COHOMOLOGY OF QUASI-PROJECTIVE STIEFEL MANIFOLDS

A. DU ANE RANDALL

1. Introduction. Let V_{nk} denote the Stiefel manifold of orthonormal k -frames in Euclidean n -space. The special orthogonal group $SO(2)$ acts freely on $V_{2n,k}$ via the diagonal embedding of S^1 in $U(n)$ and the standard embedding of $U(n)$ into $SO(2n)$ corresponding to realification $r : BU(n) \rightarrow BSO(2n)$. The quasi-projective Stiefel manifold $PV_{2n,k}$ is the quotient space of $V_{2n,k}$ under this action of $SO(2)$. The spaces $PV_{2n,k}$ are classifying spaces for sectioning multiples of a complex line bundle. If X is a finite complex and ξ a complex line bundle over X, then $n \xi$ has k linearly independent real sections if and only if there is a map $f: X \to PV_{2n,k}$ such that $f^*\eta_0 = \xi$ where η_0 is the complex line bundle over $PV_{2n,k}$ associated to the S¹-fibering $V_{2n,k} \rightarrow \bar{P}V_{2n,k}$. In this paper we determine the cohomology algebras of the spaces $PV_{2n,k}$.

2. **Preliminaries.** We first establish some notation. Let $RE(x_i | i \in I)$ denote the exterior algebra over a ring *R* with generators *x{* of degree *i.* Let $V(x_1, \dots, x_m)$ denote the commutative associative algebra over Z_2 on generators x_1, \dots, x_m such that the monomials $x_1^{\epsilon_1} \cdots x_m^{\epsilon_m}$ with $\epsilon_i = 0$ or 1 form an additive basis. Let $\{E_r(X)\}\$ denote the mod p Bockstein spectral sequence for X with $nE_1(X) = H^*(X; Z_n)$. $C_{r,i}$ denotes the binomial coefficient (;). Let ρ_p denote the universal coefficient map $H^*(\cdot, Z) \to H^*(\cdot, Z_p)$ for any prime p and let ρ_0 denote the map $H^*($; $Z) \rightarrow H^*($; $Q)$. Denote the image of an integral class *x* under the projection $H^*(X; Z) \to H^*(X; Z)$ fors by \bar{x} . Finally let $J_{n,k}$ represent the set of all integers *j* such that $[(2n-k)/2] < j < n$ where $0 < k < 2n$. We write $H^*(CP^{\infty}) = Z[\beta]$.

Recall from [5] the cellular structure of the Stiefel manifold $V_{2n,k}$ obtained from an embedding of real projective space RP^{2n-1} into $O(2n)$ composed with the projection map $O(2n) \rightarrow V_{2n,k}$. The image of RP^{2j} determines a class P^{2j} in $H^{2j}(\bar{V}_{2n,k}; Z)$ of order 2 for every $j \in J_{n,k}$. Set $x_{2i} = \rho_2(P^{2i})$. RP^{2n-k} determines a free integral class y_{2n-k} for k even. Let $x_{2n-k} = \rho_2(y_{2n-k})$ for k even and let x_{2n-k} be the unique class such that $Sq^T x_{2n-k} = x_{2n-k+1}$ for k odd. By [2]

Received by the editors November 18, 1971.

AMS *(MOS) subject classifications* (1970). Primary 55F40; Secondary 55F25, 55H10.

there is a class $y_{2n-1} \in H^{2n-1}(V_{2n,k})$ such that $\tau(y_{2n-1}) = \chi_{2n}$ where τ denotes transgression in the spectral sequence for the fibration

$$
V_{2n,k} \to BSO(2n-k) \to BSO(2n)
$$

and χ_{2n} is the Euler class. Set $x_{2n-1} = \rho_2(y_{2n-1})$. By [1] and [5]

(2.1)
$$
H^*(V_{2n,k}; Z_2) = V(x_{2n-k}, \dots, x_{2n-1}) \text{ and }
$$

$$
Sq^i x_j = C_{j,i} x_{i+j}.
$$

For every $j \in J_{n,k}$, there is a class y_{4j-1} in $H^{4j-1}(V_{2n,k})$ such that $\tau(2y_{4j-1})$ = the Pontryagin class p_j and $p_2(y_{4j-1}) = x_{2j}x_{2j-1} + x_{4j-1}$ from [2,30.10]. By [1]

$$
(2.2) \qquad H^*(V_{2n,k})/\text{Torsion} = ZE(\bar{y}_{2n-k}, \bar{y}_{2n-1}, \bar{y}_{4j-1} \mid j \in J_{n,k})
$$

where \bar{y}_{2n-k} is omitted for *k* odd. For integers $s, t \in J_{n,k}$ with $s < t$ let $u_{s,t}$ be the integral class of order 2 such that $\rho_2(u_{s,t}) = x_{2s}x_{2t-1} +$ $x_{2t}x_{2s-1}$. We state the following known

PROPOSITION 2.3. The classes y_{2n-1} , y_{4j-1} , $u_{s,t}$, P^{2j} for j,s, $t \in J_{n,k}$ *with* $s < t$, y_{2n-k} for k even, and the unit generate the algebra $H^*(V_{2n,k}).$

Consider the following commutative diagram of fibrations.

$$
V_{2n,k} = V_{2n,k} = V_{2n,k} = V_{2n,k}
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
j^{\pi}E_{2n,k} \rightarrow E_{2n,k} \rightarrow E' \rightarrow BSO(2n-k)
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
CP^{l} \qquad \downarrow \qquad CP^* \xrightarrow{m} BU(n) \xrightarrow{r} \qquad BSO(2n)
$$

