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ABSTRACT. In this paper, we give some estimates of the
essential norm for generalized weighted composition opera-
tors from H∞ to the logarithmic Bloch space. Moreover, we
give a new characterization for the boundedness, compact-
ness and essential norm of the generalized weighted composi-
tion operator from H∞ to the logarithmic Bloch space.

1. Introduction. Let X,Y be Banach spaces and ‖ · ‖X→Y denote
the operator norm. The essential norm of a bounded linear operator
T :X → Y is its distance to the set of compact operators K mapping
X into Y , that is,

‖T‖e,X→Y = inf{‖T −K‖X→Y :K is compact}.

Let D be the open unit disk in the complex plane C and H(D) the
space of analytic functions on D. Let H∞ =H∞(D) denote the space of
bounded analytic functions on D with the norm ‖f‖∞ = supz∈D |f(z)|.
We say that an f ∈H(D) belongs to the logarithmic Bloch space, denoted
by LB, if

‖f‖log = sup
z∈D

(1− |z|2) log
e

1− |z|2
|f ′(z)|<∞.

It is easy to see that LB is a Banach space with the norm ‖f‖LB =
|f(0)|+ ‖f‖log. For some related spaces and operators on them, see,
for example, [16, 17, 19, 22]. From [30], we see that LB

⋂
H∞ is the
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space of multipliers of the Bloch space B. Here,

B = {f ∈H(D) : ‖f‖B = |f(0)|+ sup
z∈D
|f ′(z)|(1− |z|2)<∞}.

A weight v : D→ R+ is called radial if v(z) = v(|z|) for all z ∈ D.
Assume that v is radial; we say that an f ∈H(D) belongs to the weighted
type space, denoted by H∞v , if

‖f‖v = sup
z∈D

v(z)|f(z)|<∞.

H∞v is a Banach space with the above norm. The associated weight ṽ
of v is defined by

ṽ(z) =
1

sup{|f(z)| : f ∈H∞v , ‖f‖v ≤ 1}
, z ∈ D.

It is easy to check that ṽα(z) = vα(z) when v = vα(z) = (1− |z|2)α(0<
α <∞), see e.g., [14]. When v = vα(z), we will denote H∞v by H∞vα .

When v= (1−|z|2) log e/1− |z|2, we will denote H∞v and ‖f‖v by H∞vlog
and ‖f‖log, respectively.

Let ϕ be an analytic self-map of D and u ∈ H(D). The weighted
composition operator, denoted by uCϕ, is defined by

(uCϕf)(z) = u(z) · f(ϕ(z)), f ∈H(D).

When u= 1, we get the composition operator, denoted by Cϕ. See [2]
for the theory of composition operators.

Let N0 denote the set of all nonnegative integers. Let n ∈ N0. The
generalized weighted composition operator, denoted by Dn

ϕ,u, is defined
as follows.

(Dn
ϕ,uf)(z) = u(z) · f (n)(ϕ(z)), f ∈H(D), z ∈ D.

This operator was introduced by Zhu [31]. When n= 0, Dn
ϕ,u = uCϕ.

When n= 1 and u(z) = ϕ′(z), then Dn
ϕ,u =DCϕ, which was studied in

[3, 7, 8, 9, 10, 18, 20]. When u(z) = 1, then Dn
ϕ,u =CϕD

n, which was
studied in [26]. See, for example, [6, 21, 23, 24, 28, 31, 32, 33, 34]
for the study of generalized weighted composition operators on various
function spaces.

The compactness of Cϕ : B → B was studied by many authors, see
[12, 25, 27, 29]. In [27], Wulan, Zheng and Zhu proved that Cϕ :B→B
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is compact if and only if

lim
j→∞

‖ϕj‖B = lim
j→∞

‖CϕIj‖B = 0,

where Ij(z) = zj . In [29], Zhao extended the result in [27] to the case
of Bloch type spaces and showed that

‖Cϕ‖e,B→B =
e

2
lim sup
j→∞

‖ϕj‖B =
e

2
lim sup
j→∞

‖CϕIj‖B.

In [26], Wu and Wulan proved that CϕD
n : B → B is compact if and

only if
lim
j→∞

‖CϕDnIj‖B = 0.

