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ENERGY DECAY RATES FOR SOLUTIONS OF THE
KIRCHHOFF TYPE WAVE EQUATION WITH
BOUNDARY DAMPING AND SOURCE TERMS

TAE GAB HA

ABSTRACT. In this work, we are concerned with uni-
form stabilization for an initial-boundary value problem asso-
ciated with the Kirchhoff type wave equation with feedback
terms and memory condition at the boundary. We prove
that the energy decays exponentially when the boundary
damping term has a linear growth near zero and polyno-
mially when the boundary damping term has a polynomial
growth near zero. Furthermore, we study the decay rate of
the energy without imposing any restrictive growth assump-
tion on the damping term near zero.

1. Introduction. In this paper, we are concerned with asymptotic
behavior of the Kirchhoff type wave equation with

(1.1)



u′′ −
(
1 + β

∫
Ω

|∇u|2dx
)
∆u = |u|ρu in Ω× R+,

u = 0 on Γ0 × R+,

∂u

∂ν
+

∫ t

0

k(t− s, x)u′(s) ds+ a(x)g(u′) = 0 on Γ1 × R+,

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

Here, Ω ⊂ Rn is an open bounded domain, n ≥ 1, with a boundary
Γ = Γ0 ∪ Γ1 of class C2, where Γ0 and Γ1 are closed and disjoint. The
map

a : Γ1 −→ R+ ∈ L∞(Γ1)

2010 AMS Mathematics subject classification. Primary 35B35, 35B40, 35L05,
35L20.

Keywords and phrases. Kirchhoff type wave equation, energy decay rates.
This research was supported by the Basic Science Research Program through

the National Research Foundation of Korea (NRF), funded by the Ministry of
Education, grant No. NRF-2016R1D1A1B03932096, and by research funds for newly
appointed professors of Chonbuk National University in 2017.

Received by the editors on November 1, 2016, and in revised form on August 7,
2017.
DOI:10.1216/JIE-2018-30-3-377 Copyright c⃝2018 Rocky Mountain Mathematics Consortium

377



378 TAE GAB HA

is such that a(x) ≥ a0 > 0,

k : Γ1 × R+ −→ R+ ∈ C2(R+, L
∞(Γ1)),

and
g : R −→ R

is a nondecreasing function. We shall denote by ν the unit outward
normal vector to Γ. ∆ and ∇ stand for the Laplacian and gradient with
respect to the spatial variables, respectively, ′ denotes the derivative
with respect to time t, and R+ = [0,∞).

The integro-differential equation (1.1)1 (the first equation of (1.1))
describes vertical vibrations of a flexible string, but does not portray
the existence of a whirling out of plan motion. This phenomenon
was observed by Harrison [22] and Nayfeh and Mook [30]. On the
other hand, the boundary condition (1.1)3 (the third equation of
(1.1)) describes the reflection of sound at surfaces of some materials
with memory of interest in engineering practice. It is quite general
and covers a fairly large variety of physical configurations. Problems
containing the boundary condition (1.1)3 were studied by many authors
(e.g., Aassila, et al., [1], Alabau-Boussouira [2], Nicaise and Pignotti
[31], Park and Ha [35], Park, et al., [37], Prüss [38], and the references
therein).

The problem of proving uniform decay rates for solutions to the wave
equation with a boundary dissipation has attracted much attention in
recent years. The linear problem has been treated by many authors,
see for instance, [25, 26, 41]. The nonlinear boundary conditions were
studied by [1, 24, 45]. Aassila, et al., [1] and Alabau-Boussouira,
et al., [2] studied the uniform decay for the solutions of the wave
equation (1.1) without the source terms |u|ρu and β = 0. Park, et al.,
[37] studied (1.1) with β = 0 and the same boundary condition, and
found that the function g does not have polynomial growth near zero.
For comprehensive studies of nonlinear wave equations, the reader is
referred to [7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 28, 34, 36, 43, 44]
and the references therein. In particular, Autuori and Pucci [3, 4], Bae
[5], Bae and Nakao [6], Gorain [9, 10], Ha and Park [20, 21], Lasiecka
and Ong [27], Park, et al., [33] and Santos, et al., [40] researched
Kirchhoff type problems. For instance, the case of the n-dimensional
quasilinear wave equation of Kirchhoff type with a suitable nonlinear
boundary dissipation was treated in [27] (this case is equation (1.1)
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without source terms |u|ρu, k(t, x) = 0 and a(x) = 1). Global existence,
uniqueness and uniform decay of solutions for such a problem were
examined, subject to some restriction on the norms of the initial data.

There have been very few results when the function g has no poly-
nomial growth near zero. Lasiecka and Tataru [28] studied the more
general case of a semilinear wave equation damped with a nonlinear
velocity feedback acting on Γ1, under some very weak geometrical con-
ditions on Γ0 and Γ1. Without the assumption that g has a polynomial
behavior near zero, they proved that the energy decays as fast as the
solution of an associated differential equation. More precisely, they
generalized the method used to obtain uniform decay estimates when g
has a polynomial behavior near zero. However, they did not obtain an
explicit decay rate estimate for the energy. On the other hand, Mar-
tinez [29] studied the linear wave equation with a boundary damping
term. He proved the explicit decay estimate of the energy even if the
damping term g has no polynomial growth near zero. In order to ob-
tain the explicit decay estimate, he used the construction of a special
weight function and the generalization of a technique of partition of
the boundary.

In this paper, we prove the uniform decay rates of solutions for the
Kirchhoff type wave equation with linear or polynomial growth on the
damping term near zero. Moreover, we study the energy decay rate
without imposing any restrictive growth assumption on the damping
term near zero. The goal of this paper is to extend the results of [37]
by applying the method developed in [29].

This paper is organized as follows. In Section 2, we recall the
hypotheses used to prove our results and introduce our main results.
In Section 3, under hypothesis (H3), we prove the exponential or
polynomial decay rate using Komornik’s method and Lasiecka and
Tataru’s method. In Section 4, using Martinez’s method, we prove the
energy decay rate, which has a more general case of g on the hypothesis
(H3).

2. Hypotheses and main results. We begin this section by intro-
ducing some hypotheses and our main results. Throughout this paper,
we use standard functional spaces and denote || · ||p as the Lp(Ω) norm.
We consider the Hilbert space

H1
Γ0
(Ω) := {u ∈ H1(Ω);u = 0 on Γ0}.



380 TAE GAB HA

(H1) Hypotheses on Ω. Let Ω ⊂ Rn be an open bounded domain,
n ≥ 1, with a boundary Γ = Γ0 ∪ Γ1 of class C2, where Γ0 and Γ1 are
closed and disjoint satisfying the following conditions:

(2.1) Γ0 ̸= ∅ or inf
Γ1×R+

k ̸= 0,

(2.2)

m · ν ≥ δ > 0 on Γ1,

m · ν ≤ 0 on Γ0,

m := m(x) = x− x0, for any x0 ∈ Rn.

(H2) Hypotheses on k. k : Γ1 × R+ → R+ ∈ C2(R+, L
∞(Γ1)),

such that

(2.3) k′ ≤ 0 on Γ1 × R+,

(2.4) k′′ ≥ −αk′ on Γ1 × R+, for some α > 0,

(2.5) α inf
Γ1

k(0) > −2 inf
Γ1

k′(0).

(H3) Hypotheses on g. Let g : R → R be a continuous,
nondecreasing function such that

(2.6) g(0) = 0, |g(x)| ≤ 1 + C1|x| and g(s)s > 0 for s ̸= 0,

(2.7) C2|x|p ≤ |g(x)| ≤ C3|x|1/p if |x| ≤ 1,

(2.8) C4|x| ≤ |g(x)| ≤ C5|x| if |x| ≥ 1,

where p ≥ 1 and Ci(1 ≤ i ≤ 5) are five positive constants.

(H4) Hypotheses on a(x), β, ρ. Suppose that a : Γ1 → R+ ∈
L∞(Γ1) is such that a(x) ≥ a0 > 0, β > 0 is a real number and

(2.9) 0 < ρ <
2

n− 2
if n ≥ 3 and ρ > 0 if n = 1, 2.

The next lemma is used to estimate the energy identity.



