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ABSTRACT. With this article, we wish to honor the
many contributions of our mentor, colleague and dear friend,
Professor W. Edward Olmstead, on the occasion of his retire-
ment from Northwestern University. Ed has spent over five
decades at Northwestern University, first as a graduate stu-
dent and then as a member of the faculty. During this time
he completed his PhD, played a key role in the formation of
the Department of Engineering Science and Applied Mathe-
matics (ESAM), developed several courses in applied mathe-
matics, participated in the education of numerous students,
and made vast and important contributions in the field of
applied mathematics. Here, we give a (mostly chronologi-
cal) account of some of Ed’s major research interests and
contributions, primarily in the field of Integral Equations.

1. Introduction. W. Edward Olmstead’s interests in applied math-
ematics have primarily centered on problems at the intersection of
physics and engineering, as well as the mathematics needed to solve
these problems. His work has included extensive formulation and anal-
ysis of integral and integrodifferential equations with applications to a
wide range of topics including various areas of fluid and solid mechanics
and numerous thermal problems associated with radiation, combustion
and anomalous diffusion phenomena. In the following sections, we will
expound on some of Olmstead’s major contributions. This is by no
means an exhaustive account of his work in applied mathematics. Our
focus will be on his work in integral equations where he has devel-
oped both novel formulations that have elucidated phenomena such as
blow-up behavior in a variety of physical applications, as well as new
analytical techniques that provide for a deeper understanding of the
properties of solutions to integral equations.

2. A history of research in integral equations and their ap-
plications. Olmstead first became interested in integral equations in
the early 1960s during his doctoral research at Northwestern University.
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This early work focused on a gas-liquid interaction problem. Specifi-
cally, he derived a mathematical model that describes the observed
shape of a liquid surface as it is being depressed by an impinging gas jet.
Through the use of conformal mapping and finite Hilbert transforms,
he formulated a model that gives rise to a nonlinear Fredholm integral
equation with a singular kernel. By applying asymptotic analyses and
obtaining numerical solutions of the integral equation, the profile of
the free surface of the liquid as well as some qualitative characteristics
were recovered [36].

2.1. Early career. After completing his PhD in 1963, Olmstead took
a postdoctoral fellowship at Johns Hopkins University where he studied
the Oseen linearization of the Navier-Stokes equations. In the study
of the steady flow of a viscous incompressible fluid past a half-plane,
he found that various configurations could be formulated as linear
Fredholm equations amenable to solution by the Weiner-Hopf method
[24, 29]. In 1964, he returned to Northwestern University, taking a
faculty position and continuing to study the integral equations arising
from various Oseen flow problems. Olmstead and his first PhD student,
David Hector, found that the Fredholm equation that governs flow past
a half-plane does not have a unique solution [34]. This nonuniqueness
of the solution was very much an unexpected and noteworthy result.
In [34], it was shown that the non-trivial solution of the homogeneous
problem described a pattern of circulation around the half-plane. Later,
Olmstead was able to find an exact solution to the flow field in [25].

Olmstead continued to study linearized viscous flows into the late
1960s and obtained additional significant results with his PhD student,
Arthur Gautesen. In 1968, they revealed a new paradox in viscous
hydrodynamics [30] by converting the problem of Oseen flow past an
obstacle of arbitrary shape to the solution of a Fredholm integral equa-
tion in vector form. From this formulation, they were able to prove
that the drag force on an obstacle was invariant under flow direction
reversal in the far field independent of the shape or symmetry of the
obstacle. Given that the flow field itself is not reversible, the paradox-
ical invariance of the drag force was a remarkable finding. In another
notable collaboration with Gautesen in 1971, their research resulted in
the solution of the Fredholm equation governing the potential of two
in-line strips [5]. Their result corrected an earlier, erroneous solution
by F.G. Tricomi, a luminary in the field of integral equations.
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Olmstead was a Visiting Member of the Courant Institute at NYU in
1967–68 where he collaborated with Professor Joseph Keller. Together,
they investigated a nonlinear Volterra equation governing the temper-
ature at the leading edge of a semi-infinite rod subject to heat loss by
means of thermal radiation. While the radiation problem had been
under consideration for several decades, Olmstead and Keller obtained
more detailed properties of the solution [9]. They proved existence and
uniqueness and also obtained asymptotic behavior of the temperature
in various limits. This early work is extensively cited in the literature
(with in excess of seventy citations continuing well into the 2000s) and
was a catalyst for some of Olmstead’s later work in the development of
asymptotic techniques for analyzing integral equations.