The boundedness, compactness and essential norm of composition
operator and its generalizations on B were studied, for example, in
[5, 11, 12, 13, 15, 25, 26, 27, 29, 33, 35].

In [1], the authors studied the boundedness and compactness of
the operator uCϕ : H∞ → LB. In [34], Zhu studied the operator
Dn
ϕ,u :H∞→LB. Among others, she obtained the following result.

Theorem A. Let n ∈ N0, u ∈ H(D), and let ϕ be an analytic self-
map of D such that Dn

ϕ,u :H∞→LB is bounded. Then, the following
statements are equivalent.

(a) Dn
ϕ,u :H∞→LB is compact.

(b) limj→∞ ‖Dn
ϕ,uI

j‖LB = 0.

(c) lim|ϕ(a)|→1 ‖Dn
ϕ,ufϕ(a)‖LB= 0 and lim|ϕ(a)|→1 ‖Dn

ϕ,uhϕ(a)‖LB= 0,
where

fa(z) =
1− |a|2

1− az
and ha(z) =

(1− |a|2)2

(1− az)2
, a, z ∈ D.

(d)

lim
|ϕ(z)|→1

(1− |z|2) log(e/1− |z|2)|u(z)||ϕ′(z)|
(1− |ϕ(z)|2)n+1

= 0

and

lim
|ϕ(z)|→1

(1− |z|2) log(e/1− |z|2)|u′(z)|
(1− |ϕ(z)|2)n

= 0.
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Motivated by Theorem A, the purpose of this paper is to give
some estimates of the essential norm for the operator Dn

ϕ,u : H∞ →
LB. Moreover, we give a new characterization for the boundedness,
compactness and essential norm of Dn

ϕ,u :H∞→LB.

Throughout this paper, we say that P .Q if there exists a constant
C such that P ≤ CQ. The symbol P ≈Q means that P .Q. P .

2. Essential norm of Dn
ϕ,u : H∞ → LB. In this section, we give

some estimates for the essential norm of the operator Dn
ϕ,u :H∞→LB.

For this purpose, we need the following lemma.

Lemma 2.1 ([25, Lemma 3.3]). Let X,Y ⊂ H(D) be two Banach
spaces, and let T : X → Y be a linear operator. Assume that the
following conditions are satisfied :

(i) the point evaluation functionals on Y are bounded ;

(ii) for every bounded sequence in X, there is a subsequence which
converges uniformly on compact subsets of D to an element of X;

(iii)if a sequence {fj} in X uniformly converges on compact subsets
of D to zero, then {Tfj} converges uniformly on compact subsets of D
to zero.

Then, T :X → Y is a compact operator if and only if {Tfj} converges
to zero in the norm of Y for each bounded sequence {fj} in X such that
fj → 0 uniformly on compact subsets of D.

Theorem 2.2. Let n∈N0, u∈H(D), and let ϕ be an analytic self-map
of D such that Dn

ϕ,u :H∞→LB is bounded. Then,

‖Dn
ϕ,u‖e,H∞→LB ≈max{A,B} ≈max{E,F} ≈ lim sup

j→∞
‖Dn

ϕ,uI
j‖LB,

where

A := lim sup
|a|→1

‖Dn
ϕ,ufa‖LB, B := lim sup

|a|→1

‖Dn
ϕ,uha‖LB,

E := lim sup
|ϕ(z)|→1

(1− |z|2) log(e/1− |z|2)|u(z)||ϕ′(z)|
(1− |ϕ(z)|2)n+1

,
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F := lim sup
|ϕ(z)|→1

(1− |z|2) log(e/1− |z|2)|u′(z)|
(1− |ϕ(z)|2)n

.

Proof of Theorem 2.2. First, we prove that

‖Dn
ϕ,u‖e,H∞→LB .max{A,B} and ‖Dn

ϕ,u‖e,H∞→LB .max{E,F}.

Let ρ ∈ [0, 1). Define Kρ :H(D)→H(D) by (Kρf)(z) = fρ(z) = f(ρz),
f ∈H(D). It is clear that Kρ is compact on H∞ and ‖Kρ‖H∞→H∞ ≤ 1
and fρ→f uniformly on compact subsets of D as ρ→1. Let {ρj}⊂ (0, 1)
be a sequence such that ρj→ 1 as j→∞. Then, for all positive integers
j, the operator Dn

ϕ,uKρj :H∞→LB is compact. Hence,

(2.1) ‖Dn
ϕ,u‖e,H∞→LB ≤ lim sup

j→∞
‖Dn

ϕ,u−Dn
ϕ,uKρj‖H∞→LB.