KIRCHHOFF WAVE EQUATION ENERGY DECAY RATES 381

Lemma 2.1. For ψ,φ ∈ C1([0,∞) : R), we have(∫ t

0

ψ(t−s)φ(s) ds
)
φ′ =

1

2

∫ t

0

ψ′(t−s)|φ(t)−φ(s)|2ds− 1

2
ψ(t)|φ|2

− 1

2

d

dt

[ ∫ t

0

ψ(t− s)|φ(t)− φ(s)|2ds−
(∫ t

0

ψ(s) ds

)
|φ|2

]
.

Proof. Differentiating the term
∫ t

0
ψ(t−s)|φ(t)−φ(s)|2ds, we arrive

at the above equality. �

We define the energy of the solution by the following formula

(2.10)

E(t) :=
1

2

∫
Ω

|u′(t, x)|2dx

+
1

2

∫
Ω

|∇u(t, x)|2dx+
β

4

(∫
Ω

|∇u(t, x)|2dx
)2

− 1

2

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

∫ t

0

k′(t− s, x)|u(t, x)− u(s, x)|2ds dΓ

+
1

2

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

k(t, x)|u(t, x)− u0(x)|2dΓ

− 1

ρ+ 2

∫
Ω

|u(t, x)|ρ+2dx.

According to (2.9), we have the imbedding:

H1
Γ0
(Ω) ↩→ L2(ρ+1)(Ω) ↩→ Lρ+2(Ω).

Let B1 > 0 be the optimal constant of Sobolev immersion which
satisfies the inequality

||v||ρ+2 ≤ B1||∇v||2, for all v ∈ H1
Γ0
(Ω).

From the above inequality, we have

K0 := sup
v∈H1

Γ0
(Ω)v ̸=0

(
(1/ρ+ 2)||v||ρ+2

ρ+2

||∇v||ρ+2
2

)
≤ Bρ+2

1

ρ+ 2
.
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Note that K0 > 0, and

(2.11)
1

ρ+ 2
||v||ρ+2

ρ+2 ≤ K0||∇v||ρ+2
2 , for all v ∈ H1

Γ0
(Ω).

We consider the functional

(2.12) J(u) =
1

2
||∇u||22 −

1

ρ+ 2
||u||ρ+2

ρ+2, u ∈ H1
Γ0
(Ω),

and define the positive number

d := inf
v∈H1

Γ0
(Ω)

v ̸=0

{
sup
λ>0

J(λv)
}
.

Setting

f(λ) =
1

2
λ2 −K0λ

ρ+2, λ > 0,

then

λ1 =

(
1

K0(ρ+ 2)

)1/ρ

is the absolute maximum point of f and d = f(λ1) > 0.

It is well known that the number d is the Mountain Pass level
associated to the elliptic problem

−∆u = |u|ρu in Ω,

u = 0 on Γ0,
∂u

∂ν
= 0 on Γ1.

In fact (see [42]),
d = inf

γ∈Λ
sup

t∈[0,1]

J(γ(t)),

where

Λ = {γ ∈ C([0, 1]; H1
Γ0
(Ω)); γ(0) = 0, J(γ(1)) < 0}.

Furthermore, we obtain

d = f(λ1) =
ρ

2(ρ+ 2)
λ21.
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The energy associated to problem (1.1) is given by

E(t) =
1

2

∫
Ω

|u′(t, x)|2dx

+
1

2

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

k(t, x)|u(t, x)− u0(x)|2dΓ

− 1

2

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

∫ t

0

k′(t− s, x)|u(t, x)− u(s, x)|2ds dΓ + J(u(t)),

for u ∈ H1
Γ0
(Ω). From (2.3) and (2.11), we have

(2.13) E(t) ≥ J(u(t)) ≥ 1

2
||∇u||22 −K0||∇u||ρ+2

2 = f(||∇u(t)||2).

Now, if one considers

(2.14) ||∇u(t)||2 < λ1,

then, from (2.13) and (2.14), we have
(2.15)

E(t) ≥ J(u(t)) > ||∇u(t)||22
(
1

2
− λρ1K0

)
= ||∇u(t)||22

(
1

2
− 1

ρ+ 2

)
.

Thus, if (2.14) is satisfied, from the above inequality, we deduce that

(2.16) J(t) ≥ 0 and ||∇u(t)||22 ≤ 2(ρ+ 2)

ρ
E(t).

In order to obtain global existence for regular solutions, the following
assumption is made on the initial data:

(2.17) E(0) < d and ||∇u0||2 < λ1.

We now state the global existence result, which can be obtained by
[27, 37, 38, 40]: let us consider whether the hypotheses (H1)–(H4)
and (2.17) hold. If the initial data {u0, u1} belong to H1

Γ0
(Ω)×L2(Ω),

then problem (1.1) possesses a unique weak solution in the class

u ∈ C(R+,H
1
Γ0
(Ω)) ∩ C1(R+, L

2(Ω)),

with ||∇u(t)||2 < λ1 for all t > 0.



384 TAE GAB HA

Furthermore, if the initial data {u0, u1} belong to H2(Ω)∩H1
Γ0
(Ω)×

H1
Γ0
(Ω) and g is globally Lipschitz continuous, then the solution has

the following regularity ([1, 5, 37]):

u ∈ L∞(R+,H
1
Γ0
(Ω)),

u′ ∈ L∞
loc(R+,H

1
Γ0
(Ω)),

u′′ ∈ L∞
loc(R+, L

2(Ω)),

with ||∇u(t)||2 < λ1 for all t > 0.

Now, we are in a position to state our main results.

Theorem 2.2. Assume that hypotheses (H1)–(H4) and (2.17) hold.
Then, we have that, if p = 1, there exist positive constants C6 and ω
such that

(2.18) E(t) ≤ C6E(0)e−ωt.

If p > 1, there exists a positive constant C7 such that

(2.19) E(t) ≤ C7E(0)

(1 + t)2/(p−1)
.

We will now consider the more general case of g.

(H3). Let g : R → R be a nondecreasing C1 function such that
g(0) = 0, and suppose that there exists a strictly increasing and odd
function α of C1 class on [−1, 1] such that

|α(s)| ≤ |g(s)| ≤ |α−1(s)| if |s| ≤ 1,

C8|s| ≤ |g(s)| ≤ C9|s| if |s| > 1,

where α−1 denotes the inverse function of α and C8 and C9 are positive
constants.

Theorem 2.3. Assume that hypotheses (H1), (H2), (H4), (H3) and
(2.17) hold. Then, we have

(2.20) E(t) ≤ C10

(
F−1

(
1

t

))2

,

where F (s) := sα(s), and C10 is a positive constant. Moreover, if the
function G(s) := α(s)/s is nondecreasing on [0, η] for some η > 0 and
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G(0) = 0, then we have

(2.21) E(t) ≤ C11

(
α−1

(
1

t

))2

,

where C11 is a positive constant.

3. Proof of Theorem 2.1. In order to simplify the computations,
and without lost of generality, we will transform the boundary condition
into another more practical one by considering u0 = 0 on Γ1. Thus,
problem (1.1) is now transformed into

(3.1)



u′′ −
(
1 + β

∫
Ω

|∇u|2dx
)
∆u = |u|ρu in Ω× R+,

u = 0 on Γ0 × R+,

∂u

∂ν
+

∫ t

0

k′(t− s, x)u(s, x) ds

+k(0)u+ a(x)g(u′) = 0 on Γ1 × R+,

u(x, 0) = u0(x), u′(x, 0) = u1(x) x ∈ Ω.

In order to solve the energy decay of (3.1), we use the following
lemmas.

Lemma 3.1 (cf., [23]). Let E : R+ → R+ be a nonincreasing function,
and assume that there exist two constants α > 0 and T > 0 such that∫ +∞

t

Eα+1(s) ds ≤ TE(0)αE(t) for all t ∈ R+.

Then, we have

E(t) ≤ E(0)

(
T + αt

T + αT

)−1/α

for all t ≥ T.

In particular, assume that∫ +∞

t

E(s) ds ≤ TE(t) for all t ∈ R+.

Then,
E(t) ≤ E(0)e1−t/T for all t ≥ T.
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Lemma 3.2 (Gagliardo-Nirenberg inequality [8, 32]). Let 1 ≤ r <
p <∞, 1 ≤ q ≤ p and 0 ≤ m. Then:

||v||W l,q ≤ C||v||θWm,p ||v||1−θ
Lr

for v ∈Wm,p(Ω)∩Lr(Ω), Ω ⊂ RN , where C is a positive constant and

θ =

(
l

N
+

1

r
− 1

q

)(
m

N
+

1

r
− 1

p

)−1

provided that 0 < θ ≤ 1.

