Vs =0 and pz(Vs) = Z9s%9n—1 + a"_Nz2Nz23_l +
C, 50 N2onZon— 1. Note that i*V, = Py, _, since i*py(V,) = xo5%9,_ .
Forany j € J,x — {N}, we now show there exists

(4.7) X4j—l E H4j_'l(PV2"’k) Wlth i*XAU—l = y‘V—l andpz(X”_l) = Zﬁ—l‘

Let u be any class in HY~Y(PV,,;) with i*u = y,;_,. Then py(u) =
Zyj+ az with 2 € HY=3(PVy,4; Zo) by (4.4). Sql(az) = 0 so az =
pao(Z), and i*Z = 2V since py(i*Z) = i*(poZ) = i*(az) = 0. Select Z’
such that i*Z' = V by (4.2). Then Z — 2Z’' = wZ' and X;;_; = u +
wZ' satisfies (4.7).

Take any class u € H¥N-Y(PVy,;) with i*u= 2y,y_;,. Then
po(u) Eker Sq' Nkeri* so py(u) = aw with Sq'w # 0 by (4.4).
It follows that py(u) = a?N "2y, 1 + apy(V) for V&€ HN=3(PVy, ).
Define X,y_, = u + ®V and note that

(4.8) *Xynoy = 2y4n-1 and  po(Xyn—1) = @®N""2g,_,.

Similarly, it follows from (4.4) and the fibration Voy_; xson—2n—1 =
PVynx = PVyy0n,_on+1 that we can choose Y € H2"+2N-1(PV,_,) so

that

(4.9) 2Y = " NXyy_), *Y = PPy, ,, and po(Y) = 2onZon_1-
One checks using (4.4) that

(4.10) w2N-nY = eon Xyn_ 1.

Note that H*(PVy,; Q) = Q[®]/(&) ® QE(Xy_, |j € Jux)- In sum-
mary we have the following

Tueorem 4.11. Suppose that k <n + 1 with k odd. If N=n,
H*(PVy,x) = H¥(CP" ') @ H*(Vo1)/(Yy2n—1) as algebras. If N <n,
H*(PV,, ) is generated by the classes o, eqy, Yo, Vi, X4j-1, U, and Y
where j € J,x and s,t € J,x — {N} with s < t. Relations among the
generators and the product structure are determined by the rational
and Zy cup products.

Remark. H*(PV,,;) contains the subalgebra Z[w]/(w") ®
ZE(Xy1 |j € Ju):

Case II. We assume that n is even and k= n + 1. Thus n = 2l.
Setd, = 3 C,;. Choose Xy_, in H2"~1(PVy,, ;) such that

(4.12) i*X4l—1 =Yg — dlyzn—l and po(Xy-1) = Zy_;.
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Then H¥*(PV,, ) is again given by (4.11).

5. Integral cohomology.

Case 1II. Fmally we assume 2/ < n with k odd. Let d; denote
3 C for I=j< N. Set by=d; and inductively deﬁne b, =
GCD(d,,b,_l)forl< i< N.

Set by = G.C.D.(by_1,C,n). If N=1, set by = C,;. Define b;
inductively for 2N = 2j < n. Suppose b; > 1. Set b;,; = G.C.D.(b; \;)
where \; € Z,; is chosen uniquely such that C,;.; = 2\;mod b;. If
b; =1, set b; = 1 for 2j < 2i < n. The argument of [6, Prop051t10n 5]
shows

ProposiTion 5.1. Kern* = [bg%, - - -, b;B%, - - -, B"] for2l = 2j < n.
Ker7* = [bg2+), « -+, bg%*1, - - Br*1]  where 7 : (PVang Vank)
— (CP=*).