Therefore, we only need prove that

lim sup
j→∞

‖Dn
ϕ,u−Dn

ϕ,uKρj‖H∞→LB .max{A,B}

and
lim sup
j→∞

‖Dn
ϕ,u−Dn

ϕ,uKρj‖H∞→LB .max{E,F}.

Let f ∈H∞ be such that ‖f‖∞ ≤ 1. Then,

(2.2) ‖(Dn
ϕ,u−Dn

ϕ,uKρj )f‖LB
= |u(0)f (n)(ϕ(0))− ρnj u(0)f (n)(ρjϕ(0))|+ ‖u · (f − fρj )(n) ◦ϕ‖log.

It is obvious that

(2.3) lim
j→∞

|u(0)f (n)(ϕ(0))− ρnj u(0)f (n)(ρjϕ(0))|= 0.
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In addition,

lim sup
j→∞

‖u · (f − fρj )(n) ◦ϕ‖log

(2.4)

≤ lim sup
j→∞

sup
|ϕ(z)|≤ρN

(1− |z|2) log
e

1− |z|2

× |(f − fρj )(n+1)(ϕ(z))||ϕ′(z)||u(z)|

+ lim sup
j→∞

sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2

× |(f − fρj )(n+1)(ϕ(z))||ϕ′(z)||u(z)|

+ lim sup
j→∞

sup
|ϕ(z)|≤ρN

(1− |z|2) log
e

1− |z|2

× |(f − fρj )(n)(ϕ(z))||u′(z)|

+ lim sup
j→∞

sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2
|(f − fρj )(n)(ϕ(z))||u′(z)|

=R1 +R2 +R3 +R4,

where N ∈ N is large enough such that ρj ≥ 1/2 for all j ≥N ,

(2.5) R1 := lim sup
j→∞

sup
|ϕ(z)|≤ρN

(1− |z|2) log
e

1− |z|2

|(f − fρj )(n+1)(ϕ(z))||ϕ′(z)||u(z)|,

(2.6) R2 := lim sup
j→∞

sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2

|(f − fρj )(n+1)(ϕ(z))||ϕ′(z)||u(z)|,

R3 := lim sup
j→∞

sup
|ϕ(z)|≤ρN

(1− |z|2) log
e

1− |z|2
|(f − fρj )(n)(ϕ(z))||u′(z)|,

and

R4 := lim sup
j→∞

sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2
|(f − fρj )(n)(ϕ(z))||u′(z)|.

Since Dn
ϕ,u :H∞→LB is bounded, by taking the test functions zn and
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zn+1, see [34], we obtain that u ∈ LB and

M := sup
z∈D

(1− |z|2) log
e

1− |z|2
|ϕ′(z)||u(z)|<∞.

Since ρn+1
j f

(n+1)
ρj → f (n+1) uniformly on compact subsets of D as j→∞,

we get

(2.7) R1 ≤M lim sup
j→∞

sup
|w|≤ρN

|f (n+1)(w)− ρn+1
j f (n+1)(ρjw)|= 0.

Similarly, from the fact that u ∈ LB, we obtain

(2.8) R3 ≤ ‖u‖LB lim sup
j→∞

sup
|w|≤ρN

|f (n)(w)− ρnj f (n)(ρjw)|= 0.

Since ‖f‖∞ ≤ 1, we get

sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2
|(f − fρj )(n+1)(ϕ(z))||ϕ′(z)||u(z)|

(2.9)

.
‖f‖∞
n!ρn+1

N

sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2
|ϕ′(z)||u(z)| n!|ϕ(z)|n+1

(1− |ϕ(z)|2)n+1

. sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2
|ϕ′(z)||u(z)| n!|ϕ(z)|n+1

(1− |ϕ(z)|2)n+1

. sup
|a|>ρN

∥∥∥∥Dn
ϕ,u

(
fa−

1

n+ 1
ha

)∥∥∥∥
log

. sup
|a|>ρN

∥∥Dn
ϕ,ufa

∥∥
LB + sup

|a|>ρN

∥∥Dn
ϕ,uha

∥∥
LB .

