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ABSTRACT. This paper deals with the numerical solu-
tion of systems of nonlinear integro-parabolic problems of
Volterra type. The numerical approach is based on the
method of upper and lower solutions. A monotone itera-
tive method is constructed. Existence and uniqueness of a
solution to the nonlinear difference scheme are established.
An analysis of convergence rates of the monotone iterative
method is given. Construction of initial upper and lower
solutions is discussed. Numerical experiments are presented.

1. Introduction. Various reaction-diffusion-convection-type prob-
lems in the chemical, physical and engineering sciences are described
by coupled systems of nonlinear integro-parabolic equations. In this pa-
per, we give a numerical treatment for a coupled system of two nonlin-
ear integro-parabolic equations of Volterra type. The integro-parabolic
system under consideration is given in the form

(1.1)

∂ui
∂t

− Liui + fi(x, t, u) +

∫ t

0

g∗i (x, t, s, u(x, s)) ds = 0,

(x, t) ∈ ω × (0, T ],

ui(x, t) = ϕi(x, t), (x, t) ∈ ∂ω × (0, T ],

ui(x, 0) = ψi(x), x ∈ ω, i = 1, 2,

where u = (u1, u2), ω is a connected bounded domain in Rκ, κ =
1, 2, . . ., with boundary ∂ω. The differential operators Li, i = 1, 2, are
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given by

Liui =

κ∑
α=1

∂

∂xα

(
Di(x, t)

∂ui
∂xα

)
+

κ∑
α=1

vi,α(x, t)
∂ui
∂xα

, i = 1, 2,

where the coefficients of the differential operators are smooth and Di,
i = 1, 2, are positive in ω× [0, T ]. It is also assumed that the functions
fi, g

∗
i , ϕi and ψi, i = 1, 2, are smooth in their respective domains.

Such problems arise in many applications, including reaction dynam-
ics [3, 7, 9], heat conduction in materials with memory [4], population
dynamics [5], compression of poro-viscoelastic media [6], and diffusion
phenomena with memory effects [13, 15].

To discretize problem (1.1), we use the implicit scheme for parabolic
equations and approximate (1.1) by a nonlinear difference scheme. The
purpose of this paper is to develop a monotone iterative method for
solving the nonlinear difference scheme, including the existence and
uniqueness of a discrete solution, and error estimates of the iterative
method. Our iterative method is based on the method of upper and
lower solutions and associated monotone iterates. By using upper
and lower solutions as two initial iterations, one can construct two
monotone sequences which converge monotonically from above and
below, respectively, to a solution of the nonlinear difference scheme.

Monotone iterative schemes for solving systems of parabolic equa-
tions were used in [8, 10]. Here, the two important points in investi-
gating the monotone iterative methods concerning a stopping criterion
on each time level and estimates of convergence rates were omitted. In
[1], we extended the monotone iterative method from [8, 10] to the
case when, on each time level, a nonlinear difference scheme is solved
inexactly, and gave an analysis of convergence rates of the monotone
iterative method.

In [2], we constructed and investigated the monotone iterative
method for solving a scalar nonlinear integro-parabolic problem of
Volterra type in the case when, on each time level, a nonlinear difference
scheme is solved inexactly, and gave an analysis of convergence rates of
the monotone iterative method. In this paper, we extend the monotone
iterative method from [2] to the case of the system of integro-parabolic
problems of Volterra type (1.1).
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The structure of the paper as follows. In Section 2, we introduce
a nonlinear difference scheme for the numerical solution of (1.1). A
monotone iterative method is presented in Section 3. Existence and
uniqueness of the solution to the nonlinear difference scheme are es-
tablished. An analysis of convergence rates of the monotone iterative
method is given. Convergence of the nonlinear difference scheme to
the nonlinear integro-parabolic problem (1.1) is established. Section 4
deals with construction of initial upper and lower solutions. Finally,
Section 5 presents results of numerical experiments.

