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ABSTRACT. This paper is concerned with the applica-
tion of a hybrid collocation method to a class of initial
value problems for differential equations of fractional order.
First, the fractional differential equation is converted to a
nonlinear Volterra integral equation with a weakly singular
kernel. Then, the Volterra integral equation is converted to
a fixed point problem. A hybrid collocation algorithm is
developed to solve the fixed point problem, and the optimal
order of convergence of the proposed algorithm is obtained.
Two numerical experiments are conducted to demonstrate
the efficiency of the hybrid collocation algorithm.

1. Introduction. Fractional calculus is a generalization of classical
integer-order calculus [25]. Fractional differential operators are non-
local. As such, they can more accurately describe non-local phenomena
such as sub-diffusions and seepage flows in porous media. Through
fractional differential equations, fractional calculus has a wide range of
applications in the areas of physics, engineering and life science, among
other disciplines [6, 26, 28]. Recently, there have been numerous
studies on the theory and numerical methods for fractional differential
equations. We refer to [7, 9, 11, 12, 13, 15, 22] and the references
therein for details.

In this paper, we consider the following class of fractional differential
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equations ([17]):

Dα
∗ y(t) = f(t, y(t)), t ∈ [0, 1],(1.1)

y(0) = y0,(1.2)

where 0 < α < 1 and the fractional differential operator Dα
∗ [19] is

defined as follows. Let T [y] represent the Taylor polynomial of degree
bαc and dαe denote the largest integer smaller than or equal to α and
the smallest integer greater than or equal to α, respectively, and let Jβ

denote the Riemann-Liouville integral operator:

Jβy(t) :=
1

Γ(β)

∫ t

0

(t− s)β−1y(s) ds.

Also denote Dα the Riemann-Liouville differential operator of order α:

Dα :=DdαeJ−dαe+α.

The fractional differential derivative Dα
∗ y(t) in the Caputo sense is

defined as
Dα
∗ y(t) :=Dα(y−T [y])(t), α /∈ N.

A great deal of effort has been made to obtain numerical solutions to
Problem (1.1)–(1.2) (see the work presented in [7, 13, 15], for example).
In this work, we consider the approach of converting the problem to a
Volterra integral equation ([9, 17]):

(1.3) y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s)) ds.

In [16], the authors presented numerical experiments for (1.3) using the
fractional Adams scheme of [13], the Grunward-Letnkov operator ([15])
based finite difference scheme, and the quadrature based fractional
backward difference (see [15]). In [17], a nonpolynomial collocation
method was proposed to acquire the numerical solution where the
optimal convergence order was obtained for the linear case. The error
estimate was later extended to the nonlinear case [18].

In this paper, we adopt the hybrid collocation (HC) method, which
uses nonpolynomial collocation functions only on the first interval. In
comparison with the approach of [17, 18], the dimension of the linear
and nonlinear system of collocation equations in the HC method is
significantly reduced while the optimal order of convergence is still
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maintained. The HC method was first proposed in [4] to solve linear
Volterra integral equations with weakly singular kernels. This method
uses the singularity preserving collocation method on the first subinterval
and a graded piecewise polynomial collocation method on the rest of
the time domain. As pointed out in [4], this method makes use of
the strength of both the singularity preserving collocation and the
graded collocation methods. The same idea was later extended to solve
Fredholm integral equations with weakly singular kernels ([5]) and a
special nonlinear Volterra integral equation with f(t, y) = t1/3y4 ([27]).

To use the HC method, we first convert (1.3) into a fixed point
problem for z, as follows.

(1.4) z(t) = f

(
t, y0 +

1

Γ(α)

∫ t

0

(t− s)α−1z(s) ds
)
.

Then, the solution y of (1.3) is obtained through

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1z(s) ds.

The fixed point idea was presented and developed in [21, 23]. As
explained in [2, 20], for linear problems, this process is the same as the
iterated collocation method, which is more accurate than solving for y
directly. To apply the HC method to (1.4), we first use a result of [9]
to obtain the singularity expansion for z under the analytic assumption
for f . Then, we prove that the hybrid method for (1.4) achieves the
optimal order of convergence.

The paper is organized as follows. In Section 2, we establish
the global existence, uniqueness and smoothness of the solution for
Problem (1.1)–(1.2). In Section 3, we study the singularity structure
of fractional initial value problem (1.1)–(1.2). Section 4 is devoted to
constructing the hybrid collocation algorithm. In Section 5, we conduct
an error analysis to show that the HC method achieves the optimal
order of convergence. Finally, in Section 6, we conduct two numerical
experiments to demonstrate our theoretical results.

2. Existence, uniqueness and smoothness of the solution.
The local existence and uniqueness of the solution of (1.3), and hence,
of Problem (1.1)–(1.2), which we state in the next theorem, was studied
in [10]. The smoothness properties of the solution were discussed in
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[8]. In this section, we first give the sufficient conditions on the “global”
existence and uniqueness of (1.1)–(1.2), which is defined on a fixed
interval [0, 1]. Then, we discuss the regularity of the solution away from
the origin.