Here $\pi : E_{2n,k} \to CP^*$ is the principal fibration induced from the fibration $BSO(2n - k) \rightarrow BSO(2n)$ by the map $r \circ n\eta$: $CP^* \rightarrow$ *BSO(2n)* classifying the *n*-fold sum of the Hopf bundle η over CP^* regarded as a real vector bundle. By construction $E_{2n,k}$ is the classifying space for finding *k* independent real sections to the n-fold Whitney sum of a complex line bundle over a finite complex. The method of proof of [3, Proposition 1.3] yields the following

PROPOSITION 2.5. The spaces PV_{2nk} and E_{2nk} have the same homo*topy type.*

Consider the following homotopy commutative diagram of vertical fibrations with $m = n - k$.

$$
S^{2m} = S^{2m} = S^{2m}
$$
\n
$$
\downarrow \qquad \qquad \downarrow t \qquad \qquad \downarrow
$$
\n
$$
V_{2n,2k} \xrightarrow{i} PV_{2n,2k} \xrightarrow{S} BSO(2m)
$$
\n
$$
\downarrow \qquad \qquad \downarrow r \qquad \qquad \downarrow
$$
\n
$$
V_{2n,2k-1} \rightarrow PV_{2n,2k-1} \rightarrow BSO(2m+1)
$$

The fibration $S^{2m} \to PV_{2n,2k} \to PV_{2n,2k-1}$ is totally nonhomologous to zero so we obtain

PROPOSITION 2.7. $H^*(PV_{2n,2k}) = H^*(PV_{2n,2k-1}) \otimes H^*(S^{2m})$ as $H^*(PV_{2n,2k-1})\textrm{-}module$

We select X uniquely in $H^{2m}(PV_{2n,2k})$ such that t^*X generates $\overline{H}^*(S^{2m})$ and

$$
(2.8) \t\t s^* \mathbf{X}_{2m} = 2X + C_{n,k} \omega^m
$$

where ω denotes $\pi^*\beta$ for $\pi: PV_{2n,2k} \to CP^*$ in (2.4). This selection is possible by [6, Theorem A] using the natural map $Y_{n,k} \to PV_{2n,2k}$ where $Y_{n,k}$ denotes the complex projective Stiefel manifold. Since $\chi_{2m}^2 = p_m$ in $H^*(BSO(2m))$, it follows that

(2.9)
$$
4X^2 = C_{n,k}(1 - C_{n,k})\omega^{2m} - 4C_{n,k}X\omega^m.
$$

Thus we consider the spaces PV_{2nk} primarily for k odd.

We remark that the problem of determining the geometric dimension of *mj* based on *CP^l* is equivalent to finding the largest integer *k* such that $j^{T}E_{2n,k} \rightarrow CP^{l}$ has a section where $j^{T}E_{2n,k} \rightarrow CP^{l}$ is the fibration in (2.4) induced from π via the standard embedding $j:CP^l \rightarrow$ *CP*^{*}. (See [7] for the case $l = n - 1$.) Note that $PV_{2n,1}$ is $\overrightarrow{CP}^{n-1}$.

3. Rational and mod p cohomology of $PV_{2n,k}$. Let F denote Q or Z_p for an odd prime p. From (2.2) and (2.3) $H^*(V_{2n,k}; F) =$ $FE(\tilde{y}_{2n-k}, \tilde{y}_{2n-1}, \tilde{y}_{4j-1} \mid j \in J_{n,k})$ where \tilde{y}_{2n-k} is omitted for *k* odd, and $\tilde{}$ denotes the image under $\rho: H^*(\overline{z}) \to H^*(\overline{z})$.

THEOREM 3.1. Let k be an odd integer with $k < n + 1$. Then $H^*(PV_{2n,k}; F) = F[\tilde{\omega}]/(\tilde{\omega}^n) \otimes FE(v_{4i-1} | j \in J_{n,k})$ where $i^*v_p = \tilde{y}_p$ and $\omega = \pi^* \beta$.

PROOF. The Serre spectral sequence for the fibration $V_{2n,k} \rightarrow PV_{2n,k}$ $\stackrel{\pi}{\rightarrow} CP^*$ in (2.4) with coefficients F has E_2 ^{*}* = F[$\tilde{\beta}$] \otimes $FE(\tilde{y}_{2n-1}, \tilde{y}_{4j-1} | j \in J_{n,k})$. Since $\tau(2y_{4j-1}) = p_j(m) = C_{n,j}\beta^{2j}$ in the integral spectral sequence for π , the fiber is transgressively generated over F. By dimensionality d_{2n} is the first nonzero differential and $d_{2n}(\tilde{y}_{2n-1}) = \tau(\tilde{y}_{2n-1}) = \tilde{\chi}(m) = \tilde{\beta}^n$. Note that the image of the ideal

 $(\tilde{\beta}^n)$ in E_{2n+1}^* is 0 and $E_{2n+1}^* = E_{2n+1}^* \otimes E_{2n+1}^{0,*}$ All the following differentials are trivial so $E^{*,*}_{s} = E^{*,*}_{s+1}$. The result follows from [1, Proposition 8.1].

Let *l* denote the smallest integer in J_{nk} . Given an odd prime p, let $N(p)$ denote the smallest integer *j* in $J_{n,k}$ such that *p* does not divide $C_{n,i}$. If no such integer *j* exists, set $N(p) = \infty$.