2. The nonlinear difference scheme. On the domains ω and
[0, T ], we introduce meshes ωh and ωτ , respectively. The integrals
in (1.1) are approximated by the finite sums gi, i = 1, 2, based on the
Riemann sum (the rectangular rule) [14]

gi(p, tk, U) =
k∑

l=1

τlg
∗
i (p, tk, tl, U(p, tl)), (p, tk) ∈ ωh × ωτ ,

where ωτ ≡ ωτ \ {0}, U = (U1, U2) and time steps τk = tk − tk−1,
k ≥ 1, t0 = 0. By using the implicit method for parabolic equations,
we approximate the integro-parabolic differential equations in (1.1) by
the difference scheme

LiUi(p, tk) + fi(p, tk, U) + gi(p, tk, U)− τ−1
k Ui(p, tk−1) = 0,(2.1)

(p, tk) ∈ ωh × ωτ , LiUi(p, tk) ≡ Lh
i Ui(p, tk) + τ−1

k Ui(p, tk), i = 1, 2,

where Lh
i , i = 1, 2, are approximations of the differential opera-

tors Li, i = 1, 2, from (1.1). When no confusion arises, we write
fi(p, tk, U(p, tk)) = fi(p, tk, U), i = 1, 2. The boundary and initial
conditions are approximated by

Ui(p, tk) = ϕi(p, tk), (p, tk) ∈ ∂ωh × ωτ ,

Ui(p, 0) = ψi(p), p ∈ ωh,

where i = 1, 2, and ∂ωh is the boundary of ωh. The difference operators
Li, i = 1, 2, are defined by

Lh
i Ui(p, tk) = di(p, tk)Ui(p, tk)−

∑
p′∈σ′

i(p)

ai(p
′, tk)Ui(p

′, tk), i = 1, 2,
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where σ′
i(p) = σi(p)\{p}, σi(p), i = 1, 2, are stencils of the scheme at an

interior mesh point p ∈ ωh. We impose the following basis assumptions
on the coefficients of the difference operators Lh

i , i = 1, 2:

di(p, tk) > 0, ai(p
′, tk) ≥ 0, p′ ∈ σ′

i(p),(2.2)

di(p, tk)−
∑

p′∈σ′
i(p)

ai(p
′, tk) ≥ 0, (p, tk) ∈ ωh × ωτ .(2.3)

These conditions ensure that the corresponding matrices Ai(tk), i =
1, 2, are M -matrices, and, for any τk > 0, the inverse matrices
(I +Ai(tk))

−1, i = 1, 2, exist and are positive matrices.

We assume that the mesh ωh is connected, i.e., for two interior
mesh points p̃ and p̂, there exists a finite set of interior mesh points
{p1, p2, . . . , ps} such that

(2.4) p1 ∈ σ′(p̃), p2 ∈ σ′(p1), . . . , ps ∈ σ′(ps−1), p̂ ∈ σ′(ps).

For linear difference problems without integral terms,

(Li + ci)Wi(p, tk) = Φi(p, tk), p ∈ ωh,(2.5)

ci(p, tk) ≥ 0, Wi(p, tk) = ϕi(p, tk), p ∈ ∂ωh, i = 1, 2,(2.6)

the maximum principle and estimates to the solutions are given in the
following lemma (the proof of the lemma can be found in [11]).

Lemma 2.1. Let the coefficients of the difference operators Lh
i , i =

1, 2, satisfy (2.2) and the mesh ωh be connected.