Theorem 2.1 ([10]). Assume that D = [0, χ]× [y0− η, y0 + η], where
χ and η are positive constants, and f :D→ R is continuous. Define

χ∗ = min

{
χ,

(
ηΓ(α+ 1)

‖f‖∞

)1/α}
.

Then, a solution to Problem (1.1)–(1.2) exists. If, in addition, f is
Lipschitz continuous, then Problem (1.1)–(1.2) has a unique solution.

Under a stricter condition on f , we can derive the existence of a
unique solution of Problem (1.1)–(1.2) on the entire interval [0, 1], which
we state in the next theorem. The proof of the theorem, which we omit,
is a simple practice of the contraction mapping theorem.

Theorem 2.2. Assume f is Lipschitz continuous and L/(Γ(α+ 1))< 1,
where L is the Lipschitz constant of f . Then, Problem (1.1)–(1.2) has a
unique solution in C[0, 1].

Next, we consider the regularity of the exact of solution y of Problem
(1.1)–(1.2). In general, y may not be smooth even if the right-hand f
is smooth. In the next theorem, we will give the regularity properties
of the solution away from the origin. The next lemma from [1, 3] will
play an important role in our analysis.

Lemma 2.3. Consider the nonlinear Volterra integral equation

(2.1) Y (t′) = F (t′) +

∫ t′

0

K(t′, s′, Y (s′)) ds′, t′ ∈ [0, T ].

Assume that

(V 1) the kernel K = K(t′, s′, Y ) is m times (m ≥ 1) continuously
differentiable with respect to t′, s′, Y for t′ ∈ [0, T ], s′ ∈ [0, t′), Y ∈ R,
and there exists a real number ν ∈ (0, 1) such that, for 0≤ s′ < t′ ≤ T ,
Y ∈ R, and for nonnegative integers i, j, k with i+ j + k ≤ m, the



A HYBRID METHOD FOR FRACTIONAL EQUATIONS 109

following inequalities hold :

(2.2)

∣∣∣∣( ∂

∂t′

)i(
∂

∂t′
+

∂

∂s′

)j(
∂

∂Y

)k
K(t′, s′, Y )

∣∣∣∣≤ b1(|Y |)|t′− s′|−ν−i

and

(2.3)

∣∣∣∣( ∂

∂t′

)i(
∂

∂t′
+

∂

∂s′

)j(
∂

∂Y

)k
K(t′, s′, Y1)

−
(
∂

∂t′

)i(
∂

∂t′
+

∂

∂s′

)j(
∂

∂Y

)k
K(t′, s′, Y2)

∣∣∣∣
≤ b2(max{|Y1|, |Y2|})|Y1−Y2||t′− s′|−ν−i,

where the functions b1 : [0,∞) → [0,∞) and b2 : [0,∞) → [0,∞) are
assumed to be monotonically increasing;

(V 2) F ∈Cm,ν(0, T ], i.e., F (t′) is m times continuously differentiable
for 0< t′ ≤ T and, for k = 0, 1, . . . ,m

(2.4) |F (k)(t′)| ≤ Ct′1−ν−k.

Then, Y ∈ Cm,ν(0, T ].

Theorem 2.4. Assume that f ∈Cm, m∈N, can be written in the form

f(t, y) = f̃(t1/q, y), where q ≥ 2 is an integer. Then, for all 0 < ε < 1,
the solution y of Problem (1.1)–(1.2) belongs to Cm,α(ε, 1].

Proof. Rewrite (1.3) in the form

(2.5) y(t) = g(t) +
1

Γ(α)

∫ t

ε

(t− s)α−1f(s, y(s)) ds, t > ε,

where

(2.6) g(t) = y0 +
1

Γ(α)

∫ ε

0

(t− s)α−1f(s, y(s)) ds.

Setting s′ = s− ε, t′ = t− ε and changing f to f̃ in (2.5) yields

y(t′+ ε) =(2.7)

g(t′+ ε) +
1

Γ(α)

∫ t−ε

0

(t′− s′)α−1f̃((s′+ ε)1/q, y(s′+ ε)) ds′, t > 0,
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where

(2.8) g(t′+ ε) = y0 +
1

Γ(α)

∫ 0

−ε
(t′− s′)α−1f̃((s′+ ε)1/q, y(s′+ ε)) ds′.

Note that (2.7) is in the form (2.1) with

Y (t′) = y(t′+ ε),

K(t′, s′, Y (s′)) =
1

Γ(α)
(t′− s′)α−1f̃((s′+ ε)1/q, Y (s′)),(2.9)

f(t′) = y0 +
1

Γ(α)

∫ 0

−ε
(t′− s′)α−1f̃((s′+ ε)1/q, Y (s′)) ds′,(2.10)

and (V 1) and (V 2) are satisfied with ν = α. Therefore, y ∈ Cm,α(ε, 1].
This completes the proof. �

3. Singularity expansions. In this section, we study the singularity
expansion of the solution z of the fixed point problem (1.4). This
expansion result will be the foundation for our hybrid collocation
method.