THEOREM 3.2. Let k be an odd integer with $k > n$. If $n \neq 2l$

$$
H^*(PV_{2n,k}; Q) = Q[\tilde{\omega}]/(\tilde{\omega}^{2l}) \otimes QE(v_{2n-1}, v_{4j-1} | l < j < n)
$$

with $i^*v_s = \tilde{y}_s = \rho_0(y_s)$. If $n = 2l$,

$$
H^*(PV_{2n,k};Q) = Q[\tilde{\omega}]/(\tilde{\omega}^n) \otimes QE(v_{4j-1} | j \in J_{n,k})
$$

 $where \quad i^*v_{4l-1} = 2\tilde{y}_{4l-1} - C_{n,l}\tilde{y}_{2n-1} \quad and \quad i^*v_s = \tilde{y}_s \quad otherwise.$ If $2N(p) < n$,

$$
H^*(PV_{2n,k}; Z_p) = Z_p[\tilde{\omega}]/(\tilde{\omega}^{2N(p)})
$$

$$
\otimes Z_p E(v_{2n-1}, v_{4j-1} | j \in J_{n,k}, j \neq N(p))
$$

with $i^*v_s = \tilde{y}_s = \rho_p(y_s)$. If $2N(p) > n$,

$$
H^*(PV_{2n,k};Z_p) = Z_p[\tilde{\omega}]/(\tilde{\omega}^n) \otimes Z_p E(v_{4j-1} | j \in J_{n,k})
$$

 $with i^*v_s = \tilde{y}_s$. If $2N(p) = n$,

$$
H^*(PV_{2n,k}; Z_p) = Z_p[\tilde{\omega}]/(\tilde{\omega}^n) \otimes Z_p E(v_{4j-1} | j \in J_{n,k})
$$

where $i^*v_{4N(p)-1} = 2\tilde{y}_{4N(p)-1} - C_{n,N(p)} \tilde{y}_{2n-1}$.

Theorem 3.2 follows similarly from the proof of (3.1). From (3.2) and (2.7) we obtain the following

COROLLARY 3.3. $H^*(PV_{2n,k})$ has p-torsion for an odd prime p if and *only if* $k > n + 2$ *for n even,* $k > n + 1$ *for n odd, and p divides Cn,i-*

The Z_2 cohomology algebra of $PV_{2n,k}$ and module structure over the Steenrod algebra *A* have essentially been determined up to a small indeterminacy by Gitler and Handel in [3]. Let N denote the smallest integer *j* with $C_{n,j}$ odd and $2n - k + 1 \leq 2j \leq 2n$. Applying the proof of [3, Theorem 2.8] gives the following

THEOREM 3.4. *As an algebra*

$$
H^*(PV_{2n,k}; Z_2) = Z_2[\alpha]/(\alpha^N)
$$

$$
\otimes V(z_{2n-k}, \cdots, z_{2N-2}, z_{2N}, \cdots, z_{2n-1})
$$

where $i^*z_p = x_p$ and $\alpha = \rho_2(\omega)$. If $C_{2n,q}$ is even,

$$
Sq^{i_{\mathcal{Z}_{q-1}}} = \sum_{k \in K} C_{q-1-2k, i-2k} w_{2k} (n\eta_0) z_{q+i-2k-1} + \lambda(q, i).
$$

If $C_{2n,q}$ is odd, then $q = 2s$ and

$$
Sq^{i_{\mathcal{Z}_{q-1}}} = \sum_{k \in K} C_{q-1-2k,i-2k} w_{2k}(m_0) z_{q+i-2k-1}
$$

+
$$
\sum_{j,k \in J} C_{2N-1-2k,j-2k} Sq^{i-j} \alpha^{s-N} w_{2k}(m_0) z_{2N+j-2k-1}.
$$

Here $\lambda(q, i) = 0$ if $q + i$ is even, and $\lambda(q, i) = \epsilon \alpha^r$ if $q + i - 1 = 2r$ where $\epsilon = 0$ or 1. $K = \{k | 0 \leq 2k \leq i \text{ and } q + i - 2k \neq 2N\}$ and $I = \{j, k \mid 0 \leq 2k < j \leq i\}.$

Suppose now that $k < n + 2$ for *n* odd and $k < n + 3$ for *n* even. We shall show that all torsion in $H^*(PV_{2nk})$ has order 2. Note from (3.4) that $Sq^1z_{2i-1} = z_{2i} + \lambda(2j, 1)$ where $j < N$ and $2n - k < 2j$. If $\lambda(2j, 1) \neq 0$, we define z_{2i} to be Sq¹ z_{2i-1} . Take $s \in J_{n,k}$ with $s \neq N$. If $s < N$, define

$$
Z_{4s-1} = z_{2s-1}z_{2s} + \sum_{\substack{j=2s-n+1\\j\neq 2s-N}}^{s} C_{n,j}\alpha^{j}z_{4s-2j-1} + \lambda_{s}\alpha^{2s-n}z_{2n-1}
$$

where

$$
\lambda_s = C_{n,2s-N} + \sum_{j=2s-n+1}^{2s-N-1} C_{n,j} C_{n,2s-j} \in Z_{2s}
$$

If $s > N$, define

$$
Z_{4s-1} = z_{2s-1}z_{2s} + \sum_{j=2s-n+1}^{N-1} C_{n,j}\alpha^{j}z_{4s-2j-1}
$$

+ $C_{n,s}\alpha^{s-N}z_{2N}z_{2s-1}$
+ $C_{n,s}\sum_{l=2N-n+1}^{3N-2s-1} C_{n,l}\alpha^{2s-2n+l}z_{4N-2l-1}$