Using (3.1), it follows that

(3.2)

d

dt
E(t) = −

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

1

2
k′′(t− s, x)|u(t, x)− u(s, x)|2dΓ

+

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

1

2
k′(t, x)|u|2 − a(x)g(u′)u′dΓ.

Hence, the energy is nonincreasing. Now, we will prove several esti-
mates of the energy (3.1).

In the following section, the symbol C indicates positive constants,
which may be different.

Lemma 3.3. Setting Mu := 2(m ·∇u)+ (n− 1)u, the following holds:∫ T

S

E(p+1)/2(t) dt ≤ C

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|2dx dt+ CE(S).

Proof. We shall divide the proof into several steps: (1) In order to
derive the result, we multiply the equation (3.1) by E(p−1)/2(t)(Mu);
(2) We analyze terms obtained by (1); (3) During the process of the
estimation of (2), a significant boundary term remains. Thus, we
calculate this term in the third step; (4) Using (2.10), we deduce the
result of Lemma 3.3.
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Step (1). (Multiplying E(p−1)/2(t)(Mu).) We multiply equation
(3.1) by E(p−1)/2(t)(Mu) and then integrate the result obtained over
Ω× [S, T ]. Then, we have

0 =

∫ T

S

E(p−1)/2(t)

∫
Ω

(Mu)

(
u′′ −

(
1 + β

∫
Ω

|∇u|2dx
)
∆u− |u|ρu

)
dx dt

=

∫ T

S

E(p−1)/2(t)

∫
Ω

(
2(m · ∇u) + (n− 1)u

)
×
(
u′′ −

(
1 + β

∫
Ω

|∇u|2dx
)
∆u− |u|ρu

)
dx dt

=

∫ T

S

E(p−1)/2(t)

∫
Ω

2u′′(m · ∇u) dx dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

2∇u · ∇(m · ∇u) dx dt

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ

2
∂u

∂ν
(m · ∇u) dΓ dt

(3.3)

−
∫ T

S

E(p−1)/2(t)

∫
Ω

2|u|ρu(m · ∇u) dx dt

+ (n− 1)

∫ T

S

E(p−1)/2(t)

∫
Ω

uu′′dx dt

+ (n− 1)

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

− (n− 1)

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

∂u

∂ν
u dΓ dt

− (n− 1)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|ρ+2dx dt.

Note that∫ T

S

E(p−1)/2(t)

∫
Ω

2u′′(m · ∇u) dx dt

=

[
E(p−1)/2(t)

∫
Ω

2u′(m · ∇u)dx
]T
S

− p− 1

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

2u′(m · ∇u) dx dt

−
∫ T

S

E(p−1)/2(t)

∫
Ω

2u′(m · ∇u′) dx dt,
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∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

2∇u · ∇(m · ∇u) dx dt

= (2− n)

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ

(m · ν)|∇u|2dΓ dt

and

(n− 1)

∫ T

S

E(p−1)/2(t)

∫
Ω

uu′′dx dt

= (n− 1)

[
E(p−1)/2(t)

∫
Ω

u′udx

]T
S

− (n− 1)(p− 1)

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

u′u dx dt

− (n− 1)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u′|2dx dt.

Replacing the above calculations in (3.3), we obtain

0 =

[
E(p−1)/2(t)

∫
Ω

2u′(m · ∇u) dx
]T
S

− p− 1

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

2u′(m · ∇u) dx dt

−
∫ T

S

E(p−1)/2(t)

∫
Ω

2u′(m · ∇u′) dx dt

+ (2− n)

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ

(m · ν)|∇u|2dΓ dt

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ

2
∂u

∂ν
(m · ∇u) dΓ dt

−
∫ T

S

E(p−1)/2(t)

∫
Ω

2|u|ρu(m · ∇u) dx dt
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+ (n− 1)

[
E(p−1)/2(t)

∫
Ω

u′u dx

]T
S

− (n− 1)(p− 1)

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

u′u dx dt

− (n− 1)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u′|2dx dt

+ (n− 1)

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

− (n− 1)

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

∂u

∂ν
u dΓ dt

− (n− 1)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|ρ+2dx dt

=

[
E(p−1)/2(t)

∫
Ω

u′(Mu) dx

]T
S

− p− 1

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

u′(Mu) dx dt

+ n

∫ T

S

E(p−1)/2(t)

∫
Ω

|u′|2dx dt

−
∫ T

S

E(p−1)/2(t)

∫
Γ1

(m · ν)|u′|2dΓ dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ0

(m · ν)|∇u|2dΓ dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

(m · ν)|∇u|2dΓ dt

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ0

2
∂u

∂ν
(m · ∇u) dΓ dt

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

∂u

∂ν
(Mu) dΓ dt

−
∫ T

S

E(p−1)/2(t)

∫
Ω

2|u|ρu(m · ∇u) dx dt
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− (n− 1)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u′|2dx dt

− (n− 1)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|ρ+2dx dt.

Using ∇u · ν = ∂u/∂ν on Γ0, it follows that

∫ T

S

E(p−1)/2(t)

∫
Ω

(
|u′|2 − 2

ρ+ 2
|u|ρ+2

)
dx dt(3.4)

+

∫ T

S

E(p−1)/2(t)

(
1 +

β

2

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

= −
[
E(p−1)/2(t)

∫
Ω

u′(Mu)dx

]T
S

+
p− 1

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

u′(Mu) dx dt

+ 2

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|ρu(m · ∇u) dx dt

+

(
(n− 1)− 2

ρ+ 2

)∫ T

S

E(p−1)/2(t)

∫
Ω

|u|ρ+2dx dt

− β

2

∫ T

S

E(p−1)/2(t)

∫
Ω

|∇u|2dx
∫
Ω

|∇u|2dx dt

+

∫ T

S

E(p−1)/2(t)

(
1 +

β

2

∫
Ω

|∇u|2dx
)∫

Γ0

(m · ν)|∇u|2dΓ dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

∂u

∂ν
(Mu) dΓ dt

+

∫ T

S

E(p−1)/2(t)

∫
Γ1

(m · ν)|u′|2dΓ dt

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

(m · ν)|∇u|2dΓ dt.

Step (2). (Analysis of (3.4).) We will estimate terms of the right
hand side of (3.4).
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Estimates for I1 := −
[
E(p−1)/2(t)

∫
Ω

u′(Mu) dx

]T
S

: From Young’s

inequality and Poincare’s inequality, we obtain
(3.5)∣∣∣∣ ∫

Ω

u′(Mu) dx

∣∣∣∣ ≤ ∫
Ω

|u′|2dx

+ 2R2

∫
Ω

|∇u|2dx+
(n− 1)2

2

∫
Ω

|u|2dx ≤ CE(t),

where R = maxx∈Ω |m(x)|. Since E(t) is nonincreasing, we have

(3.6) I1 ≤ −C
[
E(p−1)/2(t)E(t)

]T
S

≤ CE(S).

Estimates for I2 :=
p− 1

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

u′(Mu) dx dt: By

using (3.5), we obtain∣∣∣∣E(p−3)/2(t)E′(t)

∫
Ω

u′(Mu) dx

∣∣∣∣ ≤ −C
(
E(p+1)/2(t)

)′

.

Hence,

(3.7) I2 ≤ CE(S).

Estimates for I3 := 2

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|ρu(m · ∇u) dx dt:

(3.8)

|I3| ≤ 2R

∫ T

S

E(p−1)/2(t)

∫
Ω

|∇u||u|ρ+1dx dt

≤ 2R

∫ T

S

E(p−1)/2(t)||∇u||2||u||ρ+1
2(ρ+1) dt.

On the other hand, by Lemma 3.2, we obtain that

(3.9) ||u||q ≤ C||u||1−θ
2 ||u||θp, θ =

p(q − 2)

q(p− 2)
.

Let us consider 0 < ρ < 2/(n− 2), where, if n ≥ 3, 0 < s <
2n/(n−2)−2(ρ+1) and (3.9) holds with q = 2(ρ+1) and p = 2(ρ+1)+s,
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then

(3.10) ||u(t)||2(ρ+1) ≤ C||u(t)||1−θ
2 ||u(t)||θ2(ρ+1)+s for all t ≥ 0,

where θ = [ρ(2(ρ+ 1) + s)]/[(ρ+ 1)(2ρ+ s)]. From (3.10), we have

||u||ρ+1
2(ρ+1) ≤ C||u||(1−θ)(ρ+1)

2 ||u||θ(ρ+1)
2(ρ+1)+s.