(i) If mesh functions Wi(p, tk), i = 1, 2, satisfy the conditions

(Li + ci)Wi(p, tk) ≥ 0 (≤ 0), p ∈ ωh,

Wi(p, tk) ≥ 0 (≤ 0), p ∈ ∂ωh,

then Wi(p, tk) ≥ 0 (≤ 0), i = 1, 2, in ωh.
(ii) The following estimates to the solutions to (2.5) hold true:

(2.7) ∥Wi(·, tk)∥ω̄h ≤ max

{
∥gi(tk)∥∂ωh ,max

p∈ωh

|Φi(p, tk)|
ci(p, tk) + τ−1

k

}
, i=1, 2,
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where

∥Wi(·, tk)∥ω̄h = max
p∈ω̄h

|Wi(p, tk)|,

∥gi(·, tk)∥∂ωh = max
p∈∂ωh

|gi(p, tk)|.

3. The monotone iterative method. We assume that two vec-
tor mesh functions Ũ(p, tk) = (Ũ1(p, tk), Ũ2(p, tk)) and Û(p, tk) =

(Û1(p, tk), Û2(p, tk)) satisfy the inequalities

Ũ(p, tk) ≥ Û(p, tk), (p, tk) ∈ ωh × ωτ .

For notational convenience, we set the sector

⟨Û(tk), Ũ(tk)⟩ = {U(p, tk) : Û(p, tk) ≤ U(p, tk) ≤ Ũ(p, tk), p ∈ ωh}.

We assume that, on ⟨Û(tk), Ũ(tk)⟩, the functions fi and g∗i , i = 1, 2,
satisfy the constraints
(3.1)
∂fi
∂ui

(p, tk, U) ≤ ci(p, tk), 0 ≤ −∂g
∗
i

∂ui
(p, tk, tl, U), 1≤ l≤k, i=1, 2,

0 ≤ − ∂fi
∂ui′

(p, tk, U), 0 ≤ − ∂g∗i
∂ui′

(p, tk, tl, U), 1≤ l≤k, i ̸= i′,

where ci(p, tk), i = 1, 2, are nonnegative bounded functions in ωh×ωτ .
The functions fi, i = 1, 2, are said to be quasi-monotone nondecreasing
if −∂fi/∂ui′ ≥ 0, i ̸= i′, and the functions g∗i , i = 1, 2, are said to be
monotone nondecreasing if −∂g∗i /∂ui ≥ 0, −∂g∗i /∂ui′ ≥ 0, i ̸= i′.

Remark 3.1. We say that the functions fi, i = 1, 2, are quasi-
monotone nonincreasing functions if −∂fi/∂ui′ ≤ 0, i ̸= i′, and the
functions g∗i , i = 1, 2, are monotone nonincreasing if −∂g∗i /∂ui ≤ 0,
−∂g∗i /∂ui′ ≤ 0, i ̸= i′. When the functions fi and g∗i , i = 1, 2, are
quasi-monotone nonincreasing, a transformation given by (u1, u2) →
(M − u1, u2) for some constant M > 0 leads to a similar system where
the functions are quasi-monotone nondecreasing.

Two vector mesh functions Ũ(p, tk) and Û(p, tk) are called ordered

upper and lower solutions of (2.1), if Ũ(p, tk) ≥ Û(p, tk), (p, tk) ∈



314 IGOR BOGLAEV

ωh × ωτ , and if

LiŨi(p, tk) + fi(p, tk, Ũ) + gi(p, tk, Ũ)− τ−1
k Ũi(p, tk−1) ≥ 0,(3.2)

(p, tk) ∈ ωh × ωτ , Ũi(p, tk) ≥ ϕi(p, tk), p ∈ ∂ωh,

Ũi(p, 0) ≥ ψi(p), p ∈ ωh, i = 1, 2,

and Û satisfies the above inequalities in reverse order.