First, we quote a result in [9] on the structure of the exact solution
of Problem (1.1)–(1.2).

Lemma 3.1. Let α=p/q, where p≥1 and q≥2 are two relatively prime

integers. Assume that f can be written in the form f(t, y) = f̃(t1/q, y),

and f̃ is analytic in a neighborhood of (0, y0). Then, there exist R> 0
and a uniquely determined analytic function ỹ : (−R,R)→ R such that
y(t) = ỹ(t1/q) for t ∈ [0, R).

This lemma implies that we can write the solution y of Problem
(1.1)–(1.2) as

(3.1) y(t) =

∞∑
i=0

ait
i/q, t ∈ [0, R),

where ai are constants and R is the radius of convergence of the power
series.
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Remark 3.2. From the proof of [9, Lemma 2], we can deduce that the
series in (3.1) is also absolutely and uniformly convergent on subintervals
of [0, R).

In order to derive the singular expansion for the solution of Problem
(1.1)–(1.2), we first analyze the structure of the solution of Problem
(1.1)–(1.2).

Proposition 3.3. Assume that the assumptions of Lemma 2 and

Theorem 2.4 hold. Then, for 0 < R̃ < R, the solution y of Problem
(1.1)–(1.2) can be written as

y(t) = y1(t) + y2(t), 0≤ t≤ R̃,

where y1 ∈ Cm[0, R̃], and y2 is given by

(3.2) y2(t) =

mq−1∑
i=0

ait
i/q.

Proof. Let

(3.3) y1(t) =

∞∑
i=mq

ait
i/q.

It suffices to show that y1 ∈ Cm[0, R̃].

Note that the series on the right hand side of (3.3) is absolutely and

uniformly convergent for t ∈ [0, R̃]; thus, y1 ∈ C[0, R̃]. Now, consider
the series

(3.4)

∞∑
i=mq

i

q
ait

i/q−1.

Let τ = t1/q. Then, (3.3) and (3.4) become, respectively,

(3.5)

∞∑
i=mq

aiτ
i,

and

(3.6)

∞∑
i=mq

i

q
aiτ

i−q.
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From the Cauchy-Hadamard theory, we know that series (3.5) and series
(3.6) have the same radius of convergence, which implies that series (3.3)
and series (3.4) have the same radius of convergence. Thus, series (3.4)

is also absolutely convergent for t ∈ [0, R̃]. In addition, for t ∈ [0, R̃], we
have ∣∣∣∣ iq aiti/q−1

∣∣∣∣≤ ∣∣∣∣ iq aiR̃i/q−1
∣∣∣∣.

Due to the fact that series (3.4) is absolutely convergent at t= R̃, the
majorant criterion indicates that series (3.4) is uniformly convergent

for t ∈ [0, R̃]. Therefore, we can exchange the order of summation and
differentiation to obtain

y′1 =

( ∞∑
i=mq

ait
i/q

)′
=

∞∑
i=mq

i

q
ait

i/q−1.

The above series is absolutely and uniformly convergent for t ∈ [0, R̃].

Moreover, each term in the series is continuous. Thus, y1 ∈ C1[0, R̃].

Repeating the above argument, we conclude that y1 ∈ Cm[0, R̃]. �

The main result of this section is a singularity decomposition of the
solution y for Problem (1.1)–(1.2) in [0, 1].

Theorem 3.4. Assume that the assumptions of Lemma 3.1 and
Theorem 2.4 hold. Then, the solution y of Problem (1.1)–(1.2) can
be written as

(3.7) y = y1 + y2,

where y1 ∈ Cm[0, 1] and y2 is given by (3.2).

Proof. By Proposition 3.3, for t ∈ [0, R̃], y1(t) =
∑∞
i=mq ait

i/q and

y1 ∈ Cm[0, R̃]. On the other hand, by Theorem 2.4, there exists an

ε ∈ (0, R̃) such that y ∈ Cm(ε, 1]. Since ε < R̃, y1 ∈ Cm[0, 1]. �

Next, we introduce a finite-dimensional subspace of C[0, 1], where the
nonsmooth part y2 in the decomposition (3.7) for y belongs. Let N0 be
the set of nonnegative integers. For q≥ 2, let β= 1/q. Then, 0<β≤ 1/2.
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For a given positive integer m, we define the finite-dimensional subspace
V βm of C[0, 1] by

(3.8) V βm := span{ti+jβ , i, j ∈N0, i+ jβ <m, 0< β ≤ 1/2}.

From the proof of Theorem 3.4, we know that the nonsmooth part
y2 of the decomposition (3.7) of y belongs to V βm. For example, if
p = 2, then q = 3, which implies α = 2/3. Then, y1 ∈ C2[0, 1] and

y2 ∈ V 1/3
2 = span{1, t1/3, t2/3, t, t4/3, t5/3}.