Considering the choice of s, we have that 2(ρ + 1) + s ≤ 2n/(n − 2),
which implies that H1

Γ0
(Ω) ↩→ L2(ρ+1)+s. Thus, we obtain that

(3.11) ||u||ρ+1
2(ρ+1) ≤ C||u||(1−θ)(ρ+1)

2 ||∇u||θ(ρ+1)
2 .

From (3.8) and (3.11), we have

(3.12) |I3| ≤ 2RC

∫ T

S

E(p−1)/2(t)||u||(1−θ)(ρ+1)
2 ||∇u||θ(ρ+1)+1

2 dt.

Using Young’s inequality with p = 2/[(1− θ)(ρ+ 1)] and q = 2/[2 −
(1− θ)(ρ+ 1)], we obtain

(3.13) ||u||(1−θ)(ρ+1)
2 ||∇u||θ(ρ+1)+1

2

≤ C ′(ϵ)||u||22 + ϵ||∇u||[2{θ(ρ+1)+1}]/[2−(1−θ)(ρ+1)]
2 ,

where ϵ > 0 and C ′(ε) is for some positive constant. By (2.16), we can
easily check that

(3.14) ||∇u||22 ≤ 2(ρ+ 2)

ρ
E(0).

In order to calculate (3.12) with (3.13) and (3.14), we obtain that

(3.15) I3 ≤ C∗(ϵ)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|2dx dt+ κϵ

∫ T

S

E(p+1)/2(t) dt,

where

C∗(ϵ) = 2RCC ′(ϵ), κ = 4RC

{
2(ρ+ 2)

ρ
E(0)

}ρ/[2−(1−θ)(ρ+1)]

.
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Estimates for I4 :=

(
n− 1− 2

ρ+ 2

)∫ T

S

E(p−1)/2(t)

∫
Ω

|u|ρ+2dx dt:

Using (3.9) with q = ρ+ 2 and p = 2(ρ+ 1), we deduce that

||u||ρ+2 ≤ C||u||1/(ρ+2)
2 ||u||(ρ+1)/(ρ+2)

2(ρ+1) ,

where θ = (ρ+ 1)/(ρ+ 2). In addition, using the imbeddingH1
Γ0
(Ω) ↩→

L2(ρ+1)(Ω) and Cauchy’s inequality,

||u||ρ+2
ρ+2 ≤ C||u||2||∇u||ρ+1

2 ≤ C ′′(ϵ)||u||22 + CϵE(t),

where ϵ > 0, and C ′′(ϵ) stands for some positive constant. Hence,
(3.16)

I4 ≤ Cϵ

∫ T

S

E(p+1)/2(t) dt+ C∗∗(ϵ)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|2dx dt,

where C∗∗(ϵ) = C ′′(ϵ){(n− 1)− (2/ρ+ 2)}.

Estimates for I5 :=

∫ T

S

E(p−1)/2(t)

∫
Γ1

(m · ν)|u′|2dΓ dt: By (2.7)
and (2.8), we have∫

|u′|≤1

(m · ν)|u′|2dΓ ≤ C

∫
|u′|≤1

(m · ν)(u′g(u′))2/(p+1)dΓ

≤ C

(∫
Γ1

(m · ν)u′g(u′)dΓ
)2/(p+1)

≤ C(−E′)2/(p+1)

and ∫
|u′|≥1

(m · ν)|u′|2dΓ ≤
∫
|u′|≥1

(m · ν)u′g(u′) dΓ ≤ −CE′.

Hence,∫ T

S

E(p−1)/2(t)

∫
|u′|≤1

(m·ν)|u′|2dΓ dt ≤
∫ T

S

ϵE(p+1)/2(t)−C(ϵ)E′(t) dt

≤ ϵ

∫ T

S

E(p+1)/2(t) dt+ C∗∗∗(ϵ)E(S)

and ∫ T

S

E(p−1)/2(t)

∫
|u′|≥1

(m · ν)|u′|2dΓ dt ≤ CE(S),

where C∗∗∗(ϵ) stands for some positive constant.
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Replacing the above inequalities ((3.6), (3.7), (3.15) and (3.16)) in
(3.4) and using (2.2) and Young’s inequality, we arrive at

(3.17)

∫ T

S

E(p−1)/2(t)

∫
Ω

(
|u′|2 − 2

ρ+ 2
|u|ρ+2

)
dx dt

+

∫ T

S

E(p−1)/2(t)

(
1 +

β

2

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

≤ CE(S) + C(ϵ)E(S)

+ C(ϵ)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|2dx dt

+ Cϵ

∫ T

S

E(p+1)/2(t) dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

(
R2

δ

(
∂u

∂ν

)2

+ (n− 1)u
∂u

∂ν

)
dΓ dt.

Step (3). (Significant boundary term.) Now we will estimate the
last term of the right hand side of (3.17).

Estimates for I6 :=

∫ T

S

E(p−1)/2(t)

(
1+β

∫
Ω

|∇u|2dx
)∫

Γ1

(
R2

δ

(
∂u

∂ν

)2

+(n− 1)u
∂u

∂ν

)
dΓ dt: From (3.1) and Young’s inequality, we have

R2

δ

(
∂u

∂ν

)2

+ (n− 1)u
∂u

∂ν

≤ γ

(
∂u

∂ν
+ k(0)u

)2

− γk2(0)|u|2 + (n− 1− 2γk(0))u
∂u

∂ν

≤ 2γa2(x)g2(u′) + 2γ

(∫ t

0

k′(t− s, x)u(s, x) ds

)2

− ηk(0)|u|2 + (n− 1− 2γk(0))u
∂u

∂ν
,

where γ := γ(x) = η/k(0) with η >max{(n−1)/2, (R2/δ)||k(0)||L∞(Γ1)}.
Therefore, we will obtain the desired estimate of I6 if we can estimate
the right hand side of the above inequality.
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Firstly, by calculating I5 in a similar manner, we have(
1 + β

∫
Ω

|∇u|2dx
)∫

|u′|≤1

2γa2(x)g2(u′) dΓ dt ≤ C(−E′)2/(p+1)

and(
1 + β

∫
Ω

|∇u|2dx
)∫

|u′|≥1

2γa2(x)g2(u′) dΓ dt ≤ −CE′.

Hence, using Young’s inequality with [(p− 1)/(p+ 1)] + (2/(p+ 1))
= 1, we obtain that

(3.18)∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

|u′|≤1

2γa2(x)g2(u′) dΓ dt

≤ ϵ

∫ T

S

E(p+1)/2(t) dt+ C(ϵ)E(S)

and
(3.19)∫ T

S

E(p−1)/2(t)

(
1+ β

∫
Ω

|∇u|2dx
)∫

|u′|≥1

2γa2(x)g2(u′) dΓ dt ≤ CE(S).

Secondly, let ξ > 0 be satisfied such that

(3.20) ξ inf
Γ1

k′(0) + 1 > 0,

and define

j := j(x) =
k(0)

α(1 + ξk′(0))
on Γ1,

from (3.20), j ≥ 0 and j ∈ L∞(Γ1). On the other hand, we have(∫ t

0

k′(t− s, x)u(s, x) ds

)2

− j

∫ t

0

k′′(t− s, x)(u(t, x)− u(s, x))2ds+ jk′u2

≤
(∫ t

0

k′(t− s, x) ds

)(∫ t

0

k′(t− s, x)u2(s, x) ds

)
− j

∫ t

0

k′′(t− s, x)u2(s, x) ds
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+ 2ju

∫ t

0

k′′(t− s, x)u(s, x) ds− jk′(0)u2 − jk′u2 + jk′u2

≤ (k−k(0))
∫ t

0

k′(t−s, x)u2(s, x) ds−j
∫ t

0

k′′(t−s, x)u2(s, x) ds

+ j

(
k′(0) +

1

ξ

)
u2 + ξj

(∫ t

0

k′′(t− s, x)u(s, x) ds

)2

≤
(
1

α
k(0)− j(1 + ξk′(0))

)∫ t

0

k′′(t− s, x)u2(s, x) ds

+ j

(
k′(0) +

1

ξ

)
|u|2

≤ 1

ξα
k(0)|u|2.