Note from (3.4) that $Z_{4s-1} \in \text{ker } \text{Sq}^1$, and Z_{4s-1} is not in im Sq^1 since $i^*Z_{4s-1} = x_{2s-1}x_{2s}$. Clearly Z_{4s-1}^2 is in im Sq¹. Note also that $Sq^{1}z_{2n-1} = \alpha^{n-N}z_{2N}$ and, for $0 \leq j < n - N$,

$$
(\alpha^{j} z_{2N})^{2} = Sq^{1}(\alpha^{2j} \sum_{l=2N-n+1}^{N-1} \alpha^{l} C_{n,l} z_{4N-2l-1}).
$$

Let T denote the graded algebra over Z_2 with trivial multiplication on generators z_{2N} , $z_{2N}z_{2n-1}$, and $\alpha^{2N-n}z_{2n-1}$. Similar computation using (3.4) yields the following for *k* odd and $k < n + 2$.

PROPOSITION 3.5.

$$
{}_{2}E_{2}(PV_{2n,k}) = Z_{2}[\alpha]/(\alpha^{N})
$$

$$
\otimes Z_{2}E(Z_{4s-1} \mid s \in J_{n,k}, s \neq N) \otimes T / I
$$

where I is the ideal generated by $\alpha^{n-N} \otimes 1 \otimes z_{2N}$ and $\alpha^{n-N} \otimes 1 \otimes z_{2N}$ $\alpha^{2N-n}z_{2n-1}$

COROLLARY 3.6. All torsion in $H^*(PV_{2n,k})$ has order 2 where $k < n + 2$ for n odd and $k < n + 3$ for n even.

PROOF. Assume k is odd and $k < n + 2$. To show ${}_{2}E_{2}(PV_{2n,k}) =$ $_2E_\infty(PV_{2n,k})$, it suffices to define an isomorphism $\varphi: {}_2E_2(PV_{2n,k}) \to$ $H^*(PV_{2n,k}; Q)$ of graded vector spaces over Z_2 . Define $\varphi(\alpha^s) = \tilde{\omega}^s$ for $s < N$, $\varphi(\alpha^s z_{2N}) = \tilde{\omega}^{N+s}$ and $\varphi(\alpha^{s+2N-n} z_{2n-1}) = \tilde{\omega}^s v_{4N-1}$ for $0 \leq$ $s < n - N$, $\varphi(\alpha^3 z_{2N} z_{2n-1}) = \tilde{\omega}^{s+n-N} v_{4N-1}$ for $0 \le s < N$, and $\varphi(Z_{4j-1})$ v_{4i-1} for $j \in J_{n,k}$ and $j \neq N$. Extend φ to an isomorphism and apply (2.7) for *k* even.

4. Integral cohomology.

Case I. We assume in Case I that $k < n + 1$ with k odd. We determine the differentials and $E^{*,*}$ for the integral spectral sequence for the fibration $V_{2n,k} \to PV_{2n,k} \to CP^*$ in (2.4) and then use the Gysin sequence to specify generators for $H^*(PV_{2n,k})$. $E_2^{*,*} = Z[\beta] \otimes$ $H^*(V_{2n,k})$. Since $\tau(P^{2j}) = \delta w_{2j}$ for the fibration $BSO(2n - k) \rightarrow$ $BSO(2n)$ where δ denotes the integral Bockstein operator, P^{2j} for $j \in I_{nk}$ survives in the integral spectral sequence for π . $\tau(y_{2n-1}) =$ $X(m) = \beta^n$ so $E_{2n+1}^{0,0} = 0$ for $p > 2n$. All differentials kill $2y_{4i-1}$ for $j \in J_{n,k}$ since $\tau(2y_{4j-1}) = p_j(m)$. Note that d_{2N} is the first nontrivial differential in the integral spectral sequence for π since d_{2N} is the first nontrivial differential in the Z_2 spectral sequence by (3.4) and d_{2n} is the only nontrivial differential with F coefficients by (3.1) . If $N = n$, clearly

$$
E^{\ast,\ast} = E^{\ast,\ast}_{2n+1} = Z[\beta]/(\beta^n) \otimes H^*(V_{2n,k})/(y_{2n-1}).
$$

Assume $N < n$. Now $d_{2N}(1 \otimes y_{4N-1}) = \beta^N \otimes P^{2N}$ since

$$
d_{2N}(1\otimes x_{2N-1}x_{2N})=\beta^N\otimes x_{2N}=\rho_2(\beta^N\otimes P^{2N}).
$$

Similarly, $d_{2N}(1 \otimes u) = \beta^N \otimes P^{2j}$ where $u = u_{j,N}$ if $j < N$, and $u = u_{N,j}$ if $N < j$. Since $d_{2j}(y_{4j-1}) =$ image of $c_j \otimes P^{2j}$ in E_{2j}^{**} in the integral spectral sequence for $E' \rightarrow BU(n)$ in (2.4), one checks that $d_{2i}(y_{4i-1})$ = image of $C_{n,i}$ $\beta^{j} \otimes P^{2j}$ in E_{2i}^{**} in the integral spectral sequence for π , and $d_{2r}(y_{4j-1}) = 0$ for $j < r < 2j$ if $d_{2j}(y_{4j-1}) = 0$. Note that for $s, t \in J_{n,k} - \{N\}$ with $s < t$,

$$
(4.1) \t\t u_{s,t} = i^* U_{s,t}
$$

where $U_{s,t} = \delta(z_{2s-1}z_{2t-1})$ since

$$
Sq^{1}(z_{2s-1}z_{2t-1}) = z_{2s}z_{2t-1} + z_{2s-1}z_{2t}
$$

+ $C_{n,s}\alpha^{s-N}z_{2N}z_{2t-1} + C_{n,t}\alpha^{t-N}z_{2N}z_{2s-1}$

by (3.4). Thus $E_{2N+1}^{*,*} = Z[\beta] \otimes E_{2N+1}^{0,*}/K$ where K is the ideal generated by $\beta^N \otimes P^{2j}$ for $j \in J_{n,k}$. The differentials d_p are trivial for $p > 2N$ and $p \neq 2n$ so it follows that