In the last part of this section we consider the singularity expansion
of the fixed point problem (1.4). Following the idea of Kumar and Sloan
([23]), we convert the Volterra integral equation (1.3) into a fixed point
problem as follows. Define a function z by

(3.9) z(t) := f(t, y(t)), t ∈ [0, 1].

Substituting (3.9) into (1.3), we have that

(3.10) y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1z(s) ds, t ∈ [0, 1].

It follows from (3.9) that z satisfies the nonlinear integral equation

(3.11) z(t) = f

(
t, y0 +

1

Γ(α)

∫ t

0

(t− s)α−1z(s) ds
)
, t ∈ [0, 1].

The next proposition provides the singularity expansion of the exact
solution of (3.11).

Proposition 3.5. Assume that the conditions of Lemma 3.1 and
Theorem 2.4 hold. Then, the solution z of equation (3.11) can be written
as

(3.12) z = z1 + z2,

where z1 ∈ Cm[0, 1] and z2 ∈ V βm.

Proof. Let y(t) = ỹ(t1/q). For t ∈ [0, R), we find

z(t) = f(t, y(t)) = f̃(t1/q, y(t)) = f̃(t1/q, ỹ(t1/q)) =: z̃(t1/q).

Here, z̃(·) = f̃(·, y(·)). Since f̃ is analytic in a neighborhood of (0, y0)
and ỹ is analytic in [0, R), z̃ is also analytic near 0. By Lemma 3.1, z
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can be written as

z(t) = z̃(t1/q) =

∞∑
i=0

bit
i/q, t ∈ [0, R1),

where the bi are constants and R1 > 0 is a real number. Following a
similar argument as in the proof of Theorem 3.4, we can write z as
z = z1 + z2 with z1 ∈ Cm[0, 1] and z2 ∈ V βm. �

As in [4], the singularity expansion (3.12) will enable us to utilize
the hybrid collocation (HC) to obtain the approximate solutions of the
fractional differential equation problem (1.1)–(1.2).

4. Numerical approach. In this section, we will describe the HC
method for (3.11), and consequently, the initial value problem (1.1)–
(1.2).

Let l denote the cardinality of the set V βm. We use Pm to denote the
space of polynomials of degree ≤m− 1. It is clear that Pm ⊂ V βm.

For convenience, we introduce an index set

Wβ,m = {i+ jβ : i, j ∈N0, i+ jβ <m}= {vk : k = 1, 2, . . . , l}.

With this notation, we can express V βm as

V βm = span{tvk : k = 1, 2, . . . , l}.

Set r :=m/β, and let i0 be an integer such that⌊(
N

i0

)r⌋
=N,

and set N ′ :=N − i0 + 1. Then, the partition on [0, 1] is given by

t0 = 0, ti =

(
i0 + i− 1

N

)r
, i= 1, 2, . . . , N ′.

For i= 0, 1, . . . , N ′−1, denote by σi = [ti, ti+1] the subintervals of [0, 1]
with lengths hi = ti+1− ti and h= maxi=0,1,2,...,N ′−1 hi.

A space of functions piecewise in V ⊆ C[0, 1] is defined by

(V )h = {v : v|[ti−1,ti] ∈ V |[ti−1,ti], i= 1, 2, . . . , N ′}.
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In particular, we denote

Sm,h := (Pm)h, Vm,h := (V βm)h.

Next, we define the finite-dimensional space Smh , to which our
approximate solutions belong, by setting

Smh := {y : y|σ0
∈ V βm|σ0

, y|σi
∈ Pm|σi

, i= 1, 2, . . . , N ′− 1}.

Now, we are ready to introduce the HC method for (3.11). For the
first subinterval σ0, we consider l collocation points

t0j = t0 +h0cj , j = 1, 2, . . . , l,

where 0≤ c1 < c2 < · · ·< cl ≤ 1 are collocation parameters. For the rest
of the subintervals σi, i= 1, 2, . . . , N ′− 1, we define the m collocation
points by

tij := ti + cjhi, j = 1, 2, . . . ,m.

The HC method for the fixed point problem (3.11) is to seek z ∈ Smh
such that

z(t0j) =(4.1)

f

(
t0j , y0 +

1

Γ(α)

∫ t0j

0

(t0j − s)α−1z(s) ds
)
, j = 1, 2, . . . , l,

and

(4.2)
z(tik) = f(tik, y0 +

1

Γ(α)

∫ tik

0

(tik − s)α−1z(s) ds),

i= 1, 2, . . . , N ′− 1, k = 1, 2, . . . ,m.

Substituting z with the approximation z on the right-hand side of (3.10),
we obtain the HC approximation y to y:

(4.3) y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1z(s) ds, t ∈ [0, 1].

To express the HC solution z(t) as a system of nonlinear equations for
z(tik), we introduce the Lagrange basis functions on the first subinterval
σ0 by

(4.4) L0i|σ0 ∈ V βm|σ0 , i= 1, 2, . . . , l.
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such that

(4.5) L0i(t0j) = δij , j = 1, 2, . . . , l.