Since j ∈ L∞(Γ1), it holds that∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

2γ

{(∫ t

0

k′(t− s, x)u(s, x) ds

)2

− j

∫ t

0

k′′(t− s, x)(u(t, x)− u(s, x))2ds+ jk′u2
}
dΓ dt

≤ 2η

ξα

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

|u|2dΓ dt.

Hence,

(3.21) 2

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

γ

(∫ t

0

k′(t− s, x)u(s, x) ds

)2

dΓ dt

≤ CE(S) +
2η

ξα

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

|u|2dΓ dt.

Finally, let φ be a solution of −∆φ = |u|ρu in Ω, φ = u on Γ. By
the classical results of the elliptic partial differential equations theory
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we have∫
Ω

∇φ · ∇udx −
∫
Ω

|u|ρ+2dx =

∫
Ω

|∇φ|2dx−
∫
Ω

|u|ρuφdx,∫
Ω

|φ|2dx ≤ C

∫
Γ

|u|2dΓ
and ∫

Ω

|φ′|2dx ≤ C

∫
Γ

|u′|2dΓ.

Multiplying (3.1) with E(p−1)/2(t)φ and integrating from S to T , we
obtain

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ

φ
∂u

∂ν
dΓ dt(3.22)

= −
[
E(p−1)/2

∫
Ω

u′φdx

]T
S

+
p− 1

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

u′φdx dt

+

∫ T

S

E(p−1)/2(t)

∫
Ω

u′φ′dx dt

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

∇u · ∇φdx dt

+

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|ρuφdx dt

= −
[
E(p−1)/2

∫
Ω

u′φdx

]T
S

+
p− 1

2

∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

u′φdx dt

+

∫ T

S

E(p−1)/2(t)

∫
Ω

u′φ′dx dt

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|∇φ|2dx dt

−
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|u|ρ+2dx dt

+

∫ T

S

E(p−1)/2(t)

(
2 + β

∫
Ω

|∇u|2dx
)∫

Ω

|u|ρuφdx dt.
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Note that

−
[
E(p−3)/2

∫
Ω

u′φdx

]T
S

≤ CE(S),∫ T

S

E(p−3)/2(t)E′(t)

∫
Ω

u′φdx dt ≤ CE(S)

and∫ T

S

E(p−1)/2(t)

∫
Ω

u′φ′dx dt ≤ ϵ

∫ T

S

E(p−1)/2(t)

∫
Ω

|u′|2dx dt

+ C(ϵ)

∫ T

S

E(p−1)/2(t)

∫
Ω

|φ′|2dx dt

≤ ϵ

∫ T

S

E(p−1)/2(t)

∫
Ω

|u′|2dx dt

+ C(ϵ)

∫ T

S

E(p−1)/2(t)

∫
Γ1

|u′|2dx dt

≤ CE(S)+C(ϵ)E(S)+3ϵ

∫ T

S

E(p+1)/2(t) dt.

Using the imbedding H1
Γ0
(Ω) ↩→ L2(ρ+1)(Ω) and Poincare’s inequality,

we obtain∫ T

S

E(p−1)/2(t)

(
2 + β

∫
Ω

|∇u|2dx
)∫

Ω

|u|ρuφdx dt

≤
∫ T

S

E(p−1)/2(t)

(
2 + β

∫
Ω

|∇u|2dx
)∫

Ω

1

2
|u|2(ρ+1)dx dt

+

∫ T

S

E(p−1)/2(t)

(
2 + β

∫
Ω

|∇u|2dx
)∫

Ω

1

2
|φ|2dx dt

≤ C

∫ T

S

E(p+1)/2(t) dt.

Replacing the above inequality in (3.22), we obtain

(3.23) −
∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

u
∂u

∂ν
dΓ dt

≤ CE(S) + C(ϵ)E(S) + Cϵ

∫ T

S

E(p+1)/2(t) dt.
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Hence, by replacing (3.18), (3.19), (3.21) and (3.23) in I6, we arrive at
(3.24)

I6 ≤ CE(S) + C(ϵ)E(S) + Cϵ

∫ T

S

E(p+1)/2(t) dt

+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

(
2η

ξα
− ηk(0)

)
|u|2dΓ dt.

Therefore, we replace (3.24) in (3.17) to obtain∫ T

S

E(p−1)/2(t)

∫
Ω

(
|u′|2 − 2

ρ+ 2
|u|ρ+2

)
dx dt

+

∫ T

S

E(p−1)/2(t)

(
1 +

β

2

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

≤ CE(S) + C(ϵ)E(S) + C(ϵ)

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|2dx dt

(3.25)

+ Cϵ

∫ T

S

E(p+1)/2(t) dt+

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

(
2η

ξα
− ηk(0)

)
|u|2dΓ dt.

Step (4). (Deducing the result.) Multiplying (2.10) by E(p−1)/2(t)
and then integrating from S to T using (3.25) and the hypotheses of k,
we obtain

(3.26)

∫ T

S

E(p+1)/2(t) dt

≤ C

∫ T

S

E(p−1)/2(t)

∫
Ω

|u|2dx dt+ CE(S)

+ C

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

(
2η

ξα
+ (1− η)k(0)

)
|u|2dΓ dt.

On the other hand, we can obtain 2η/(ξα) + (1 − η)k(0) ≤ 0.
Indeed, the condition (2.5) implies that there exists a ξ′ > 0 such
that α infΓ1 k(0) > −(2 + ξ′) infΓ1 k

′(0). We choose ξ > 0 such that
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−ξ infΓ1 k
′(0) = (ξ′ + 4)/(2(ξ′ + 2)). Then, we get

2η

ξα
+ (1− η)k(0) ≤ η

ξα

(
2 + ξ(2 + ξ′) inf

Γ1

k′(0)
)
+ k(0) = − ξ′η

2ξα
+ k(0).

Therefore, if we choose

η = max

{
n− 1,

(
R2

δ
+

2ξα

ξ′

)
||k(0)||L∞(Γ1)

}
,

then we have

(3.27)
2η

ξα
+ (1− η)k(0) ≤ 0.

Replacing (3.27) in (3.26), we obtain the result of Lemma 3.3. �

Lemma 3.4. There exists a T0 > 0 independent of u(t) such that, if
T > T0, then the inequality∫ T

S

E(p−1)/2(t)

∫
Ω

|u|2dx dt ≤
∫
Ω

|∇u|2dx(3.28)

+ C

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

a2(x)g2(u′)

− 1

2
k′(t, x)|u|2dΓ dt

+ C

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

1

2

∫ t

0

k′′(t− s, x)|u(t, x)− u(s, x)|2ds dΓ dt

holds for 0 ≤ S < T < +∞.

Proof. We will argue by contradiction. If (3.28) is false, then let
{ui(0), u′i(0)} be a sequence of initial data where the corresponding
solutions {ui} of (3.1) with Ei(0) uniformly bounded in i verifies

(3.29) lim
i→∞

∫ T

S
E

(p−1)/2
i (t)

∫
Ω
|ui|2dx dt

Ai
= ∞,



KIRCHHOFF WAVE EQUATION ENERGY DECAY RATES 401

where Ei(t) is defined by E(t) with u replaced by ui and

Ai =

∫
Ω

|∇ui|2dx

+

∫ T

S

E
(p−1)/2
i (t)

(
1 + β

∫
Ω

|∇ui|2dx
)

·
∫
Γ1

(
a2(x)g2(u′i)−

1

2
k′(t, x)|ui|2

)
dΓ dt

+

∫ T

S

E
(p−1)/2
i (t)

(
1 + β

∫
Ω

|∇ui|2dx
)

·
∫
Γ1

1

2

∫ t

0

k′′(t− s, x)|ui(t, x)− ui(s, x)|2ds dΓ dt.

Since Ei(0) is uniformly bounded in i, we have Ei(t) ≤ C for all
i ∈ N, for all t ≥ 0. Then, we obtain a subsequence, still denoted by
{ui}, that satisfies the following properties:

ui −→ u weakly in H1(Q), Q = Ω× (0, T ),

ui −→ u weak star in L∞(0, T ;H1
Γ0
(Ω)),

u′i −→ u′ weak star in L∞(0, T ;L2(Ω)),

ui −→ u weakly in L2(0, T ;L2(Γ)).

By compactness results, we have that

ui −→ u strongly in L2(0, T ;L2(Ω))(3.30)

and

ui −→ u strongly in L2(0, T ;L2(Γ)).(3.31)

In what follows, we shall use the ideas contained in Lasiecka and
Tataru [28], applied to our context. Assume that u ̸= 0. According to
(3.30), we obtain that

|ui|ρui −→ |u|ρu almost everywhere in Q.