(4.2)
$$
E^{\ast}_{\omega}{}^{\ast} = E^{\ast}_{2n+1}{}^{\ast} = Z[\beta]/(\beta^n) \otimes E_{2n+1}^{0,\ast}/K
$$

as graded algebras.

The only nontrivial extension from E^{*}_{ω} ^{*} to $H^{*}(PV_{2n,k})$ is the nontrivial extension of Z by Z_2 . Since $\tau(z_{2N-1}) = \rho_2(\beta^N)$, it follows from the universal example for division by 2 that

(4.3)
$$
\omega^N = \pi^* \beta^N = 2e_{2N}
$$
 with $i^* e_{2N} = P^{2N}$ and $\rho_2(e_{2N}) = z_{2N}$.

Consider the following commutative diagram.

$$
(4.4)
$$

v v y 4< -»• #i+1 (V2ia ; Z) 4 J/'(PV2ra ; Z) IS Hi+2(PV2n,*; Z) -C Hi+2(V2n,*; Z) -* 4 X 2 |X 2 |X 2 4X 2 -* H'+1(V2n>fc; Z) 4 tf'(PV2",fc; Z) ^ H<+2(PV2",*; Z) -S H«+2(V2n,*;^Z) -> i p ² 4p2 lp2 4p² -» Hi+1(V2n,*; Z ²) 4 tf«(PV2n,^t ; Z2) -?//i+2(PV2n>jt; Z²)Ì* ff'+2(V2ri(*; Z ²) ^ **^ ^ ^ ^**

The above rows are the Gysin sequence for the fibration $S^1 \rightarrow V_{2n,k}$ $\rightarrow PV_{2n,k}$ For $s \in J_{n,k} - \{N\}$, we define

(4.5)
$$
Y_{2s} = \delta(z_{2s-1}).
$$

Note that $i^*Y_{2s} = P^{2s}$ and $\rho_2(Y_{2s}) = z_{2s}$. We define

(4.6)
$$
V_s = \delta(z_{2s-1}z_{2n-1}) \in H^{2n+2s-1}(PV_{2n,k}).
$$

Clearly $2V_s = 0$ and $\rho_2(V_s) = z_{2s}z_{2n-1} + \alpha^{n-N}z_{2N}z_{2s-1} +$ $C_{n,s}\alpha^{s-N}z_{2N}z_{2n-1}$. Note that $i^*V_s = P^{2s}y_{2n-1}$ since $i^*\rho_2(V_s) = x_{2s}x_{2n-1}$. For any $j \in J_{nk} - \{N\}$, we now show there exists

$$
(4.7)\,X_{4j-1}\in H^{4j-1}(PV_{2n,k})\,\text{with}\,\,i^*X_{4j-1}=y_{4j-1}\,\text{and}\,\rho_2(X_{4j-1})=Z_{4j-1}.
$$

Let u be any class in $H^{4j-1}(PV_{2n,k})$ with $i^*u = y_{4j-1}$. Then $\rho_2(u) =$ Z_{4i-1} + αz with $z \in H^{4j-3}(PV_{2n,k};Z_2)$ by (4.4). Sq¹(αz) = 0 so αz = $\rho_2(Z)$, and $i^*Z = 2V$ since $\rho_2(i^*Z) = i^*(\rho_2 Z) = i^*(\alpha Z) = 0$. Select Z' such that $i^*Z' = V$ by (4.2). Then $Z - 2Z' = \omega Z'$ and $X_{4i-1} = u +$ $\omega Z'$ satisfies (4.7).

Take any class $u \in H^{4N-1}(PV_{2n,k})$ with $i^*u = 2y_{4N-1}$. Then $\rho_2(u) \in \ker \mathsf{Sq}^1 \cap \ker i^*$ so $\rho_2(u) = \alpha w$ with $\mathsf{Sq}^1 w \neq 0$ by (4.4). It follows that $\rho_2(u) = \alpha^{2N-n} z_{2n-1} + \alpha \rho_2(V)$ for $V \in H^{4N-3}(PV_{2n,k})$. Define $X_{4N-1} = u + \omega V$ and note that

(4.8)
$$
i^*X_{4N-1} = 2y_{4N-1}
$$
 and $\rho_2(X_{4N-1}) = \alpha^{2N-n}z_{2n-1}$.