The existence and uniqueness of the Lagrange basis functions L0i,
i= 1, 2, . . . , l, were proven in [24, 27]. In fact, we may write

(4.6) L0i(t) =


l∑

p=1
aipt

vp t ∈ σ0,

0 otherwise,

where the coefficients aip are obtained by solving the linear system (4.5).
For the rest of the subintervals σk, k = 1, 2, . . . , N ′− 1, we define the
Lagrange polynomial basis functions Lki, i= 1, 2, . . . ,m, by

(4.7) Lki(t) =

{
Li(

t−tk−1

hk
) t ∈ σk,

0 otherwise,

where Li ∈ Pm, i= 1, 2, . . . ,m, are the standard Lagrange polynomial
basis functions on the partition 0≤ c1 < · · ·< cm ≤ 1.

With these basis functions, we can express the solution z of the HC
method as

z0(t) =

l∑
k=1

z(t0k)L0k(t), t ∈ σ0,(4.8)

zi(t) =

m∑
k=1

z(tik)Lik(t), t ∈ σi,(4.9)

i= 1, 2, . . . , N ′− 1.

From (4.1) and (4.2), we have that for j = 1, 2, . . . , l,

(4.10) z(t0j) = f

(
t0j , y0+

1

Γ(α)

l∑
k=1

z(t0k)

∫ t0j

0

(t0j−s)α−1L0k(s) ds

)
,
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and, for i= 1, 2, . . . , N ′− 1, k = 1, 2, . . . ,m,

z(tik) = f

(
tik, y0 +

1

Γ(α)

( l∑
k=1

z(t0k)

∫ t1

0

(tik − s)α−1L0k(s) ds(4.11)

+

i−1∑
r=1

m∑
j=1

z(trj)

∫ tr+1

tr

(tik − s)α−1Lrj(s) ds

+

m∑
j=1

z(tij)

∫ tik

ti

(tik − s)α−1Lij(s) ds
))

.

Finally, in this section, we express the approximate solution z as the
solution of an operator equation. Towards this end, we first define two
interpolation operators Ph,0 and Ph,1 as

(4.12) (Ph,0f)(t) =

l∑
j=1

f(t0j)L0j(t), t ∈ [t0, t1],

and

(4.13) (Ph,1f)(t) =

N ′−1∑
k=1

m∑
j=1

f(tkj)Lkj(t), t ∈ [t1, 1].

Following [4], we define the hybrid interpolation operator Qh by

(4.14) (Qhf)|[0,t1] = (Ph,0f)|[0,t1], (Qhf)|[t1,1] = (Ph,1f)|[t1,1].

Next, we define operator Tα : C[0, 1]→ C[0, 1] by

(Tαy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s) ds,+y0,

and operator F by
F (y)(t) = f(t, y(t)).

With these operators, we can express the HC solution z as the solution
of the operator equation

z =QhFT
α(z).
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5. Convergence analysis. Throughout this section, we assume
that the conditions of Lemma 3.1 are satisfied. For a vector x =
[x1, . . . , xN ]T ∈RN , denote ‖x‖= maxi=1,...,N{|xi|}, and, for a continu-
ous function f , defined on the interval σ, denote ‖f‖σ = maxt∈σ |f(t)|.
We will use ‖f‖ instead of ‖f‖σ when σ = [0, 1]. First, we collect some
lemmas from [4, 14, 18, 27].

Lemma 5.1. Let L0j , j = 1, 2, . . . , l, be the Lagrange functions defined
by (4.4), (4.5). Then, there exists a positive constant c independent of
N such that, for all t1 ∈ (0, 1),

(5.1) ‖L0j‖[t0,t1] ≤ c, j = 1, 2, . . . , l.

Furthermore, for all t1 ∈ (0, 1) and f = f1 +f2, where f1 ∈Cm[0, 1] and
f2 ∈ V βm, there exists a constant C1 > 0 such that

(5.2) ‖f −Ph,0f‖[t0,t1] ≤ C1h
m
0 ‖f

(m)
1 ‖[t0,t1].

Lemma 5.2. Let Qh be the hybrid interpolation operator defined in
(4.14) associated with the graded partition. Suppose that f has a
decomposition f = f1 + f2, where f1 ∈ Cm[0, 1] and f2 ∈ V βm. Then,
there exists a positive constant c1 independent of N such that

‖f −Qhf‖ ≤ c1N−m.

The following singular discrete Gronwall inequality plays an impor-
tant role in our analysis.

Lemma 5.3. Let xi, 0 ≤ i ≤ N , be a sequence of non-negative real
numbers satisfying

xi ≤ ψi +Mh1−η
i−1∑
j=0

xj
(i− j)η

, 0≤ i≤N,

where 0<η< 1, M > 0 is bounded independently of h, and ψi, 0≤ i≤N ,
is a monotonic increasing sequence of non-negative real numbers. Then:

xi ≤ ψiE1−η(MΓ(1− η)(ih)1−η), 0≤ i≤N,

where Eα(x) =
∑+∞
k=0 x

k/Γ(αk+ 1) denotes the Mittag-Leffler function
of order α.
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We are in a position to prove the main result of the paper.