Letting N →∞, we obtain

(2.10) R2 .A+B .max{A,B}.

From (2.9), we see that

(2.11) R2 . E.

After a calculation, we have

sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2
|(f − fρj )(n)(ϕ(z))||u′(z)|

(2.12)
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. sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2
|u′(z)| × ‖f‖∞

n+ 2

n!|ϕ(z)|n

(1− |ϕ(z)|2)n

. sup
|ϕ(z)|>ρN

(1− |z|2) log
e

1− |z|2
|u′(z)| × 1

n+ 2

n!|ϕ(z)|n

(1− |ϕ(z)|2)n

. sup
|a|>ρN

∥∥∥∥Dn
ϕ,u

(
fa−

1

n+ 2
ha

)∥∥∥∥
log

. sup
|a|>ρN

∥∥Dn
ϕ,ufa

∥∥
LB + sup

|a|>ρN

∥∥Dn
ϕ,uha

∥∥
LB .

Letting N →∞, we get

(2.13) R4 .A+B .max{A,B}.

From (2.12),

(2.14) R4 . F.

Thus, by (2.2)–(2.8), (2.10) and (2.13), we get

lim sup
j→∞

‖Dn
ϕ,u−Dn

ϕ,uKρj‖H∞→LB(2.15)

= lim sup
j→∞

sup
‖f‖∞≤1

‖(Dn
ϕ,u−Dn

ϕ,uKρj )f‖LB

= lim sup
j→∞

sup
‖f‖∞≤1

‖u · (f − fρj )(m) ◦ϕ‖log .max{A,B}.

From (2.2)–(2.8), (2.11) and (2.14), we obtain

(2.16) lim sup
j→∞

‖Dn
ϕ,u−Dn

ϕ,uKρj‖H∞→LB .max{E,F}.

Therefore, by (2.1), (2.15) and (2.16), we obtain

‖Dn
ϕ,u‖e,H∞→LB .max{A,B} and ‖Dn

ϕ,u‖e,H∞→LB .max{E,F}.

Now, we prove that

‖Dn
ϕ,u‖e,H∞→LB &max{A,B} and ‖Dn

ϕ,u‖e,H∞→LB &max{E,F}.

Let a∈D. It is easy to see that fa, ha ∈H∞ and ‖fa‖∞ . 1, ‖ga‖∞ . 1
for all a ∈ D and fa, ga uniformly converge to 0 on compact subsets
of D as |a| → 1. Thus, for any compact operator K :H∞→LB, from
Lemma 2.1, we obtain lim|a|→1 ‖Kfa‖LB = 0 and lim|a|→1 ‖Kha‖LB = 0.
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Hence,

‖Dn
ϕ,u−K‖H∞→LB
& lim sup
|a|→1

‖(Dn
ϕ,u−K)fa‖LB

≥ lim sup
|a|→1

‖Dn
ϕ,ufa‖LB − lim sup

|a|→1

‖Kfa‖LB =A,

and similarly, ‖Dn
ϕ,u−K‖H∞→LB &B. Therefore,

‖Dn
ϕ,u‖e,H∞→LB = inf

K
‖Dn

ϕ,u−K‖H∞→LB &max{A,B}.

Let {zj}j∈N be a sequence in D such that |ϕ(zj)| → 1 as j→∞. Set

pj(z) =
1− |ϕ(zj)|2

(1−ϕ(zj)z)
− 1

1 +n

(1− |ϕ(zj)|2)2

(1−ϕ(zj)z)2

and

qj(z) =
1− |ϕ(zj)|2

(1−ϕ(zj)z)
− 1

n+ 2

(1− |ϕ(zj)|2)2

(1−ϕ(zj)z)2
.

Also, pj and qj belong to H∞ and uniformly converge to 0 on compact
subsets in D. Moreover,

p
(n)
j (ϕ(zj)) = 0, |p(n+1)

j (ϕ(zj))|= n!
|ϕ(zj)|n+1

(1− |ϕ(zj)|2)n+1

and

|q(n)j (ϕ(zj))|=
n!

n+ 2

|ϕ(zj)|n

(1− |ϕ(zj)|2)n
, q

(n+1)
j (ϕ(zj)) = 0.