In a pair of papers [7, 33] in the early 1970s, Richard Handelsman
and Olmstead analyzed the asymptotic behavior of solutions to a large
family of nonlinear Volterra equations of the form

(2.1) ϕ(t) =
1√
π

∫ t

0

f(s)− ϕn(s)√
t− s

ds.

They developed a general asymptotic method that utilizes properties
of Mellin transforms. Using this approach, they provided a thorough
cataloging of both the small and long time behavior of ϕ(t). It was also
observed that, depending upon the nature of the data function f(t), the
useful asymptotic representation may break down at t → 0, giving rise
to the study of singularly perturbed equations of this structure [32].

2.2. The 1970s and beyond: Singular equations, bifurcation
and blow-up. From the mid 1970s through the early 1980s, Olmstead
worked on a variety of related problems, including bifurcation problems
for nonlinear differential equations. He and his PhD student, David
Mescheloff, converted the differential equations to equivalent Fredholm
equations of the second kind. Using this approach, they analyzed
the buckled states of a nonlinearly elastic rod [35]. Olmstead also
considered some control problems with thermal applications that give
rise to Volterra equations. These problems involved optimal control
criteria [44] as well as boundary controllability [6, 26].

As noted, some of Olmstead’s earlier work had involved the appear-
ance of singularly perturbed equations. In the mid 1980s, Olmstead
and his PhD student, Jeffrey Angell, provided important contributions
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in the area of singularly perturbed integral equations of both Volterra
and Fredholm type. They developed analytical techniques for the study
of such problems. While there had been an extensive history of progress
on singularly perturbed differential equations, until the work of Olm-
stead and Angell, there was very little literature on singularly perturbed
integral equations.

They considered problems in which an equation of the second kind
degenerates into an equation of the first kind in the limit as the pertur-
bation parameter vanishes. Typically, this singular limit is associated
with a boundary layer effect near the origin in the case of a Volterra
equation or near one or both endpoints for a Fredholm equation. The
method of matched asymptotics (MMA), used to obtain inner and outer
solutions for singularly perturbed differential equations, relies on the
local nature of the differential equation description. By contrast, the
integral equation formulation is necessarily nonlocal, thereby render-
ing the MMA approach inapplicable. To deal with this complexity,
they derived appropriate inner and outer integral equations. They
then developed a two-timing approach, alternately solving the integral
equations in the outer and inner variables to ultimately produce a uni-
formly valid asymptotic solution [1, 2, 31]. The use of and reference to
the techniques they developed have continued in the literature in rela-
tion to various applications, numerical methods for integral equations
and extensions to broader classes of equations.

Also in the 1980s, Olmstead developed an interest in systems ex-
hibiting thermal runaway, and many of Olmstead’s contributions up
to the present involve the analysis of blow-up solutions to nonlinear
Volterra equations. Of particular note is the 1983 paper [27], in which
he modeled the problem of surface temperature of a region subject to
a combustible reaction as a nonlinear Volterra integral equation whose
solution becomes unbounded in finite time. Several interesting ques-
tions arise in the study of blow-up solutions. One of these is whether
the blow-up time can be predicted, at least within some bounding win-
dow. Olmstead developed a two step process to derive analytic bounds
on the blow-up time. First, he demonstrated how to obtain a lower
bound, say t∗, on the time at which blow-up may occur by establishing
the existence of a unique, non-negative, continuous solution valid for all
time t satisfying 0 < t < t∗ < ∞. Next, an upper bound t∗∗ < ∞ on the
blow-up time is determined by proving, via a contradiction argument,
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that the solution cannot exist for t > t∗∗.