Theorem 5.4. Assume that the conditions of Lemma 2 and Theorem 2.4
hold. Let z be the unique solution of equation (3.11) and z ∈ Smh the HC
approximation to z given by (4.1), (4.2). Then, for sufficiently large N ,
there exists a positive constant C independent of N such that

(5.3) ‖z− z‖ ≤ CN−m.

Proof. First, we prove that

(5.4) ‖z− z‖σ0 ≤ CN−m.

For j = 1, 2, . . . , l, let

(5.5) e0(t0j) = z(t0j)− z(t0j),

and

(5.6) e0 = [e0(t0j) : j = 1, . . . , l]T .

From (3.10) and (4.1), we have

e0(t0j) = f

(
t0j , y0 +

1

Γ(α)

∫ t0j

0

(t0j − s)α−1z(s) ds
)

− f
(
t0j , y0 +

1

Γ(α)

∫ t0j

0

(t0j − s)α−1z(s) ds
)
.

By the assumptions of Lemma 2 and Theorem 2.4, we know that there
exists a constant L, possibly dependent upon the solution y, such that

|e0(t0j)| ≤
L

Γ(α)

∫ t0j

0

(t0j − s)α−1(z(s)− z(s)) ds.

Therefore,

(5.7) |e0(t0j)| ≤
L

Γ(α)

∫ t0j

0

(t0j − s)α−1‖z− z‖σ0
ds.

Next, we estimate ‖z−z‖σ0
in terms of e0. Since the solution of equation

(3.11) has the form z = z1 + z2, with z1 ∈ Cm[0, 1] and z2 ∈ V βm, by
Lemma 5.1, we have that

(5.8) ‖z−Ph,0z‖σ0 ≤ C1h
m
0 ‖z

(m)
1 ‖σ0 ≤ C3N

−m,



120 LINJUN WANG, FANG WANG AND YANZHAO CAO

where the fact that h0≤ c̃N−1 has been used. Since z|σ0
∈V βm, z=Ph,0z

on σ0. Thus,

‖Ph,0z− z‖σ0 = ‖Ph,0(z− z)‖σ0

= ‖Σlj=1L0j(s)(z(t0j)− z(t0j))‖σ0

≤ max
j=1,...,l

‖L0j‖σ0
Σlj=1|z(t0j)− z(t0j)|

≤ cΣlj=1|e0(t0j)|.

Hence,

‖z− z‖σ0
≤ ‖z−Ph,0z‖σ0

+ ‖Ph,0z− z‖σ0

≤ C3N
−m + cΣlj=1|e0(t0j)|.(5.9)

Combining (5.7) and (5.9), we obtain

|e0(t0j)| ≤
L

Γ(α)

∫ t0j

0

(t0j − s)α−1(C3N
−m + cΣlj=1|e0(t0j)|) ds

≤ L

αΓ(α)
tα0j(C3N

−m + c‖e0‖).

Therefore, for sufficiently large N , we have

‖e0‖ ≤ C4N
−m−α.

It follows from (5.9) that

(5.10) ‖z− z‖σ0
≤ CN−m.

Next, we show that

(5.11) ‖z− z‖σi ≤ CN−m, i= 1, · · · , N ′

where σi = [ti, ti+1]. Denote ei = (z(t)− z(t))|σi , i= 1, . . . , N ′− 1,

(5.12) ei(tik) = z(tik)− z(tik),

and

(5.13) ei = [ei(tik) : k = 1, 2, . . . ,m]T .
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From (3.10), (4.2) and (4.10), we have that

ei(tik) = f

(
tik, y0 +

1

Γ(α)

∫ tik

0

(tik − s)α−1z(s) ds
)

− f
(
tik, y0 +

1

Γ(α)

∫ tik

0

(tik − s)α−1z(s) ds
)

≤ L

Γ(α)

∫ tik

0

(tik − s)α−1(z(s)− z(s)) ds

=
L

Γ(α)

(∫ t1

0

(tik − s)α−1(z(s)− z(s)) ds

+

i−1∑
j=1

∫ tj+1

tj

(tik − s)α−1(z(s)− (Ph,1z)(s)

+ (Ph,1z)(s)− z(s)) ds

+

∫ tik

ti

(tik − s)α−1(z(s)− (Ph,1z)(s) + (Ph,1z)(s)− z(s)) ds
)
.

For the first term of the above we use (5.10) to obtain∫ t1

0

(tik − s)α−1(z(s)− z(s)) ds

≤
∫ t1

0

(tik − s)α−1‖z− z‖σ0 ds≤ C5N
−m.