Thus, for any compact operator T :H∞→LB, we obtain

‖Dn
ϕ,u−T‖H∞→LB

& lim sup
j→∞

‖Dn
ϕ,u(pj)‖LB − lim sup

j→∞
‖T (pj)‖LB

& lim sup
j→∞

(1− |zj |2) log e
1−|zj |2 |u(zj)||ϕ′(zj)||ϕ(zj)|n+1

(1− |ϕ(zj)|2)n+1
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and

‖Dn
ϕ,u−T‖H∞→LB & lim sup

j→∞
‖Dn

ϕ,u(qj)‖LB − lim sup
j→∞

‖T (qj)‖LB

& lim sup
j→∞

(1− |zj |2) log e/1− |zj |2|u′(zj)|ϕ(zj)|n

(1− |ϕ(zj)|2)n
.

Hence,

‖Dn
ϕ,u‖e,H∞→LB = inf

T
‖Dn

ϕ,u−T‖H∞→LB

& lim sup
j→∞

(1− |zj |2) log e/1− |zj |2|u(zj)||ϕ′(zj)|
(1− |ϕ(zj)|2)n+1

= E

and

‖Dn
ϕ,u‖e,H∞→LB & lim sup

j→∞

(1− |zj |2) log e/1− |zj |2|u′(zj)
(1− |ϕ(zj)|2)n

= F.

Therefore, ‖Dn
ϕ,u‖e,H∞→LB &max{E,F}.

Finally, we prove that

(2.17) ‖Dn
ϕ,u‖e,H∞→LB ≈ lim sup

j→∞
‖Dn

ϕ,uI
j‖LB.

For a ∈ D,

fa(z) = (1− |a|2)

∞∑
k=0

akzk, ha(z) = (1− |a|2)2
∞∑
k=0

Γ(k+ 2)

k!Γ(2)
akzk.

Since Dn
ϕ,u :H∞→LB is bounded, we see from [34] that

sup
1≤j<∞

‖Dn
ϕ,uI

j‖LB <∞.

For any positive integer j ≥ n,

‖Dn
ϕ,ufa‖LB

≤ (1− |a|2)

∞∑
k=0

|a|k‖Dn
ϕ,uI

k‖LB

. (1− |a|2)

j−1∑
k=0

|a|k‖Dn
ϕ,uI

k‖LB + (1− |a|2)

∞∑
k=j

|a|k‖Dn
ϕ,uI

k‖LB

. j(1− |a|2) sup
0≤k≤j−1

‖Dn
ϕ,uI

k‖LB + sup
k≥j
‖Dn

ϕ,uI
k‖LB.
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By letting |a| → 1 in the last estimate for a fixed j, and then letting
j→∞ in such obtained inequality, we obtain

lim sup
|a|→1

‖Dn
ϕ,ufa‖LB . lim sup

j→∞
‖Dn

ϕ,uI
j‖LB.

Similarly,
lim sup
|a|→1

‖Dn
ϕ,uha‖LB . lim sup

j→∞
‖Dn

ϕ,uI
j‖LB.

Therefore,

‖Dn
ϕ,u‖e,H∞→LB ≈ max{A,B}. lim sup

j→∞
‖Dn

ϕ,uI
j‖LB.

On the other hand, for each j ∈ N0, Ij ∈H∞ with ‖Ij‖∞ = 1, and
the sequence {Ij} converges to zero uniformly on compact subsets of
D. Hence for any compact operator K :H∞→LB, by Lemma 2.1, we
have limj→∞ ‖KIj‖LB = 0. Hence,

‖Dn
ϕ,u−K‖H∞→LB ≥ lim sup

n→∞
‖(Dn

ϕ,u−K)Ij‖LB ≥ lim sup
j→∞

‖Dn
ϕ,uI

j‖LB.

Therefore,

‖Dn
ϕ,u‖e,H∞→LB = inf

K
‖Dn

ϕ,u−K‖H∞→LB ≥ lim sup
j→∞

‖Dn
ϕ,uI

j‖LB.

This completes the proof of Theorem 2.2. �

By Theorem 2.2, we immediately get the following result.