Similarly, it follows from (4.4) and the fibration $V_{2N-1,k+2N-2n-1} \rightarrow$ $PV_{2n,k} \rightarrow PV_{2n,2n-2N+1}$ that we can choose $Y \in H^{2n+2N-1}(PV_{2n,k})$ so that

(4.9)
$$
2Y = \omega^{n-N}X_{4N-1}, \quad i^*Y = P^{2N}y_{2n-1}, \quad \text{and} \quad \rho_2(Y) = z_{2N}z_{2n-1}.
$$

One checks using (4.4) that

$$
\omega^{2N-n}Y = e_{2N}X_{4N-1}.
$$

Note that $H^*(PV_{2n,k}; Q) = Q[\tilde{\omega}]/(\tilde{\omega}) \otimes QE(\tilde{X}_{4i-1} | j \in J_{nk}).$ In summary we have the following

THEOREM 4.11. Suppose that $k < n + 1$ with k odd. If $N = n$, $H^*(PV_{2n,k}) = H^*(CP^{n-1}) \otimes H^*(V_{2n,k})/(y_{2n-1})$ as algebras. If $N < n$, $H^*(PV_{2n,k})$ is generated by the classes ω , e_{2N} , Y_{2s} , V_s , $X_{4j-1}, U_{s,t}$ and Y *where* $j \in J_{n,k}$ and $s, t \in J_{n,k}$ – $\{N\}$ with $s < t$. Relations among the *generators and the product structure are determined by the rational and Z2 cup products.*

REMARK. $H^*(PV_{2n,k})$ contains the subalgebra $Z[\omega]/(\omega^n) \otimes$ $ZE(X_{4j-1} \mid j \in J_{n,k}).$

Case II. We assume that *n* is even and $k = n + 1$. Thus $n = 2l$. Set $d_l = \frac{1}{2} C_{n,l}$. Choose X_{4l-1} in $H^{2n-1}(PV_{2n,k})$ such that

$$
(4.12) \qquad i^* X_{4l-1} = y_{4l-1} - d_l y_{2n-1} \quad \text{and} \quad \rho_2(X_{4l-1}) = Z_{4l-1}.
$$

Then $H^*(PV_{2n k})$ is again given by (4.11).

5. Integral cohomology.

Case III. Finally we assume $2l < n$ with k odd. Let d_i denote $\frac{1}{2}C_{n,i}$ for $l \leq j < N$. Set $b_l = d_l$ and inductively define $b_i =$ G.C.D. (d_i, b_{i-1}) for $l < i < N$.

Set $b_N = G.C.D.(b_{N-1}, C_{n,N})$. If $N = l$, set $b_N = C_{n,l}$. Define b_j . inductively for $2N \leq 2j < n$. Suppose $b_i > 1$. Set $b_{i+1} = G.C.D.(b_i, \lambda_i)$ where $\lambda_i \in Z_{b_i}$ is chosen uniquely such that $C_{n,i+1} = 2\lambda_i \mod b_i$. If $b_i = 1$, set $b_i = 1$ for $2i < 2i < n$. The argument of [6, Proposition 5] shows

PROPOSITION 5.1. Ker $\pi^* = [b_1 \beta^{2l}, \cdots, b_i \beta^{2j}, \cdots, \beta^{n}]$ for $2l \leq 2j < n$. **Ker** $\bar{\pi}^* = [b_1 \beta^{2l+1}, \cdots, b_i \beta^{2j+1}, \cdots, \beta^{n+1}]$ where $\bar{\pi} : (PV_{2n,k}, V_{2n,k})$ \rightarrow (CP^{**}).

Set $a_i = b_{i-1}/b_i$ for $2l < 2i < n$. Set $y_{4N-1} = 2y_{4N-1}$. Recall T^{q-1} /im $i^* = \text{Ker}^q \pi^* / \text{Ker}^q \bar{\pi}^*$ where $T^{q-1} \subseteq H^{q-1}(\bar{V}_{2n,k})$ denotes the subgroup of transgressive elements. Thus we obtain from (5.1) the following

COROLLARY 5.2. T^q im $i^* = 0$ for $2n \leq q$. T^{4i-1} im $i^* = Z_{a_i}$ for $2l < 2i < n$. T^{4l-1} /im $i^* = Z$. T^{2n-1} /im $i^* = Z_{b_{s-2}}$ if $n = 2s$ and Z_{b_s} . *if* $n = 2s + 1$.

Thus there exist classes X_{4i-1} in $H^{4j-1}(PV_{2n,k})$ for $2l < 2j < n$ such that $i^*X_{4i-1} = a_iy_{4i-1}$. If $n = 2s + 1$, choose X_{2n-1} in $H^{2n-1}(PV_{2n,k})$ such that $i^*X_{2n-1} = b_{s}y_{2n-1}$. If $n = 2s$, choose X_{2n-1} such that $i^*X_{2n-1} = b_{s-1}y_{2n-1}$, and define X_{4s-1} so that $i^*X_{4s-1} = y_{4s-1}$ $d_s y_{2n-1}$ if $s < N$ and $i^* X_{4s-1} = y_{4s-1} - \lambda_s y_{2n-1}$ if $s > N$. Select X_{4i-1} so that $i^*X_{4i-1} = y_{4i-1}$ for $n < 2j < 2n$. Choose a fixed set of the above classes arbitrarily. Let p be a fixed odd prime and set $I_p =$ $\{j \mid 2l < 2j \leq n, p \mid a_j\} \cup \{l\}.$ For $j \in I_p$ with $j \neq N(p)$, set $\overline{v}_{4j-1} =$ v_{4j-1} from (3.2). Define $\bar{v}_{4j-1} = \rho_p(X_{4j-1})$ for $l < j < n$, $j \notin I_p$, $j \neq N(p)$. Set $\overline{v}_{2n-1} = \rho_p(X_{2n-1})$ if $p \nmid b_{s-1}$. Then

$$
H^*(PV_{2n,k}; Z_p) = Z_p[\tilde{\omega}]/(\tilde{\omega}^{2N(p)})
$$

$$
\otimes Z_p E(\overline{v}_{4j-1}, \overline{v}_{2n-1} | j \in J_{n,k}, j \neq N(p)),
$$

if $2N(p) < n$,

$$
= Z_p[\tilde{\omega}]/(\tilde{\omega}^n) \otimes Z_p E(\overline{v}_{4j-1} | j \in J_{n,k}),
$$

if $n \leq 2N(p)$.