Since h1<h2< · · ·<hN ′−1 and hi≤ cN−1, i= 1, 2, . . . , N ′−1, we have
that ∫ tj+1

tj

(tik − s)α−1ds≤
∫ tj+1

tj

(ti− s)α−1ds

= hαj

∫ 1

0

(
ti− tj
hj

− θ)α−1dθ

≤ cN−α(i− j)α−1,(5.14)

and ∫ tik

ti

(tik − s)α−1ds= hαi

∫ ck

0

dθ

(ck − θ)α−1
≤ 1

α
hαi ck ≤

1

α
N−α.(5.15)
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Using (5.14) and (5.15), together with Lemma 5.2, we have that∣∣∣∣ i−1∑
j=1

∫ tj+1

tj

(tik − s)α−1(z(s)− (Ph,1z)(s) + (Ph,1z)(s)− z(s)) ds
∣∣∣∣

≤
i−1∑
j=1

∫ tj+1

tj

(tik − s)α−1(|z(s)− (Ph,1z)(s)|+ |(Ph,1z)(s)− z(s)|) ds

≤
i−1∑
j=1

∫ tj+1

tj

(tik − s)α−1(C6N
−m +

m∑
γ=1

|Ljγ(s)||z(tjγ)− z(tjγ)|) ds

≤
i−1∑
j=1

∫ tj+1

tj

(tik − s)α−1(C6N
−m +C7‖ej‖) ds

≤ C8N
−m +C9N

−α
i−1∑
j=1

(i− j)α−1‖ej‖,

and ∣∣∣∣ ∫ tik

ti

(tik − s)α−1(z(s)− (Ph,1z)(s) + (Ph,1z)(s)− z(s)) ds
∣∣∣∣

≤
∫ tik

ti

(tik − s)α−1|z(s)− (Ph,1z)(s)|+ |(Ph,1z)(s)− z(s)| ds

≤
∫ tik

ti

(tik − s)α−1(C10N
−m +C11|ei|) ds

≤ C12N
−m +C13N

−α|ei|.

For N sufficiently large, 1−C12N
−α > 0. Thus,

‖ei‖ ≤ C14N
−m +C15N

−α
i−1∑
j=1

(i− j)α−1‖ej‖.

It follows from Lemma 5.3 that

(5.16) ‖ei‖ ≤ C16N
−m.

Next, we follow the similar procedure of estimating ‖z − z‖σ0 to
estimate ‖z− z‖σi , i= 1, 2, . . . , N ′− 1.
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First, note that

‖Ph,1z− z‖σi =

∥∥∥∥ m∑
γ=1

Liγ(s)(z(tiγ)− z(tiγ))

∥∥∥∥
σi

≤
m∑
γ=1

‖Liγ‖σi
‖ei(tiγ)‖

≤ C1‖ei‖ ≤ C2N
−m.

Also, Lemma 5.2 indicates that

‖z−Ph,1z‖σi
≤ C3N

−m.

Thus,

‖z− z‖σi
≤ ‖z−Ph,1z‖σi

+ ‖Ph,1z− z‖σi
≤ (C2 +C3)N−m.

The combination of (5.10) and the above completes the proof of the
theorem. �

Based on the estimate for ‖z− z‖, it is straightforward to estimate
the error between the approximation solution y defined by (4.3) and
the exact solution y of fractional initial value problem (1.1)–(1.2).

Theorem 5.5. Assume that the assumptions of Lemma 2 and Theo-
rem 2.4 hold. Let y be the exact solution of Problem (1.1)–(1.2) and
y the HC approximation of y defined by (4.3). Then, there exists a
constant C such that, for sufficiently large N ,

(5.17) ‖y− y‖ ≤ CN−m.

Proof. Subtracting (3.10) from (4.3), we have that

y(t)− y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1(z(s)− z(s)) ds.

Thus,

‖y− y‖ ≤ ‖z− z‖ sup
0≤t≤1

1

Γ(α)

∫ t

0

(t− s)α−1ds

≤ C‖z− z‖. �



124 LINJUN WANG, FANG WANG AND YANZHAO CAO

6. Numerical experiments. In this section, we conduct two nu-
merical experiments to demonstrate the efficiency of the HC method.
In particular, we will compare the results with those of the graded
collocation method (GC) based on the piecewise polynomials of degree
m− 1. The graded mesh is defined by

∆N
r =

{
ti =

(
i

N

)r
, i= 0, 1, . . . , N

}
,

where r =m/α.

Example 6.1. In the first example, we consider a linear fractional
initial value problem [17]:

D
1/2
∗ y(t) =

1

2
y(t), t ∈ [0, 1],(6.1)

y(0) = 1.(6.2)

The exact solution of (6.1) and (6.2) is

y(t) = E1/2(0.5
√
t) =

∞∑
k=0

0.5k
tk/2

Γ(k/2) + 1
.

Following the process described in Section 3, we define z = z(t) as
the solution of the following Volterra integral equation:

z(t) = 1 +
1

2Γ(1/2)

∫ t

0

(t− s)−1/2z(s) ds.

Then, the solution for the fractional differential equation is given by

(6.3) y(t) = 1 +
1

2Γ(1/2)

∫ t

0

(t− s)−1/2z(s) ds.