In several studies spanning the 1980s, Olmstead alone and together
with his PhD student, Glenn Lasseigne, studied the ignition of a
combustible solid under various conditions, including the influence of
convection heating [18], material stimulated by an arbitrary energy
flux at one end [27], and reactant consumption [19] among others (see
[20, 21, 17]). Using large activation energy asymptotics, nonlinear
integral equations arise that describe the temperature of a combustible
material near the ignition state. The integral equations from such
problems generally take the form

(2.2) u(t) =

∫ t

t0

k(t− s)F [u(s), s] ds, t ≥ t0,

where u(t) is the temperature at a location within the material that
experiences the maximum thermal impact. The kernel k(t) reflects the
diffusive ability of the material, typically k(t) ≥ 0, k′(t) ≤ 0. The
nonlinear function F [u, t] represents the high energy input arising from
the reactive nature of the material, typically F > 0, Fu > 0, Fuu ≥ 0,
Ft > 0. The solution of (2.2) will experience a blow-up in finite time
if the diffusive ability of the material is unable to keep pace with the
high energy input. Mathematically, there is a competition between the
kernel and the nonlinearity that determines whether or not the integral
in (2.2) becomes unbounded in finite time.

Blow-up solutions here are indicative of ignition, which may or may
not occur. Thus, determining conditions under which the solution
becomes unbounded in finite time, or alternatively remains bounded
for all time, is of particular interest. Olmstead and Lasseigne took a
novel analytical approach to determining whether ignition would occur
and to characterizing the critical ignition time as it depends on various
thermal parameters. Prior research in this area had generally been
restricted to determining an ignition time value numerically.

This work was extended in the early 2000s into another type of appli-
cation when Olmstead collaborated with colleague, Vladimir Volpert,
and a joint PhD student, Lake Ritter, on a polymerization process
in which a monomer is converted into a polymer by means of a self-
propagating thermal reaction wave. Although the activation energies
are smaller than those arising in the combustion problem, the kinetics
of the polymerization problem are similar to the combustion problem
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but with two reactants. A family of integral equations of the type (2.2)
are found to govern the temperature of the reacting mixture at the
potential initiation site. This family, presented in [46] extended the
family of equations derived in [19] (contained the latter as a subfam-
ily). Blow-up in this context is interpreted as initiation of a propagating
polymerization wave. As in the combustion problem, conditions for ini-
tiation to occur as well as characterization of the initiation time were
made possible in large part due to the analytic techniques Olmstead
and Handelsman had developed in the 1970s.

2.3. The 1990s into the 21st century: Novel formulations in
combustion, anomalous diffusion, and materials science. In
the early 1990s, Olmstead began a highly productive and long lasting
collaboration with his then PhD student, Catherine Roberts. Together,
they began to examine some fundamental aspects of blow-up problems
formulated as nonlinear Volterra equations in the form of (2.2). In an
early study of explosion, they revealed competition between two key
characteristics of a system: the diffusive ability of the medium involved,
and the strength of an applied nonlinear energy source. In [47], they
showed that, if the diffusive ability is sufficiently high, there will be
no blow-up, and the integral equation will have a global solution. On
the other hand, if the material is unable to diffuse enough energy away
from the nonlinear source, a blow-up will occur within a finite period
of time.

Of note in this work is the introduction of the Dirac delta function
into a related nonlinear parabolic partial differential equation (pde)
model of the form

(2.3)
∂u

∂t
− ∂2u

∂x2
= δ(x− x0)G[u], 0 ≤ x, x0 ≤ l, t > 0,

subject to certain initial and boundary conditions. The Dirac delta
term serves to intensify and highly localize the nonlinearity, providing
a general model of a highly localized nonlinear heat source applied to a
reactive-diffusive medium. This modeling approach was quite novel.
Previously, results related to parabolic pdes with nonlinear source
terms required the nonlinearity not to depend explicitly on space or to
have very smooth spatial dependence. Analyzing the problem in this
new way clearly reveals how the solution changes character depending
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on various parameters in the original problem, such as domain size,
characteristics of the material, and placement of the source term.