From the above convergence and the sequence {|ui|ρui} which is
bounded in L2(0, T ;L2(Ω)), we conclude by Lions’s lemma that

|ui|ρui −→ |u|ρu weakly in L2(0, T ;L2(Ω)).
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In addition, since
∫ T

S
E

(p−1)/2
i (t)

∫
Ω
|ui|2dx dt is bounded,

(3.32)

∫
Ω

|∇ui|2dx+

∫ T

S

E
(p−1)/2
i (t)

(
1 + β

∫
Ω

|∇ui|2dx
)

{∫
Γ1

a2(x)g2(u′i) dΓ−
∫
Γ1

1

2
k′(t, x)|ui|2dΓ

+

∫
Γ1

1

2

∫ t

0

k′′(t− s, x)|ui(t, x)− ui(s, x)|2ds dΓ
}
dt −→ 0,

as i→ ∞. Since S is chosen in the interval [0, T ), and by assumptions
of k′, k′′, a(x) and g(x), we can obtain that

ui −→ 0 strongly in L2(0, T ;H1
Γ0
(Ω)),

a(x)g(u′i) −→ 0 strongly in L2(0, T ;L2(Γ1)),

ui −→ 0 strongly in L2(0, T ;L2(Γ1)),

u(s, x) = u(t, x) almost everywhere in Γ1 × (0, T ).

Passing to the limit in the equation, when i→ ∞, we obtain, for u,

(3.33)


u′′ −∆u = |u|ρu in Q,

u = 0 on Γ0 × (0, T ),
∂u

∂ν
= 0, u′ = 0 on Γ1 × (0, T ),

and, for u′ = v,
v′′ −∆v = (ρ+ 1)|u|ρv in Q,

v = 0 on Γ0 × (0, T ),
∂v

∂ν
= 0, v = 0 on Γ1 × (0, T ).

Since u ∈ L∞(0, T ;H1
Γ0
(Ω)), (ρ + 1)|u|ρ ∈ L∞(0, T ;Ln(Ω)). Then, by

the result of [28], we conclude that v = u′ ≡ 0 for sufficiently large T .
Returning to (3.33), we obtain the following elliptic equation:

−∆u = |u|ρu in Ω,

u = 0 on Γ0,
∂u

∂ν
= 0 on Γ1.
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Multiplying the equation by u, we get∫
Ω

|∇u|2dx−
∫
Ω

|u|ρ+2dx = 0;

hence,

J(u) =
ρ

2(ρ+ 2)
||∇u||22.

However, if u ̸= 0, we obtain that

J(u) >
ρ

2(ρ+ 2)
||∇u||22,

due to (2.15). This is a contradiction.

Now, we assume that u ≡ 0. Setting

χ2
i =

∫ T

S

E
(p−1)/2
i (t)

∫
Ω

|ui|2dx dt and ui(t) =
ui(t)

χi
.

Then, we obtain

(3.34)

∫ T

0

E
(p−1)/2
i (t)

∫
Ω

|ui|2dx dt

=
1

χ2
i

∫ T

S

E
(p−1)/2
i (t)

∫
Ω

|ui|2dx dt = 1.

In addition, since u = 0, we have that χi → 0 as i → ∞. Since S is
chosen in the interval [0, T ), from (3.29), we have

(3.35)∫
Ω

|∇ui|2dx+
∫ T

0

E
(p−1)/2
i (t)

(
1+β

∫
Ω

|∇ui|2dx
){∫

Γ1

(
1

χi
a(x)g(u′i)

)2

dΓ

−
∫
Γ1

1

2
k′(t, x)|ui|2dΓ

+

∫
Γ1

1

2

∫ t

0

k′′(t− s, x)|ui(t, x)− ui(s, x)|2ds dΓ
}
dt −→ 0

as i→ ∞.

On the other hand,

Ei(t) :=
1

2

∫
Ω

|u′(t, x)|2dx+
1

2

∫
Ω

|∇u(t, x)|2dx

+
β

4

(∫
Ω

|∇u(t, x)|2dx
)2

− 1

2

(
1 + β

∫
Ω

|∇u|2dx
)
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·
∫
Γ1

∫ t

0

k′(t− s, x)|u(t, x)− u(s, x)|2ds dΓ

+
1

2

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

k(t, x)|u(t, x)|2dΓ

− 1

ρ+ 2

∫
Ω

|u(t, x)|ρ+2dx

≤ 1

2χ2
i

{∫
Ω

|u′i(t)|2dx+

∫
Ω

|∇ui(t)|2dx+
β

2

(∫
Ω

|∇u(t, x)|2dx
)2

+

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

k(t, x)|ui(t, x)|2dΓ

−
(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

∫ t

0

k′(t− s, x)|ui(t, x)− ui(s, x)|2ds dΓ
}
.

From (2.15), we have

1

2
||∇ui(t)||22 ≤ ρ+ 2

ρ

(
1

2
||∇ui(t)||22 −

1

ρ+ 2
||ui(t)||ρ+2

ρ+2

)
.

Hence,

Ei(t) ≤
ρ+ 2

ρχ2
i

Ei(t),

implying that ||u′i(t)||22 and ||∇ui(t)||22 are bounded. Then, in partic-
ular, for a subsequence {ui}, from the boundedness of ||u′i(t)||22 and
||∇ui(t)||22 and (3.35), we obtain

ui −→ u weak star in L∞(0, T ;H1
Γ0
(Ω)),

u′i −→ u′ weak star in L∞(0, T ;L2(Ω)),

ui −→ u strongly in L2(0, T ;L2(Ω)),

ui −→ 0 strongly in L2(0, T ;H1
Γ0
(Ω)),

1

χi
a(x)g(u′i) −→ 0 strongly in L2(0, T ;L2(Γ1)),

ui −→ 0 strongly in L2(0, T ;L2(Γ)),

u(s, x) = u(t, x) almost everywhere in Γ1 × (0, T ).



KIRCHHOFF WAVE EQUATION ENERGY DECAY RATES 405

In addition, ui satisfies the equation

(3.36)



u′′i −
(
1 + β

∫
Ω

|∇ui|2dx
)
∆ui = |ui|ρui in Ω× (0, T ),

ui = 0 on Γ0 × (0, T ),

∂ui
∂ν

+

∫ t

0

k′(t− s, x)ui(s, x) ds

+k(0)ui +
1

χi
a(x)g(u′i) = 0 on Γ1 × (0, T ).

We note that

(3.37)

∫ T

0

∫
Ω

||ui|ρui|2dx dt =
∫
Q

|ui|2|ui|2ρdx dt

=

∫
|ui|≤ϵ

|ui|2|ui|2ρdx dt

+

∫
|ui|>ϵ

|ui|2|ui|2ρdx dt,

where Q = Ω × (0, T ). According to the fact that the function
F (s) = |s|ρ is continuous in R and Sϵ = sup|x|≤ϵ |F (x)| is well defined,
from (3.37), we have∫ T

0

∫
Ω

||ui|ρui|2dx dt ≤ S2
ϵ ||ui||2L2(Q) + χ2ρ

i ||ui||2ρ+2
L2ρ+2(Q).

Since {ui} is bounded in L∞(0, T ;H1
Γ0
(Ω)) ↩→ L∞(0, T ;L2ρ+2(Ω)),

there exists a C > 0 such that∫ T

0

∫
Ω

||ui|ρui|2dx dt ≤ C(S2
ϵ + χ2ρ

i ).

Then, taking ε→ 0 and i→ ∞, we conclude that

(3.38) |ui|ρui → 0 in L2(0, T ;L2(Ω)) as i→ ∞.

Passing to the limit in (3.36) as i→ ∞, we obtain

(3.39)


u′′ −∆u = 0 in Ω× (0, T ),

u = 0 on Γ0 × (0, T ),
∂u

∂ν
= 0 on Γ1 × (0, T ).
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Furthermore,

(3.40)

∫ T

0

E(p−1)/2(t)

∫
Ω

|u|2dx dt = 1.

Then, v = u′ satisfies (differentiating problem (3.39) with respect to t)
v′′ −∆v = 0 in Ω× (0, T ),

v = 0 on Γ0 × (0, T ),
∂v

∂ν
= 0 on Γ1 × (0, T ).