A monotone iterative method for solving (2.1) is constructed in the
following way. On each time level tk, k ≥ 1, we calculate U (n)(p, tk) as
follows:

(3.3)

(Li + ci)Z
(n)
i (p, tk) = −Ri(p, tk, U

(n−1)), p ∈ ωh,

Ri(p, tk, U
(n−1)) = LiU

(n−1)
i (p, tk) + fi(p, tk, U

(n−1))

+ gi(p, tk, U
(n−1))− τ−1

k Ui(p, tk−1),

Z
(1)
i (p, tk) = ϕi(p, tk)− U

(0)
i (p, tk),

Z
(n)
i (p, tk) = 0, n ≥ 2, p ∈ ∂ωh,

U
(n)
i (p, tk) = U

(n−1)
i (p, tk) + Z

(n)
i (p, tk), p ∈ ωh,

Ui(p, tk) = U
(n(tk))
i (p, tk),

Ui(p, 0) = ψi(p), p ∈ ωh, i = 1, 2,

where Ri(p, tk, U
(n−1)), i = 1, 2, are the residuals of the difference

scheme (2.1) on U (n−1), U(p, tk) is an approximation of the exact
solution on time level tk, n(tk) is the number of iterative steps on
time level tk and ci(p, tk), i = 1, 2, are defined in (3.1).

3.1. Monotone convergence of the iterative method. We intro-
duce the notation

Fi(p, tk, U) = ci(p, tk)Ui(p, tk)− fi(p, tk, U)− gi(p, tk, U),(3.4)

i = 1, 2,

and give a monotone property of Fi, i = 1, 2.

Lemma 3.2. Let (3.1) hold. If U(p, tk), V (p, tk) ∈ ⟨Û(tk), Ũ(tk)⟩, such
that U(p, tk) ≥ V (p, tk), then

(3.5) Fi(p, tk, U) ≥ Fi(p, tk, V ), p ∈ ωh, i = 1, 2.
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Proof. From (3.4), we have

F1(p, tk, U)− F1(p, tk, V ) = c1(p, tk)[U1(p, tk)− V1(p, tk)]

− [f1(p, tk, U1, U2)− f1(p, tk, V1, U2)]

− [f1(p, tk, V1, U2)− f1(p, tk, V1, V2)]

− [g1(p, tk, U1, U2)− g1(p, tk, V1, U2)]

− [g1(p, tk, V1, U2)− g1(p, tk, V1, V2)].

By the mean-value theorem, we have

[f1(p, tk, U1, U2)− f1(p, tk, V1, U2)] =
∂f1
∂u1

(tk)(U1(tk)− V1(p, tk)),

∂f1
∂u1

(tk) ≡
∂f1
∂u1

(p, tk, E1, U2), E1(p, tk) ∈ ⟨V1(tk), U1(tk)⟩,

[f1(p, tk, V1, U2)− f1(p, tk, V1, V2)] =
∂f1
∂u2

(tk)(U1(p, tk)− V1(p, tk)),

∂f1
∂u2

(tk) ≡
∂f1
∂u2

(p, tk, V1, E2), E2(p, tk) ∈ ⟨V2(tk), U2(tk)⟩,

[g1(p, tk, U1, U2)−g1(p, tk, V1, U2)] =

k∑
l=1

τl
∂g∗1
∂u1

(tl)(U1(p, tl)−V1(p, tl)),

∂g∗1
∂u1

(tl) ≡
∂g∗1
∂u1

(p, tk, tl, Q1, U2), Q1(p, tl) ∈ ⟨V1(tl), U1(tl)⟩,

[g1(p, tk, V1, U2)− g1(p, tk, V1, V2)] =
k∑

l=1

τl
∂g∗1
∂u2

(tl)(U2(p, tl)−V2(p, tl)),

∂g∗1
∂u2

(tl) ≡
∂g∗1
∂u2

(p, tk, tl, V1, Q2), Q2(p, tl) ∈ ⟨V2(tl), U2(tl)⟩.