Olmstead and Roberts continued to investigate problems involving
nonlinear Volterra equations subject to blow-up. In their 1994 work
[38], they considered a finite strip of diffusive material with an applied
nonlinear energy source concentrated at a single point using the delta
function formulation. They demonstrated that blow-up depends on
proximity of the source to a cold edge of the strip. In further study, they
examined integral equations with kernels of fractional type and with
exponential or power law nonlinearities. For various general cases, they
derived the asymptotic growth rate of the solution near blow-up [48].
In [39], they extended their consideration to include in the source term
nonlocal properties of the temperature, and, in [43], they collaborated
with Keng Deng on a problem involving blow-up in coupled Volterra
equations.

Olmstead and Roberts also adapted their research methodology
for determining blow-up solutions and applied it to quenching type
problems [37, 49]. The phenomenon of quenching occurs when the
solution of the problem remains bounded while progressing toward a
finite quenching value as the first order time derivative of the solution
becomes unbounded in finite time.

In the late 1990s and into the 2000s, Olmstead became interested in
thermal models involving a moving energy source, i.e., those for which
the position of the source is time dependent. This modification of the
basic mathematical model permits the consideration of a much wider
variety of applications. Moving the concentrated heat source within
the medium, for example, models the behavior in certain laser and
manufacturing applications [22, 23]. In [28], Olmstead demonstrated
that, if the speed of the heat source exceeds a certain critical value, no
blow-up can occur. This is due to the fact that the source continually
moves into cooler surroundings and cannot generate sufficient heating
to produce a blow-up. Olmstead and his PhD student, Colleen Kirk,
analyzed variations of this problem that further considered the influence
of moving heat sources in [10], [11], and [12]. Moving sources were
incorporated into quenching problems with Roberts in [40].

Another area of Olmstead’s research during this time involved shear
band formation. High shear stress, as might be seen during ballis-
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tic impact, can result in localized bands of plastic deformation in a
high-strength metal. Together with PhD student James DiLellio, he
proposed a model in which the deformation is induced by an inhomo-
geneity in the thermal flux. They describe the temperature in the shear
band as the solution of a nonlinear Volterra equation [3]. The steep
increase in temperature, as observed during the formation of a shear
band, is signaled by a blow-up solution. Using boundary layer analysis,
they characterized the temporal evolution of the thickness of a shear
band in [4].

Moving further into the 2000s, Olmstead continued his collabora-
tions with former students, Roberts and Kirk. In 2006, he became
interested in anomalous diffusion. Subdiffusion, for example, is a type
of anomalous diffusion in which the diffusion of heat is significantly
retarded. Subdiffusive materials exhibit thermal transport behavior in
which the mean square displacement associated with Brownian diffu-
sion evolves on a slower-than-normal time scale. In the mathematical
model, the classical heat operator of (2.3) is replaced by one that in-
cludes a fractional derivative in time. In [41], Olmstead and Roberts
considered thermal blow-up in a medium that exhibits subdiffusive
properties. They introduced a localized energy source into these frac-
tional diffusion equations and showed that the temperature at the site
of the source could be formulated as a nonlinear Volterra equation in
the form of (2.2). They showed that the approach used to explore
blow-up behavior in classical diffusion could be adapted to anomalous
diffusion. Olmstead, Roberts and Kirk investigated modified versions
of the subdiffusion problem in a sequence of papers [50, 45, 15].

Further investigations also considered blow-up phenomena involving
materials exhibiting superdiffusive properties [13, 42]. In superdiffu-
sive materials, the capability of thermal energy transport is dramat-
ically enhanced, which is mathematically modeled by replacing the
classical heat operator of (2.3) with a fractional derivative in space.
On a molecular scale, a mean square displacement law associated with
Levy flights governs the superdiffusion. Physical processes exhibiting
superdiffusion include turbulent diffusion, slip diffusion on a solid sur-
face, and diffusion in porous glasses.