We choose m= 3 for both of the methods. Accordingly, the function
space defined in (3.8) is given by

V
1/2
3 = span{1, t1/2, t, t3/2, t2, t5/2},

For the collocation parameters, we choose c1 = 0.1, c2 = 0.2, c3 = 1/3,
c4 = 0.5, c5 = 0.8, c6 = 1 on the first subinterval for the HC method and
c1 = 0.1, c2 = 0.5, c3 = 0.8 on the rest of the subintervals for the HC
method and all subintervals for the GC method.
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Table 1. The standard GC method for Example 6.1.

N Nint hmin ‖e‖∞ Conv. Rate

10 10 1.0000× 10−6 5.5232× 10−4 –

20 20 1.5625× 10−8 8.1073× 10−5 2.7682
40 40 2.4414× 10−10 1.1034× 10−5 2.8773

80 80 3.8147× 10−12 1.4432× 10−6 2.9346
160 160 5.9605× 10−14 1.8503× 10−7 2.9634

320 320 9.3132× 10−16 2.3467× 10−8 2.9791

Table 2. The fixed point GC method for Example 6.1.

N Nint hmin ‖e‖∞ Conv. Rate

10 10 1.0000× 10−6 7.6629× 10−5 –

20 20 1.5625× 10−8 1.0040× 10−5 2.9321
40 40 2.4414× 10−10 1.2248× 10−6 3.0351

80 80 3.8147× 10−12 1.4618× 10−7 3.0667

160 160 5.9605× 10−14 1.7417× 10−8 3.0692
320 320 9.3132× 10−16 2.1044× 10−9 3.0490

The numerical results of the standard GC method, the fixed point
GC method and the HC method proposed in this paper are, respectively,
shown in Table 1, Table 2 and Table 3. Here, Nint refers to the total
number of collocation intervals, hmin refers to the minimum length of
the collocation intervals, and ‖e‖∞ is the maximum norm of the error
between the exact solution and the approximate solution. From these
tables, we can see that, although the convergence rates are the same,
the iterated GC method and the HC method are one magnitude more
accurate than the standard GC method. On the other hand, although
the iterated fixed point method and the iterative HC method have the
same accuracy, the HC method is more efficient than the iterated GC
method since it uses fewer collocation intervals. In addition, the length
of the smallest interval for the HC method is much larger than that of
the GC method, which reduces the potential roundoff error problem.

Example 6.2. In this example, we consider the following nonlinear
problem [29]

(6.4) D
1/2
∗ y(t) =−Γ

(
1

2

)
y2(t)− 8t3/2 + 6πt2− 3π− 3πt4

3
√
π

, t ∈ [0, 1],

(6.5) y(0) = 1.
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Table 3. The HC method for Example 6.1.

N Nint hmin ‖e‖∞ Conv. Rate

10 4 1.1765× 10−1 7.2369× 10−5 –

20 8 4.2230× 10−2 9.6372× 10−6 2.9087
40 19 8.4610× 10−3 1.2050× 10−6 2.9996

80 42 2.2021× 10−3 1.4494× 10−7 3.0555
160 92 5.8000× 10−4 1.7341× 10−8 3.0632

320 198 1.6055× 10−4 2.0827× 10−9 3.0577

Table 4. The fixed point GC method for Example 6.2.

N Nint hmin ‖e‖∞ Conv. Rate

10 10 1.0000× 10−4 1.8652× 10−3 –

20 20 6.2500× 10−6 5.4526× 10−4 1.7743
40 40 3.9063× 10−7 1.4266× 10−4 1.9344

80 80 2.4414× 10−8 3.5631× 10−5 2.0014

160 160 1.5259× 10−9 8.7705× 10−6 2.0224
320 320 9.5367× 10−11 2.1717× 10−6 2.0138

The exact solution is given by y = 1− t2, and the corresponding integral
equation for y is given by

y(t) = 1 +
1

Γ(1/2)

∫ t

0

(t− s)−1/2
(
−Γ

(
1

2

)
y2(s)

− 8s3/2 + 6πs2− 3π− 3πs4

3
√
π

)
ds.

In the CG and HC methods, we choose m= 2. It follows that

V
1/2
2 = span{1, t1/2, t, t3/2}.

For the collocation parameters, we choose c1 = 0.1, c2 = 0.4, c3 = 0.7,
c4 = 1 on the first subinterval for the HC method and c1 = 0.4 and
c2 = 0.9 on the rest of the subintervals for the HC method and all the
subintervals for the GC method.

The numerical results are listed in Tables 4–5. From the two tables,
we can draw the same conclusions as in the first example. In particular,
since we only use 245 collocation intervals in the HC method, its
complexity is only about 75 percent of that in the GC method.
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Table 5. The HC method for Example 6.2.

N NHC hmin ‖e‖∞ Conv. Rate

10 5 1.1050× 10−1 1.8635× 10−3 –

20 11 2.9006× 10−2 5.4516× 10−4 1.7733
40 25 7.0254× 10−3 1.4266× 10−4 1.9341

80 54 2.0316× 10−3 3.5630× 10−5 2.0014
160 116 5.7500× 10−4 8.7705× 10−6 2.0224

320 245 1.7079× 10−4 2.1717× 10−6 2.0138
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