From here and the assumptions of the lemma, we conclude (3.5) for
i = 1. Similarly, we can prove (3.5) for i = 2. �

Denote the sequences, generated by (3.3), by {U (n)}, if U (0)
= Ũ

and by {U (n)}, if U (0) = Û . In the following theorem, we show that
these sequences converge monotonically.
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Theorem 3.3. Let the coefficients of the difference operators Lh
i ,

i = 1, 2, in (2.1) satisfy (2.2), and let the computational mesh ωh

be connected (2.4). Assume that fi(p, tk, U) and g∗i (p, tk, U), i = 1, 2,

satisfy (3.1), where Ũ and Û are ordered upper and lower solutions (3.2)

of (2.1). Then the sequences {U (n)} and {U (n)} are ordered upper and
lower solutions and converge monotonically from, respectively, above
and below, such that
(3.6)

U (n−1)(p, tk) ≤ U (n)(p, tk) ≤ U
(n)

(p, tk) ≤ U
(n−1)

(p, tk), p ∈ ωh,

where k ≥ 1 and n ≥ 1.

Proof. Since U
(0)

= Ũ is an upper solution, then from (3.2) and
(3.3) we conclude that

(Li + ci)Z
(1)

i (p, t1) ≤ 0, p ∈ ωh,

Z
(1)

i (p, t1) ≤ 0, p ∈ ∂ωh, i = 1, 2.

From Lemma 2.1, it follows that

(3.7) Z
(1)

i (p, t1) ≤ 0, p ∈ ωh, i = 1, 2.

Similarly, for a lower solution U (0) = Û , we conclude that

(3.8) Z
(1)
i (p, t1) ≥ 0, p ∈ ωh, i = 1, 2.

We now prove that

(3.9) U
(1)
i (p, t1) ≤ U

(1)

i (p, t1), p ∈ ωh, i = 1, 2.

By (3.3), for i = 1, 2,

(Li + ci)U
(1)

i (p, t1) = ci(p, t1)U
(0)

i (p, t1)− fi(p, t1, U
(0)

)

− gi(p, t1, U
(0)

) + τ−1
1 Ui(p, 0), p ∈ ωh,

U
(1)

i (p, t1) = ϕi(p, t1), p ∈ ∂ωh,

and

(Li + ci)U
(1)
i (p, t1) = ciU

(0)
i (p, t1)− fi(p, t1, U

(0))

− gi(p, t1, U
(0)) + τ−1

1 Ui(p, 0), p ∈ ωh,
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U
(1)
i (p, t1) = ϕi(p, t1), p ∈ ∂ωh.

From here, taking into account that Ui(p, 0) = ψi(p), i = 1, 2, in the

notation W
(n)
i = U

(n)

i − U
(n)
i , n ≥ 0, i = 1, 2, we have

(Li + ci)W
(1)
i (p, t1) = Fi(p, t1, U

(0)
)− Fi(p, t1, U

(0)), p ∈ ωh,

W
(1)
i (p, t1) = 0, p ∈ ∂ωh,

where Fi, i = 1, 2, are defined in (3.4). Since U
(0)

(p, t1) ≥ U (0)(p, t1),
by Lemma 3.2, we conclude that the right hand sides in the difference
equations are nonnegative. The positivity property in Lemma 2.1

implies W
(1)
i (p, t1) ≥ 0, i = 1, 2, and this leads to (3.9).

We now prove that U
(1)

i (p, t1) and U
(1)
i (p, t1), i = 1, 2, are upper

and lower solutions (3.2), respectively. Taking into account that

gi(·, U
(n)

)−gi(·, U
(n−1)

) = τk[g
∗
i (·, tk, U

(n)
)−g∗i (·, tk, U

(n−1)
)], i = 1, 2,

where gi(·, U) and g∗i (·, tk, U) stand, respectively, for gi(p, tk, U) and
g∗i (p, tk, tk, U(p, tk)). From this, and by the mean-value theorem, we
obtain

gi(·, U
(n)

)−gi(·, U
(n−1)