Hence, we can obtain that v = u′ = 0 (see [39]). We are able to rewrite
(3.39), as 

−∆u = 0 in Ω,

u = 0 on Γ0,
∂u

∂ν
= 0 on Γ1.

Since u ∈ H1
Γ0
(Ω), we conclude that u ≡ 0 in Ω. This is a contradiction

to (3.40). Thus, the proof is complete.

By replacing (3.28) in Lemma 3.3, we have∫ T

S

E(p+1)/2(t) dt ≤
∫
Ω

|∇u|2dx

+ C

∫ T

S

E(p−1)/2(t)

(
1+β

∫
Ω

|∇u|2dx
)∫

Γ1

a2(x)g2(u′)

− 1

2
k′(t, x)|u|2dΓ dt

+ C

∫ T

S

E(p−1)/2(t)

(
1 + β

∫
Ω

|∇u|2dx
)

·
∫
Γ1

1

2

∫ t

0

k′′(t− s, x)|u(t, x)− u(s, x)|2ds dΓ dt

+ CE(S)

≤ C

∫ T

S

E(p−1)/2(t)

∫
|u′|≤1

a2(x)g2(u′) dΓ dt

+ C

∫ T

S

E(p−1)/2(t)

∫
|u′|≥1

a2(x)g2(u′) dΓ dt
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+ C

∫ T

S

E(p−1)/2(t)
(
− E′(t)

)
dt+ CE(S)

≤ Cϵ

∫ T

S

E(p+1)/2(t) dt+ C(ϵ)E(S) + CE(S).

Hence, we can choose ϵ satisfying the inequality∫ T

S

E(p+1)/2(t) dt ≤ CE(S).

Consequently, we arrive at the result of Theorem 2.1 using Lemma 3.1.
�

4. Proof of Theorem 2.2. In Section 3, using a polynomial growth
of function g near the origin, we proved the energy decay rates for the
solution of (3.1). However, using hypotheses (H3), we cannot prove
the energy decay rates as in Section 3 since (H3) means that g has
no polynomial behavior near the origin. This implies that we cannot
use Lemma 3.1 in this section. Therefore, we present two technical
lemmas which will play an essential role in establishing the asymptotic
behavior.

Lemma 4.1 ([29]). Let E : R+ → R+ be a nonincreasing function
and ϕ : R+ → R+ a strictly increasing function of class C1 such that

ϕ(0) = 0 and ϕ(t) −→ +∞ as t→ +∞.

Assume that there exist σ > 0, σ′ ≥ 0 and C > 0 such that∫ +∞

S

E1+σ(t)ϕ′(t) dt ≤ CE1+σ(S) +
C

(1 + ϕ(S))σ′E
σ(0)E(S),

0 ≤ S < +∞. Then, there exists a C > 0 such that

E(t) ≤ E(0)
C

(1 + ϕ(t))(1+σ′)/σ
, for all t > 0.

Lemma 4.2 ([29]). There exists a function ϕ : R+ → R+ of class
C2 increasing and such that ϕ is concave, ϕ(t) → +∞ as t → +∞,
ϕ′(t) → 0 as t→ +∞ and∫ +∞

1

ϕ′(t)(α−1(ϕ′(t)))2dt < +∞,

where α is defined on (H3).
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Proof. Now, we begin the proof of our result. In what follows, the
symbol C indicates positive constants, which may be different. We
multiply (3.1) by E(t)ϕ′(t)Mu, where ϕ(t) is a function under the
hypotheses of Lemmas 4.1 and 4.2. Then, we have

0 =

∫ T

S

E(t)ϕ′(t)

∫
Ω

(Mu)

(
u′′ −

(
1 + β

∫
Ω

|∇u|2dx
)
∆u− |u|ρu

)
dx dt

(4.1)

=

∫ T

S

E(t)ϕ′(t)

∫
Ω

(
2(m · ∇u) + (n− 1)u

)
×
(
u′′ −

(
1 + β

∫
Ω

|∇u|2dx
)
∆u− |u|ρu

)
dx dt

=

∫ T

S

E(t)ϕ′(t)

∫
Ω

2u′′(m · ∇u) dx dt

+

∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

2∇u · ∇(m · ∇u) dx dt

−
∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ

2
∂u

∂ν
(m · ∇u) dΓ dt

−
∫ T

S

E(t)ϕ′(t)

∫
Ω

2|u|ρu(m · ∇u) dx dt

+ (n− 1)

∫ T

S

E(t)ϕ′(t)

∫
Ω

uu′′dx dt

+ (n− 1)

∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

− (n− 1)

∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

∂u

∂ν
u dΓ dt

− (n− 1)

∫ T

S

E(t)ϕ′(t)

∫
Ω

|u|ρ+2dx dt.

Note that∫ T

S

E(t)ϕ′(t)

∫
Ω

2u′′(m · ∇u) dx dt

=

[
E(t)ϕ′(t)

∫
Ω

2u′(m · ∇u) dx
]T
S
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−
∫ T

S

(
E′(t)ϕ′(t) + E(t)ϕ′′(t)

) ∫
Ω

2u′(m · ∇u) dx dt

−
∫ T

S

E(t)ϕ′(t)

∫
Ω

2u′(m · ∇u′) dx dt,

∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

2∇u · ∇(m · ∇u) dx dt

= (2− n)

∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

+

∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ

(m · ν)|∇u|2dΓ dt

and

(n− 1)

∫ T

S

E(t)ϕ′(t)

∫
Ω

uu′′dx dt

= (n− 1)

[
E(t)ϕ′(t)

∫
Ω

u′udx

]T
S

− (n− 1)

∫ T

S

(
E′(t)ϕ′(t) + E(t)ϕ′′(t)

) ∫
Ω

u′u dx dt

− (n− 1)

∫ T

S

E(t)ϕ′(t)

∫
Ω

|u′|2dx dt.

Replacing the above calculations in (4.1), we obtain∫ T

S

E(t)ϕ′(t)

∫
Ω

(
|u′|2 − 2

ρ+ 2
|u|ρ+2

)
dxdt(4.2)

+

∫ T

S

E(t)ϕ′(t)

(
1 +

β

2

∫
Ω

|∇u|2dx
)∫

Ω

|∇u|2dx dt

= −
[
E(t)ϕ′(t)

∫
Ω

u′(Mu) dx

]T
S

+

∫ T

S

E′(t)ϕ′(t) + E(t)ϕ′′(t)

∫
Ω

u′(Mu) dx dt

+ 2

∫ T

S

E(t)ϕ′(t)

∫
Ω

|u|ρu(m · ∇u) dx dt
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+

(
n− 1− 2

ρ+ 2

)∫ T

S

E(t)ϕ′(t)

∫
Ω

|u|ρ+2dx dt

− β

2

∫ T

S

E(t)ϕ′(t)

∫
Ω

|∇u|2dx
∫
Ω

|∇u|2dx dt

+

∫ T

S

E(t)ϕ′(t)

(
1 +

β

2

∫
Ω

|∇u|2dx
)∫

Γ0

(m · ν)|∇u|2dΓ dt

+

∫ T

S

E(t)ϕ′(t)

∫
Γ1

(m · ν)|u′|2dΓ dt

+

∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

∂u

∂ν
(Mu) dΓ dt

−
∫ T

S

E(t)ϕ′(t)

(
1 + β

∫
Ω

|∇u|2dx
)∫

Γ1

(m · ν)|∇u|2dΓ dt.

By using same argument as in Section 3 and J1-J4 in [37], we obtain

(4.3)

∫ T

S

E2(t)ϕ′(t) dt ≤ CE2(S) + CE(S)

∫ T

S

ϕ′(t)(β−1(ϕ′(t)))2dt.

Finally, we estimate the second term of the right hand side of (4.3).
From the condition on ϕ, we can consider, without loss of generality,
that ϕ(1) = 1. Considering the change of variables s = ϕ(t), we have∫ +∞

1

ϕ′(t)(α−1(ϕ′(t)))2dt

=

∫ +∞

1

(α−1(ϕ′(ϕ−1(s))))2ds =

∫ +∞

1

(
α−1

(
1

(ϕ−1)′(s)

))2

ds.

We consider the function ψ by

ψ(t) = 1 +

∫ t

1

1

α(1/s)
ds, t ≥ 1.