Note that

$$
H^*(PV_{2n,k};Q) = Q[\tilde{\omega}]/(\tilde{\omega}^{2l}) \otimes QE(\tilde{v}_{4j-1}, \tilde{v}_{2n-1} \mid l < j < n)
$$

where $\tilde{v}_{4i-1} = \rho_0(X_{4i-1})$ and $\tilde{v}_{2n-1} = \rho_0(X_{2n-1})$. Arrange I_p so that $l = i(0) < i(1) < \cdots < i(j) < \cdots < i(t)$ and write $b_{i(j)} = p^{r(j)}e_j$ where $p \not| \negthinspace e_j$. Then $r(j) > r(j + 1)$ and $b_i = p^{r(j)} e_i$ for $i(j) \leq i < j$ $i(j + 1)$ where $p \nmid e_i$. The argument of [6, Lemmas 8, 10] determines the mod *p* Bockstein spectral sequence via the following

LEMMA 5.3. The differential d_r for ${}_{p}E_r(PV_{2n,k})$ is trivial unless $r =$ $r(j)$. $d_r(\overline{v}_{4i(j)-1}) = 0$ for $r < r(j)$. $d_{r(j)}(\overline{v}_{4i(j)-1}\tilde{\omega}^s) = k_j\tilde{\omega}^{2i(j)+s} \neq 0$ *for* $0 \le s < 2[i(j + 1) - i(j)]$, $k_j \in Z_p$. *if* $n = 2s + 1 = 2N(p) + 1$, $s = i(t)$ and $d_{r(t)}(\bar{v}_{4s-1}) = k_s \tilde{\omega}^{2s}$ with $k_s \neq 0$ and $d_{r(t)}(\bar{v}_{4s-1} \tilde{\omega}) = 0$. *If* $n = 2s = 2N(p)$, then $i(t) = s - 1$ and $d_{r(t)}(\bar{v}_{4s-5}) = k_t \tilde{\omega}^{2(s-1)} \neq 0$ and $d_{r(t)}(\bar{v}_{4s-5}\tilde{\omega}^2) = 0$. If $2N(p) > n$, $d_{r(t)}(\bar{v}_{4i(t)-1}\tilde{\omega}) \neq 0$ for $s < n$ $- 2i(t)$. If $2N(p) < n - 1$, $d_{r(t)}(\bar{v}_{4i(t)-1}) = 0$. Further, $H^*(PV_{2n,k})/2$ Tors. $\otimes Z_n = H^*(PV_{2n,k}; Q)$ as algebras over Z_n .

We apply Poincaré duality to specify generators for $H^*(PV_{2n,k})$. Let U denote the fundamental cohomology class for the closed orientable manifold $PV_{2n,k}$ of dimension $\frac{1}{2}K(4n-k-1)-1$. Fix an arbitrary choice of generators for $H^*(PV_{2n,k}; Z_2)$ such that $z_{2s} =$ Sq^1z_{2s-1} for $s \in J_{n,k}$. Analogous to Case I, we define 2-torsion classes

(5.4)
$$
V_{2s} = \delta(z_{2s-1}) \text{ and } U_{s,t} = \delta(z_{2s-1}z_{2t-1})
$$

for $s, t \in J_{n,k} - \{N\}$ with $s < t$.

Suppose $N = l$. Note that $\pi^* \beta^2 = 2e_{2l}$ where $\rho_2(e_{2l}) = z_{2l}$. Also $\rho_2(X_{4j-1}) = z_{2j-1}z_{2j} + z_{4j-1} + \gamma_j$ for some γ_j with $i^*\gamma_j = 0$. So

$$
U = \omega^{l-1} e_{2l} X_{2n-1} \prod_{l < j < n} X_{4j-1}
$$

since $\rho_p U \neq 0$ for all primes p. Thus we obtain

PROPOSITION 5.5. $For 2l \leq n with N = l and k odd$.

$$
H^*(PV_{2n,k})/\text{Tor} = Z[\omega]/(\omega^l)
$$

$$
\otimes ZE(e_{2l}, X_{2n-1}, X_{4j-1} \mid l < j < n).
$$

If $2l \le N \le n$, then $N = 2^r$ for some integer r. Set $s = 2^{r-1}$ and note that T^{4N-1} /im i^* is generated by $\frac{1}{2} y_{4N-1} + P^{2N} y_{4s-1}$. Recall that y_{4N-1} was redefined to be twice the generator in (2.3). Let $I_2 =$ ${j \mid 2l < 2j < n, 2 \mid a_j\} \cup \{l\}$, and arrange I_2 so that

(5.6)
$$
l = i(0) < i(1) < \cdots < i(t).
$$

Note that $i(t) = s$. Write $b_{i(j)} = 2^{r(j)}g_j$ where $2 \nmid g_j$. There exist classes $Z_{4i-1} = z_{2i-1}z_{2i} + z_{4i-1} + \gamma_i$ with $i^*\gamma_i = 0$ for $j \in J_{n,k} - \{N\}$ such that in the mod 2 Bockstein spectral sequence we have $d_{r(j)}(Z_{4i(j)-1}) = \alpha^{2i(j)} \neq 0$. Any choice of the classes \bar{X}_{4j-1} for $l < j < n$ with *j* not in I_2 satisfies $\rho_2(X_{4j-1}) = Z_{4j-1} + \mu_j$ for some μ_j with $i^*\mu_i = 0$. Classes $X_{4i(i)-1}$ can be chosen so that