In other recent work, Olmstead has considered systems of Volterra
equations that can exhibit blow-up behavior. Joint work with Kirk and
Roberts in [14] extended the results for the system in [43] to include a
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more general class of kernels. In [8], Olmstead and Kirk collaborated
with Mokhtar Kirane and Abdelouahab Kadem on a system of initial
value problems for fractional differential equations with exponential
nonlinearities that could be analyzed as Volterra equations. Olmstead
continues to be active in research. To this day, Olmstead and his
collaborators continue to study a wide variety of problems related to
anomalous diffusion and blow-up phenomena.

3. A legacy of teaching and mentorship. One can hardly con-
sider Ed Olmstead’s legacy over the past half century without including
ESAM (the department of Engineering Science and Applied Mathemat-
ics) itself as part of his lasting imprint. In the early 1970s, still early
in his own career, Ed chaired the committee for the graduate program
in Applied Mathematics that existed as part of Northwestern’s Tech-
nological Institute. He served as the coordinator of the department’s
Applied Mathematics Program during the 1975–76 year just preceding
the inception of the ESAM name. At the time, Applied Mathemat-
ics was one of three programs that constituted the ESAM department,
and Ed was one of its founding applied mathematics faculty. Together
with Professor Bernard Matkowsky, who joined the young department
in 1977, Ed worked to expand the course offerings in applied math-
ematics. As each program grew, and the other programs shifted to
other or independent departments, the Applied Mathematics Program
became the sole focus of ESAM. Ed has served with distinction from
its inception until his retirement. He chaired the department from 1991
through 1993. His prowess in the classroom was recognized with his
appointment as the Charles Deering McCormick Professor of Teaching
Excellence from 1994 to 1997. When the history of the department was
chronicled in 1999, Professor Emeritus Raymond Kliphardt recounted
[16] of Ed that “[h]is reputation for superior instruction is well known.”
As an instructor and mentor, Ed has participated in the development of
numerous undergraduate and graduate students, including 16 doctoral
descendants listed in Table 1.

As our friend and mentor begins this new chapter of his life, we
wish him all the best. The opportunity we have had to learn from
and to work with him has been invaluable. His contributions in the
area of integral equations and the phenomena they model have been
prodigious and important. Likewise, his impact on the careers and
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Table 1. W.E. Olmstead’s doctoral students with year.

Student Year Student Year

D.L. Hector 1966 E. Ammicht 1978
R.G. Burman 1967 David Lasseigne 1985
J.P. Dugan 1968 Jeffrey Angell 1986
A.K. Gautesen 1969 Catherine Roberts 1992
J.E. Hartka 1971 James DiLellio 1997
David Mescheloff 1973 Robert Flemming 1998
D.W. Kucera 1977 Colleen Kirk 1999
V.D. Panico 1978 Lake Ritter 2003

lives of his students and colleagues has been significant. Both he and
his work will be long remembered and appreciated.

Acknowledgments. We would like to thank Ed for his helpful
insight and perspective as we prepared this article.

REFERENCES

1. J.S. Angell and W.E. Olmstead, Singularly perturbed Volterra integral equa-
tions, SIAM J. Appl. Math. 47 (1987), 1–14.

2. , Singularly perturbed Volterra integral equations, II, SIAM J. Appl.
Math. 47 (1987), 1150–1162.

3. J.A. Dilellio and W.E. Olmstead, Shear band formation due to a thermal flux
inhomogeneity, SIAM J. Appl. Math. 57 (1997), 959–971.

4. , Temporal evolution of shear band thickness, J. Mech. Phys. Solids

45 (1997), 345–359.

5. A.K. Gautesen and W.E. Olmstead, On the solution of the integral equation

for the potential of two strips, SIAM J. Math. Anal. 2 (1971), 293–306.

6. , Small penalty control of the end temperature in a long rod, J.
Optimiz. Th. Appl. 66 (1990), 443–454.