Then, ψ is a strictly increasing function of class C2 that satisfies

ψ′(t) =
1

α(1/t)
−→ +∞,

ψ(t) −→ +∞ as t→ +∞
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and ∫ +∞

1

(
α−1

(
1

ψ′(s)

))2

ds =

∫ +∞

1

1

s2
ds < +∞.

Simple computation shows that ψ′′ ≥ 0, which implies that ψ′ is
nondecreasing and ψ is convex. Moreover, it is easy to verify that
ψ−1 is concave.

Setting ϕ(t) = ψ−1(t), we can rewrite (4.3) as∫ T

S

E2(t)ϕ′(t) dt ≤ CE2(S) + CE(S)

∫ +∞

S

ϕ′(t)(α−1(ϕ′(t)))2dt

≤ CE2(S) + CE(S)

∫ +∞

ϕ(S)

(
α−1

(
1

ψ′(s)

))2

ds

≤ CE2(S) +
C

ϕ(S)
E(S),

and, applying Lemma 4.1 with σ = σ′ = 1, we deduce

(4.4) E(t) ≤ C

ϕ2(t)
for all t > 0.

Let s0 be a number such that α(1/s0) ≤ 1. Since α is nondecreasing,
we have

ψ(s) ≤ 1 + (s− 1)
1

β(1/s)
≤ 1

F (1/s)
, for all s ≥ s0.

Consequently, keeping in mind that ϕ = ψ−1, the last inequality yields

s ≤ ϕ

(
1

F (1/s)

)
= ϕ(t) with t =

1

F (1/s)
.

Then,

(4.5)
1

ϕ(t)
≤ F−1

(
1

t

)
.

Combining (4.4) and (4.5) proves (2.20).

It remains to prove (2.21). Assume that G(0) = 0, and G is
nondecreasing on [0, η] for some η > 0. Let T1 be a number such
that G(1/t) ≤ η for all t ≥ T1, and set T2 = sup{T1, 1/η}. Assume
that ϕ is an increasing and concave function such that, for all t ≥ T2,
ϕ′(t) ≤ η and ϕ′(t) ≤ G(η) and ϕ′(t) → 0 as t → +∞. Then, due to
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Martinez’s idea [29, page 438], and by the same arguments as (4.3),
we obtain∫ T

S

E2(t)ϕ′(t) dt ≤ CE2(S) + CE(S)

∫ T

S

ϕ′(t)(G−1(ϕ′(t)))2dt.

Define

ϕ̃−1(t) = T2 +

∫ t

T2

1

G(1/s)
ds, for all t ≥ T2.

Then,

ϕ̃(t) ≥ T2 ≥ 1

η
,

so

ϕ̃′(t) = G

(
1

ϕ̃(t)

)
≤ G(η)

and

ϕ̃′(t) ≤ ϕ̃′(T2) = G

(
1

ϕ̃(T2)

)
≤ G

(
1

T2

)
≤ G

(
1

T1

)
≤ η for all t ≥ T2.

Then, ϕ̃ satisfies all of the requisite properties. Thus, from the same
argument as (4.4), we obtain

(4.6) E(t) ≤ C

ϕ̃2(t)
for all t > T2.

Since, for all s ∈ [0, 1], α(s) ≤ s, i.e., G(s) ≤ 1, we see that

(4.7) ϕ̃−1(t) ≤ T2 +
t− T2
G(1/t)

≤ t

G(1/t)
=

1

α(1/t)
.

Combining (4.6) and (4.7), we can prove (2.21). Thus, the proof of
Theorem 2.2 is complete. �
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Ricerch. Mat. 8 (1959), 24–51.

9. G.C. Gorain, Boundary stabilization of nonlinear vibrations of a flexible

structure in a bounded domain in Rn, J. Math. Anal. Appl. 319 (2006), 635–650.

10. , Exponential energy decay estimates for the solutions of n-
dimensional Kirchhoff type wave equation, Appl. Math. Comp. 177 (2006), 235–242.

11. T.G. Ha, Asymptotic stability of the semilinear wave equation with boundary
damping and source term, C.R. Math. Acad. Sci. Paris 352 (2014), 213–218.

12. , General decay estimates for the wave equation with acoustic bound-
ary conditions in domains with nonlocally reacting boundary, Appl. Math. Lett. 60
(2016), 43–49.

13. , General decay rate estimates for viscoelastic wave equation with
Balakrishnan-Taylor damping, Z. Angew. Math. Phys. 67 (2016), Art.32.

14. , Global existence and general decay estimates for the viscoelastic
equation with acoustic boundary conditions, Discr. Cont. Dynam. Syst. 36 (2016),
6899–6919.

15. , Global existence and uniform decay of coupled wave equation of
Kirchhoff type in a noncylindrical domain, J. Korean Math. Soc. 54 (2017), 1081–
1097.

16. , On viscoelastic wave equation with nonlinear boundary damping
and source term, Comm. Pur. Appl. Anal. 9 (2010), 1543–1576.

17. , Stabilization for the wave equation with variable coefficients and

Balakrishnan-Taylor damping, Taiwanese J. Math. 21 (2017), 807–817.

18. T.G. Ha, D. Kim and I.H. Jung, Global existence and uniform decay rates
for the semi-linear wave equation with damping and source terms, Comp. Math.

Appl. 67 (2014), 692–707.

19. T.G. Ha and J.Y. Park, Global existence and uniform decay of a damped

Klein-Gordon equation in a noncylindrical domain, Nonlin. Anal. 74 (2011), 577–
584.



414 TAE GAB HA

20. T.G. Ha and J.Y. Park, Existence of solutions for the Kirchhoff type wave
equation with memory term and acoustic boundary conditions, Numer. Funct. Anal.
Optim. 31 (2010), 921–935.

21. , Stabilization of the viscoelastic Euler-Bernoulli type equation with
a local nonlinear dissipation, Dynam. PDE 6 (2009), 335–366.

22. H. Harrison, Plane and circular motion of a string, J. Acoust. Soc. Amer.
20 (1948), 874–875.

23. V. Komornik, Exact Controllability And Stabilization. The multiplier
method, John Wiley, Paris, 1994.

24. , On the nonlinear boundary stabilization of the wave equation,

Chinese Ann. Math. 14 (1993), 153–164.

25. V. Komornik and E. Zuazua, A direct method for the boundary stabilization
of the wave equation, J. Math. Pure Appl. 69 (1990), 33–54.

26. J. Lagnese, Decay of solutions of the wave equation in a bounded region with
boundary dissipation, J. Diff. Eqs. 50 (1983), 163–182.

27. I. Lasiecka and J. Ong, Global solvability and uniform decays of solution to
quasilinear equation with nonlinear boundary dissipation, Comm. PDE 24 (1999),
2069–2107.

28. I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear
wave equation with nonlinear boundary damping, Diff. Int. Eqs. 6 (1993), 507–533.

29. P. Martinez, A new method to obtain decay rate estimates for dissipative

systems, ESAIM: Contr. Optim. Calc. Var. 4 (1999), 419–444.

30. A.H. Nayfeh and D.T. Mook, Nonlinear oscillations, Wiley, New York, 1979.

31. S. Nicaise and C. Pignotti, Stabilization of the wave equation with variable
coefficients and boundary condition of memory type, Asympt. Anal. 50 (2006),
31–67.

32. L. Nirenberg, On elliptic partial differential equations, Ann. Scuol. Norm.
Pisa 13 (1959), 115–162.

33. J.Y. Park, J.J. Bae and I.H. Jung, Uniform decay of solution for wave
equation of Kirchhoff type with nonlinear boundary damping and memory term,
Nonlin. Anal. 50 (2002), 871–884.

34. J.Y. Park and T.G. Ha, Existence and asymptotic stability for the semilinear
wave equation with boundary damping and source term, J. Math. Phys. 49 (2008),
053511.

35. , Energy decay for nondissipative distributed systems with boundary
damping and source term, Nonlin. Anal. 70 (2009), 2416–2434.

36. , Well-posedness and uniform decay rates for the Klein-Gordon

equation with damping term and acoustic boundary conditions, J. Math. Phys. 50
(2009), 013506.

37. J.Y. Park, T.G. Ha and Y.H. Kang, Energy decay rates for solutions of the
wave equation with boundary damping and source term, Z. Angew. Math. Phys. 61
(2010), 235–265.



KIRCHHOFF WAVE EQUATION ENERGY DECAY RATES 415

38. J. Prüss, Evolutionary integral equations and applications, Birkhäuser-
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