(5.7)
$$
i^* X_{4i(j)-1} = a_{i(j)} y_{4i(j)-1},
$$
 for $0 < j \leq t$.

$$
\rho_2(X_{4i(j)-1})=\alpha^{2i(j)-2i(j-1)}Z_{4i(j-1)-1},
$$

Also $\rho_2(X_{2n-1}) = z_{2n-1} + \gamma$ and $\rho_2(X_{4N-1}) = z_{2N}Z_{4s-1} + z_{4N-1} + \mu$ with $i^*y = i^*\mu = 0$ for $2l \leq N < n$. If $N = n$, $\rho_2(X_{2n-1}) = z_{2s-1}z_{2s}$ for some choice of X_{2n-1} . Thus

$$
U = \omega^{2l-1} X_{2n-1} \prod_{l < j < n} X_{4j-1}
$$

since $\rho_n(U) \neq 0$ for all primes p, and we obtain the following

PROPOSITION 5.8.

$$
H^*(PV_{2n,k})/\text{Tors} = Z[\omega]/(\omega^{2l-1}) \otimes ZE(X_{2n-1}, X_{4j-1} \mid l < j < n)
$$

for $2l \le N \le n$ with k odd.

Finally we consider the case $l < N < 2l < n$ where divisibility by 2 occurs among certain products in $H^*(PV_{2n,k})$ Tors. Note that the free class $\pi^* \beta^N = 2e_{2N}$ with $i^* e_{2N} = P^{2N}$ and $\rho_2(e_{2N}) = z_{2N}$. Suppose $i(t)$ < *N* in (5.6). The higher order mod 2 Bocksteins are given by $d_{r(s)+1}(Z_{4i(s)-1}) = z_{2N} \alpha^{2i(s)-N}$ for $0 \le s \le t$. Thus $X_{4i(t)-1}$ for $1 \le j \le t$ can again be chosen to satisfy (5.7). For proper choices $\rho_2(X_{4N-1}) =$ $\alpha^{2[N-i(t)]} Z_{4i(t)-1}$ and $\rho_2(X_{2n-1}) = z_{2n-1} + \mu$ for some μ with $i^*\mu = 0$. Now

$$
U = e_{2N} X_{2n-1} \omega^{2l-N-1} \prod_{l < j < n} X_{4j-1}
$$

since $\rho_p(U) \neq 0$ for all primes p. Note that $P^{2N}y_{4j-1}$ for $j \in J_{n,k}$ $\{N\}$ survives in the integral spectral sequence for π for $l < N < 2l < n$ so there exist classes Y_i in $H^*(PV_{2n,k})$ for $1 \leq i \leq t$ such that

(5.9)
$$
i^*Y_j = P^{2N}y_{4i(j)-1} \text{ and}
$$

$$
Y_j \omega^{2[i(j)-i(j-1)]} = e_{2N}X_{4i(j)-1} \text{ modulo torsion.}
$$

If $N = i(t)$, Y_t is not defined and X_{4N-1} can be chosen so that

 $\rho_2(X_{4N-1}) = \alpha^{2[N-i(t-1)]} Z_{4i(t-1)-1}$. In summary, we have the following

PROPOSITION 5.10. For $l < N < 2l < n$ and k odd, $H^*(PV_{2n,k})$ Tors *is generated by* ω , e_{2N} , X_{2n-1} , X_{4j-1} , and Y , for $l < j < n$ and $1 \leq r \leq t$ *with* Y_t *omitted if* $i(t) = N$.

THEOREM 5.11. Suppose that $2l < n$ with k odd. $H^*(PV_{2n})$ is generated by the classes ω , e_{2N} , X_{2n-1} , X_{4j-1} , Y_r , V_{2s} , and $U_{s,t}$ for $l < j < n$ and $s, t \in J_{nk} - \{N\}$ with $s < t$. $H^*(PV_{2n,k})$ /Tors is given *by* (5.5), (5.8), *and* (5.10).

REMARK. The known result that the real geometric dimension of *m* based on *CP^j* must be greater than $j - 2$ follows from the fact that $\pi^*\beta^{2l}$ is in Tor $H^*(PV_{2n,k})$.

REFERENCES

1. A. Borei, *Sur la cohomologie des espaces fibres principaux et des espaces homogènes des groupes de Lie compacts,* Ann. of Math. (2) 57 (1953), 115-207. MR **14,** 490.

2. A. Borei and F. Hirzebruch, *Characteristic classes and homogeneous spaces.* II, Amer. J. Math. 81 (1959), 315-382. MR 22 #988.

3. S. Gitler and D. Handel, *The projective Stiefel manifolds.* I, Topology 7 (1968), 39-46. MR 36 #3373a.

4. S. Gitler, *The projective Stiefel manifolds.* II. Applications, Topology 7 (1968), 47-53. MR 36 #3373b.

5. C. Miller, *The topology of rotation groups,* Ann. of Math. (2) 57 (1953), 90-114. MR **14,** 673.

6. C. Ruiz, *The cohomology of the complex projective Stiefel manifold,* Trans. Amer. Math. Soc. **146** (1969), 541-547. MR 40 #3584.

7. B. Steer, *Une interprétation géométrique des nombres de Radon -Hurwitz,* Ann. Inst. Fourier (Grenoble) 17 (1967), 209-218. MR 37 #3590.

UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556