7. Richard A. Handelsman and W.E. Olmstead, Asymptotic solution to a class
of nonlinear Volterra integral equations, SIAM J. Appl. Math. 22 (1972), 373–384.

8. A. Kadem, M. Kirane, C.M. Kirk and W.E. Olmstead, Blowing-up solutions
to systems of fractional differential and integral equations with exponential non-
linearities, IMA J. Appl. Math. 79 (2014), 1077–1088.

9. Joseph B. Keller and W.E. Olmstead, Temperature of a nonlinearly radiating
semi-infinite solid, Quart. Appl. Math. 29 (1972), 559–566.

10. C.M. Kirk and W.E. Olmstead, The influence of two moving heat sources

on blow-up in a reactive-diffusive medium, Z. angew. Math. Phys. 51 (2000), 1–16.



ON THE CONTRIBUTIONS OF W. EDWARD OLMSTEAD 13

11. C.M. Kirk and W.E. Olmstead, Blow-up in a reactive-diffusive medium with
a moving heat source, Z. angew. Math. Phys. 53 (2002), 147–159.

12. , Blow-up solutions of the two-dimensional heat equation due to a
localized moving source, Anal. Appl. 3 (2005), 1–16.

13. , Superdiffusive blow-up with advection, Inter. J. Dynam. Syst. Diff.

Eqs. 4 (2012), 93–102.

14. C.M. Kirk, W.E. Olmstead and C.A. Roberts, A system of nonlinear Vol-

terra equations with blow-up solutions, J. Int. Eqs. Appl. 25 (2013), 377–393.

15. Colleen Kirk and W. Olmstead, Thermal blow-up in a subdiffusive medium
due to a nonlinear boundary flux, Fract. Calc. Appl. Anal. 17 (2014), 191–205.

16. Raymond A. Kliphardt, Aspirations, determination, realization: An anthol-
ogy of the history of the technological institute at Northwestern University from
1970–2000, in Tech anthology, II, McCormick School of Engineering and Applied

Science, 2001.

17. D.G. Lasseigne and W.E. Olmstead, The effect of reactant consumption on
the ignition of a combustible solid, SIAM J. Appl. Math. 47 (1987).

18. D. Glenn Lasseigne and W.E. Olmstead, Ignition of a combustible solid by
convection heating, Z. angew. Math. Phys. 34 (1983), 886–898.

19. , Ignition of a combustible solid with reactant consumption, SIAM J.
Appl. Math. 47 (1987), 332–342.

20. , The effect of perturbed heating on the ignition of a combustible

solid, Inter. J. Eng. Sci. 27 (1989), 1581–1587.

21. , Ignition or nonignition of a combustible solid with marginal heating,

Quart. Appl. Math. (1991), 303–312.

22. P. Levin and N. Frage, Modelling of laser treatment based on an analytical
solution for the steady state temperature distribution in a moving system, Lasers in

Engineer. 11 (2001), 47–55.

23. Oronzio Manca, Biagio Morrone and Vincenzo Naso, Quasi-steady-state
three-dimensional temperature distribution induced by a moving circular Gaussian

heat source in a finite depth solid, Inter. J. Heat Mass Transf. 38 (1995), 1305–1315.

24. W.E. Olmstead, An exact solution for Oseen flow past a half plane and a
horizontal force singularity, J. Math. Phys. 45 (1966), 156–161.

25. , A homogeneous solution for viscous flow around a half plane, Quart.
Appl. Math. 33 (1975).

26. , Boundary controllability of the temperature in a long rod, Inter. J.
Contr. 31 (1980), 593–600.

27. , Ignition of a combustible half space, SIAM J. Appl. Math. 43

(1983), 1–15.

28. , Critical speed to avoid blow-up in diffusive medium, Nonlin. Anal.

Th. Meth. Appl. 30 (1997), 895–903.

29. W.E. Olmstead and W.J. Byrne, An exact solution for Oseen flow past a
half plane and a vertical force singularity, J. Math. Phys. 45 (1966), 402–407.