Set a; = b;_,/b; for 21<2i<n. Set y,y_; = 2ys_;. Recall
Ta-1im i* = Ker?n*/[Ker?7#* where Ti71C H9 (Vy,;) denotes
the subgroup of transgressive elements. Thus we obtain from (5.1)

the following

CoroLLarY 52. T9imi*=0 for 2n=gq. T* Yimi*= Z, for
2l< 2i<n. T4 Yimi*=Z. T imi*=Z, _, if n= 2s and Z,,
ifn=2s+ 1.

Thus there exist classes Xy;_; in HY=(PV,, ) for 21 < 2j < n such
that i*Xﬁ_l = QY4 If n=2s+ 1, choose in_l in H2n—l(PV2n,k)
such that i*X,,_; = bys,_,. If n=2s, choose Xz,, . such that
i*Xo,—1 = bs_1Yyon—;, and define X,y so that i*X, | = yg) —
dyony if s< N and i*Xy | = yg5_1 — AYon—; if s> N. Select X,;_,
so that i*X,_, = y,_, for n < 2j < 2n. Choose a fixed set of the
above classes arbitrarily. Let p be a fixed odd prime and set I, =
(jl2l<2i<n, pla}VU {I}. Forj€EI, with j# N(p), set Dy_, =
Vgiy from (3.2). Define Ty, = p,(Xy-;) for l<] < n, JQE L,
j# N(p). SetDyn_ = pp(Xgn-1) ifp/bs_l. Then

H*(PVou 5 Z,) = Z,[ @] (@*NP)
® ZpE(EM—l> 627;—1 |] E]n,k;j # N(P))

if 2N(p) < n,
Z,[&][(&") @ Z,E(®y—1 |j € ),

if n = 2N(p).

Note that
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H*(PVay; Q) = Q@] (&%) @ QE(Dg_1, Doy [L<j< n)

where ©y;_; = po(X4—1) and Bg,_; = po(Xz,—;). Arrange I, so that
I=i0)<il)< ---<i(j) < :--<i(t) and write by; = prie
where p /e, Then 1(j) > r(j+ 1) and b;= p'Ve; for i(j)=i<
i(j + 1) where pfe; The argument of [6, Lemmas 8, 10] deter-
mines the mod p Bockstein spectral sequence via the following

Lemma 5.3. The differential d, for ,E,(PVy,y) is trivial unless r =
TU). dr(54i(j)—1)=0 fOT r< TU). dr(i)(i_)zli(i)—l&’s) = kj&)zi(j)+s ?é 0
for 0=s<2[i(j+ 1)~ i(j)], K EZ, If n=2s+1=2N(p)+ 1,
§= i(t) and d,(,)(ﬁ;s_l) = ks&')zs with ks 7£ 0 and dr(t)(l_)4s—la)) = 0.
If n=2s = 2N(p), then i(t) = s — 1 and d,;(Ty_5) = k,@>¢~D # 0
and dr(t)(i—)“_56)2) = 0. I_f 2N(p) >n, d,(t)(‘l_)4i(,)_1(‘l')) ?é 0 fOT s<n
- 2i(t). lf 2N(p) <n-— ]., dr(t)(‘l_)éli(t)—l) = 0. Further, H*(PVQ,.,]C)/
Tors. ® Z, = H*(PVy,;; Q) as algebras over Z,.

We apply Poincaré duality to specify generators for H*(PVy,y).
Let U denote the fundamental cohomology class for the closed orien-
table manifold PV,,; of dimension }k(4n — k —1)— 1. Fix an
arbitrary choice of generators for H*(PVy,;; Zy) such that zy, =
8q'zg— for s € J, x. Analogous to Case I, we define 2-torsion classes

V2s = 8(%23_1) and Us,t = 8(z2s—lz2t—1)

(54)
fors,t € J,x — {N}withs <.