Corollary 2.3. Let ϕ be an analytic self-map of D such that Cϕ :H∞→
LB is bounded. Then:

‖Cϕ‖e,H∞→LB
≈ lim sup
|a|→1

‖Cϕfa‖LB ≈ lim sup
|a|→1

‖Cϕha‖LB

≈ lim sup
|ϕ(z)|→1

(1− |z|2) log e/1− |z|2|ϕ′(z)|
1− |ϕ(z)|2

≈ lim sup
n→∞

‖ϕn‖LB.

3. A new characterization of boundedness and compactness
of Dn

ϕ,u :H∞→LB. In this section, we also give a new characterization
for the boundedness, compactness and essential norm of the operator
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Dn
ϕ,u : H∞→LB by using the above two integral operators. For this

purpose, we need the following lemmas.

Lemma 3.1 ([5]). For α > 0, we have limk→∞ kα‖zk−1‖vα = (2α/e)α.

Lemma 3.2 ([14]). Let v and w be radial, non-increasing weights
tending to zero at the boundary of D. Then, the following statements
hold.

(a) The weighted composition operator uCϕ :H∞v →H∞w is bounded
if and only if supz∈D w(z)/(ṽ(ϕ(z)))|u(z)|<∞. Moreover, the following
holds:

‖uCϕ‖H∞v →H∞w = sup
z∈D

w(z)

ṽ(ϕ(z))
|u(z)|.

(b) Suppose that uCϕ :H∞v →H∞w is bounded. Then

‖uCϕ‖e,H∞v →H∞w = lim
s→1−

sup
|ϕ(z)|>s

w(z)

ṽ(ϕ(z))
|u(z)|.

Lemma 3.3 ([4]). Let v and w be radial, non-increasing weights tending
to zero at the boundary of D. Then, the following statements hold.

(a) uCϕ :H∞v →H∞w is bounded if and only if

sup
k≥0

‖uϕk‖w
‖zk‖v

<∞,

with the norm comparable to the above supremum.

(b) Suppose that uCϕ :H∞v →H∞w is bounded. Then

‖uCϕ‖e,H∞v →H∞w = lim sup
k→∞

‖uϕk‖w
‖zk‖v

.

Theorem 3.4. Let n∈N0, u∈H(D), and let ϕ be an analytic self-map
of D. Then, Dn

ϕ,u :H∞→LB is bounded if and only if

(3.1) sup
j≥1

jn‖Iu(ϕj)‖LB <∞ and sup
j≥1

jn‖Ju(ϕj−1)‖LB <∞.

Here

Iug(z) =

∫ z

0

g′(ξ)u(ξ) dξ, Jug(z) =

∫ z

0

g(ξ)u′(ξ) dξ, g ∈H(D).
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Proof. By [34, Theorem 1], Dn
ϕ,u :H∞→LB is bounded if and only

if

(3.2) sup
z∈D

(1− |z|2) log e/1− |z|2|u(z)||ϕ′(z)|
(1− |ϕ(z)|2)n+1

<∞

and

(3.3) sup
z∈D

(1− |z|2) log e/1− |z|2|u′(z)|
(1− |ϕ(z)|2)n

<∞.

By Lemma 3.2, we see that the inequality in (3.2) is equivalent to
uϕ′Cϕ :H∞vn+1

→H∞vlog being bounded. Hence, by Lemmas 3.1 and 3.3,
we get

sup
j≥1

j1+n‖uϕ′ϕj−1‖vlog ≈ sup
j≥1

‖uϕ′ϕj−1‖vlog
‖zj−1‖vn+1

<∞.

Also, the inequality in (3.3) is equivalent to u′Cϕ :H∞vn →H∞vlog being
bounded. By Lemmas 3.1 and 3.3, we obtain

sup
j≥1

jn‖u′ϕj−1‖vlog ≈ sup
j≥1

‖u′ϕj−1‖vlog
‖zj−1‖vn

<∞.

It is clear that Iug(0) = 0, Jug(0) = 0, and

(Iu(ϕj)(z))′ = ju(z)ϕ′(z)ϕj−1(z), (Ju(ϕj−1)(z))′ = u′(z)ϕj−1(z).

Hence, Dn
ϕ,u :H∞→LB is bounded if and only if

sup
j≥1

jn‖Iu(ϕj)‖LB = sup
j≥1

jn+1‖uϕ′ϕj−1‖vlog <∞

and

sup
j≥1

jn‖Ju(ϕj−1)‖LB = sup
j≥1

jn‖u′ϕj−1‖vlog <∞.