14 C.M. KIRK AND L.R. RITTER

30. W.E. Olmstead and A.K. Gautesen, A new paradox in viscous hydrodynam-
ics, Arch. Rat. Mech. Anal. 29 (1968), 58–65.

31. , Asymptotic solution of some singularly perturbed Fredholm integral
equations, Z. angew. Math. Phys. 40 (1989), 230–244.

32. W.E. Olmstead and Richard A. Handelsman, Singular perturbation analysis

of a certain Volterra integral equation, Z. angew. Math. Phys. 23 (1972), 889–900.

33. , Asymptotic solution to a class of nonlinear Volterra integral equa-

tions, II, SIAM J. Appl. Math. 30 (1976), 180–189.

34. W.E. Olmstead and D.L. Hector, On the nonuniqueness of Oseen flow past
a half plane, J. Math. Phys. 45 (1966), 408–417.

35. W.E. Olmstead and D.J. Mescheloff, Buckling of a nonlinear elastic rod, J.
Math. Anal. Appl. 46 (1974), 609–634.

36. W.E. Olmstead and S. Raynor, Depression of an infinite liquid surface by
an incompressible gas jet, J. Fluid Mech. 19 (1964), 561–576.

37. W.E. Olmstead and C.A. Roberts, Quenching for the heat equation with a

nonlocal nonlinearity, Nonlin. Prob. Appl. Math., SIAM, Philadelphia, PA, 1996.

38. W.E. Olmstead and Catherine A. Roberts, Explosion in a diffusive strip due
to a concentrated nonlinear source, Meth. Appl. Anal. 1 (1994), 435–445.

39. , Explosion in a diffusive strip due to a source with local and nonlocal
features, Meth. Appl. Anal. 3 (1996), 345–357.

40. , Critical speed for quenching, Dynam. Cont. Discr. Impul. Syst.
Math. Anal. 8 (2001), 77–88.

41. , Thermal blow-up in a subdiffusive medium, SIAM J. Appl. Math.
69 (2008), 514–523.

42. , Dimensional influence on blow-up in a superdiffusive medium,

SIAM J. Appl. Math. 70 (2010), 1678–1690.

43. W.E. Olmstead, Catherine A. Roberts and Keng Deng, et al., Coupled Vol-
terra equations with blow-up solutions, J. Int. Eqs. Appl. 7 (1995), 499–516.

44. W.E. Olmstead and W.E. Schmitendorf, Optimal blowing, SIAM J. Appl.
Math. 35 (1978), 548–563.

45. W. Edward Olmstead, Colleen M. Kirk and Catherine A. Roberts, Blow-up
in a subdiffusive medium with advection, Discr. Contin. Dynam. Syst. 28 (2010),
1655–1667.

46. L.R. Ritter, Vladimir A. Volpert and W.E. Olmstead, Initiation of free-
radical polymerization waves, SIAM J. Appl. Math. 63 (2003), 1831–1848.

47. Catherine A. Roberts, D. Glenn Lasseigne and W.E. Olmstead, et al.,

Volterra equations which model explosion in a diffusive medium, J. Int. Eqs. Appl.
5 (1993), 531–546.

48. Catherine A. Roberts and W.E. Olmstead, Growth rates for blow-up solu-
tions of nonlinear Volterra equations, Quart. Appl. Math. (1996), 153–159.

49. , Local and non-local boundary quenching, Math. Meth. Appl. Sci.

22 (1999), 1465–1484.



ON THE CONTRIBUTIONS OF W. EDWARD OLMSTEAD 15

50. Catherine A. Roberts andW.E. Olmstead, Blow-up in a subdiffusive medium
of infinite extent, Fract. Calc. Appl. Anal. 12 (2009), 179–194.

California Polytechnic State University, Department of Mathematics, San
Luis Obispo, CA 93407

Email address: ckirk@calpoly.edu

Department of Mathematics, Kennesaw State University, Marietta, GA

30060
Email address: lritter@kennesaw.edu