Suppose N =1 Note that 7%82 = 2e,; where py(ey) = 2. Also
pz(Xéu_l) = Z%_lzzi + 24"_1 + Yi for some Yi with i*’yj = 0. So

U= o' legXon H Xyg-1

1<j<n
since p,U # 0 for all primes p. Thus we obtain
ProposITION 5.5. For 2l < nwith N = land k odd,
H*(PVyo)[Tor = Z[ 0] ()
® ZE(eq, Xop_1, X451 |1 <j<n).

If 2l = N = n, then N = 27 for some integer r. Set s = 2"~! and note
that T*N-!im i* is generated by }ys_; + P?Ny,_,. Recall that
ysv_, was redefined to be twice the generator in (2.3). Let I, =
{j 12l < 2j < n,2|a;}U{l}, and arrange I, so that

(5.8) 1=i0)<i(l)< - - <i(t).
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Note that i(f) =s. Write b;; = 20g; where 2} g. There exist
classes Zy_) = 2g;_129; + 24—, +y; with i*y; =0 for j € [, — {N}
such that in the mod2 Bockstein spectral sequence we have
d,i)(Zaig-1) = a9 # 0. Any choice of the classes X ;_, for [ <j<n
with j not in I, satisfies py(Xy_;) = Zy_; + p; for some p; with
i*; = 0. Classes X4~ can be chosen so that

*Xaig)-1 = GigYai-1>

(5.7) for0 < j=t.

Pz(X4i(i)—1) = o020 DZ i _1)-1,

Also po(Xn_1) = 2p—1 +y and po(Xyy_1) = 2onZys—1 + 2an1 T 1
with i*‘y = i*l.l, =0 for 2=N<n IfN= n, p2(X2n—l) = Rgs—1%3s
for some choice of X,,,_,. Thus

U= o0 Xz, H Xyj-1
l<j<n
since p,(U) # 0 for all primes p, and we obtain the following

ProposrTiON 5.8.
H*(PVy,;)ITors = Z[ w] (0¥~ 1) @ ZE(Xy,_y, X4y |1 <j< n)
for2l = N = n with k odd.

Finally we consider the case | < N < 2] < n where divisibility by
2 occurs among certain products in H*(PVy,;)/Tors. Note that the
free class 7*BY = 2e,y with i*eyy = P2V and py(esy) = Zon. Suppose
i(t) < N in (5.6). The higher order mod 2 Bocksteins are given by
dyisy+1(Zgigs)—1) = 2ona® "N for 0= s=t. Thus Xy;_, for1=j=t
can again be chosen to satisfy (5.7). For proper choices py(X,n_;) =
a2WN-i0lZ,. o | and py(Xg,_ 1) = Zg,—) + p for some p with i*p = 0.
Now

= 2l-N—-1
U= egNX2n_.10) I I X4j—l
l<j<n

since p,(U) # 0 for all primes p. Note that PNy, | for j € J,, —
{N} survives in the integral spectral sequence for7 forI< N< 2l < n
so there exist classes Y;in H*(PV,,, ;) for 1 = j = t such that

i*Y; = P2Ny,,.,_, and

(59) i YaiG)-1

Y;@2lii)—i-Dl = gyuX ;1 modulo torsion.

If N=i(t), Y, is not defined and X,y_; can be chosen so that
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p2(Xyn—1) = o@WN=it=DIZ .. |, |. In summary, we have the following

ProposiTioN 5.10. For | < N < 2l < n and k odd, H*(PVy,;)/Tors
is generated by w, egy, Xon_1, Xy, and Y, forl< j<nandl1=r=t
with Y, omitted if i(t) = N.

Tueorem 5.11. Suppose that 21 < n with k odd. H*(PVy,;) is
generated by the classes o,eqy, Xy, ), X4i-1, Y, Vo, and Uy, for
I<j<nand s,t € J,x — {N} with s < t. H*PVy,)[Tors is given
by (5.5), (5.8), and (5.10).

ReMaRk. The known result that the real geometric dimension of
m based on CP/ must be greater than j — 2 follows from the fact that
7*82 is in Tor H*(PVy, ).
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