The proof is complete. �

Theorem 3.5. Let n∈N0, u∈H(D), and let ϕ be an analytic self-map
of D such that Dn

ϕ,u :H∞→LB is bounded. Then:

‖Dn
ϕ,u‖e,H∞→LB≈max

{
lim sup
j→∞

jn‖Iu(ϕj)‖LB, lim sup
j→∞

jn‖Ju(ϕj−1)‖LB
}
.
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Proof. The lower estimate. From Theorem 2.2 and Lemmas 3.1 and
3.2, we have

‖Dn
ϕ,u‖e,H∞→LB & E = ‖uϕ′Cϕ‖e,H∞vn+1

→H∞vlog
= lim sup

j→∞

‖uϕ′ϕj−1‖vlog
‖zj−1‖vn+1

≈ lim sup
j→∞

jn+1‖uϕ′ϕj−1‖vlog = lim sup
j→∞

jn‖Iu(ϕj)‖LB,

and

‖Dn
ϕ,u‖e,H∞→LB & F = ‖u′Cϕ‖e,H∞vn→H∞vlog = lim sup

j→∞

‖u′ϕj−1‖vlog
‖zj−1‖vn

≈ lim sup
j→∞

jn‖u′ϕj−1‖vlog = lim sup
j→∞

jn‖Ju(ϕj−1)‖LB.

Therefore, by the proof of Theorem 3.4, we obtain

‖Dn
ϕ,u‖e,H∞→LB&max

{
lim sup
j→∞

jn‖Iu(ϕj)‖LB, lim sup
j→∞

jn‖Ju(ϕj−1)‖LB
}
.

Proof. The upper estimate. By Lemmas 3.1 and 3.3, we get

‖uϕ′Cϕ‖e,H∞vn+1
→H∞vlog

= lim sup
j→∞

‖uϕ′ϕj−1‖vlog
‖zj−1‖vn+1

= lim sup
j→∞

jn+1‖uϕ′ϕj−1‖vlog
jn+1‖zj−1‖vn+1

≈ lim sup
j→∞

jn+1‖uϕ′ϕj−1‖vlog = lim sup
j→∞

jn‖Iu(ϕj)‖LB

and

‖u′Cϕ‖e,H∞vn→H∞vlog = lim sup
j→∞

‖u′ϕj−1‖vlog
‖zj−1‖vn

= lim sup
j→∞

jn‖u′ϕj−1‖vlog
jn‖zj−1‖vn

≈ lim sup
j→∞

jn‖u′ϕj−1‖vlog = lim sup
j→∞

jn‖Ju(ϕj−1)‖LB.

Using the estimates and the proof of Theorem 3.4, we have

‖Dn
ϕ,u‖e,H∞→LB
. ‖uϕ′Cϕ‖e,H∞v1+n→H∞vlog + ‖u′Cϕ‖e,H∞vn→H∞vlog
.max

{
lim sup
j→∞

jn‖Iu(ϕj)‖LB, lim sup
j→∞

jn‖Ju(ϕj−1)‖LB
}
.

This completes the proof. �
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From Theorem 3.5, we immediately get the following result.

Theorem 3.6. Let n∈N0, u∈H(D), and let ϕ be an analytic self-map
of D such that Dn

ϕ,u :H∞→LB is bounded. Then. Dn
ϕ,u :H∞→LB is

compact if and only if

lim sup
j→∞

jn‖Iu(ϕj)‖LB = 0 and lim sup
j→∞

jn‖Ju(ϕj−1)‖LB = 0.

From Theorems 3.4 and 3.5, we immediately obtain a new char-
acterization for the boundedness and compactness for the operator
uCϕ :H∞→LB.

Corollary 3.7. Let u ∈H(D), and let ϕ be an analytic self-map of D.
Then, the following statements hold.

(i) uCϕ :H∞→LB is bounded if and only if

sup
j≥1
‖Iu(ϕj)‖LB <∞ and sup

j≥1
‖Ju(ϕj−1)‖LB <∞.

(ii) uCϕ : H∞ → LB is compact if and only if uCϕ : H∞ → LB is
bounded and

lim sup
j→∞

‖Iu(ϕj)‖LB = 0 and lim sup
j→∞

‖Ju(ϕj−1)‖LB = 0.
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