) = τk
∂g∗i
∂ui

(tk)Z
(n)

i (p, tk)+τk
∂g∗i
∂ui′

(tk)Z
(n)

i′ (p, tk),

where i′ ̸= i, and partial derivatives are calculated at intermediate

points which lie in the sector ⟨U (n)
(tk), U

(n−1)
(tk)⟩. From this, equa-

tion (3.3), and by the mean-value theorem for fi(p, t1, U
(1)

), we obtain

Ri(p, t1, U
(1)

) = −
(
ci −

∂fi
∂ui

(t1)

)
Z

(1)

i (p, t1) +
∂fi
∂ui′

(t1)Z
(1)

i′ (p, t1)

(3.10)

+ τ1
∂g∗i
∂ui

(t1)Z
(1)

i (p, t1) + τ1
∂g∗i
∂ui′

(t1)Z
(1)

i′ (p, t1),

where i′ ̸= i, and the partial derivatives are calculated at intermediate

points which lie in the sector ⟨U (1)
(t1), U

(0)
(t1)⟩. From this and

equations (3.7), (3.8) and (3.9), it follows that the partial derivatives
satisfy (3.1). From equations (3.1), (3.7) and (3.10), we conclude that,
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for i = 1, 2,

Ri(p, t1, U
(1)

) ≥ 0, p ∈ ωh,

U
(1)

i (p, t1) = ϕi(p, t1), p ∈ ∂ωh.

Thus, U
(1)

(p, t1) is an upper solution. Similarly, we can prove that

U (1)(p, t1) is a lower solution, that is, for i = 1, 2,

Ri(p, t1, U
(1)) ≤ 0, p ∈ ωh,

U
(1)
i (p, t1) = ϕi(p, t1), p ∈ ∂ωh.

By induction on n, we can prove that {U (n)
(p, t1)} is a monotonically

decreasing sequence of upper solutions and {U (n)(p, t1)} is a monoton-
ically increasing sequence of lower solutions, which satisfy (3.6) for t1.

From (3.6) with t1, it follows that
(3.11)

Ûi(p, t1) ≤ U
(n1)
i (p, t1) ≤ U

(n1)

i (p, t1) ≤ Ũi(p, t1), p ∈ ωh, i = 1, 2.

From this and by the assumption of the theorem that Ũ(p, t2) and

Û(p, t2) are, respectively, upper and lower solutions (3.2), we conclude

that Ũ(p, t2) and Û(p, t2) are upper and lower solutions with respect

to U
(n1)

(p, t1) and U
(n1)(p, t1), that is, for i = 1, 2,

(3.12)

LiŨi(p, t2) + fi(p, t2, Ũ) + gi(p, t2, Ũ)− τ−1
2 U

(n1)

i (p, t1) ≥ 0, p ∈ ωh,

LiÛi(p, t2) + fi(p, t2, Û) + gi(p, t2, Û)− τ−1
2 U

(n1)
i (p, t1) ≤ 0, p ∈ ωh.

By (3.3) with t2, we have, for i = 1, 2,

(Li + ci)U
(1)

i (p, t2) = ciU
(0)

i (p, t2)− fi(p, t2, U
(0)

)− gi(p, t2, U
(0)

)

+τ−1
2 U

(n1)

i (p, t1), p ∈ ωh, U
(1)

i (p, t2) = ϕi(p, t2), p ∈ ∂ωh,

and

(Li + ci)U
(1)
i (p, t2) = ciU

(0)
i (p, t2)− fi(p, t2, U

(0))− gi(p, t2, U
(0))

+ τ−1
2 U

(n1)
i (p, t1), p ∈ ωh,

U
(1)
i (p, t2) = ϕi(p, t2), p ∈ ∂ωh.
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From here, we conclude that W (1)(p, t2) = U
(1)

(p, t2) − U (1)(p, t2)
satisfies

(Li + ci)W
(1)
i (p, t2) = Fi(p, t2, U

(0)
)− Fi(p, t2, U

(0))

+ τ−1
2 [U

(n1)

i (p, t1)− U
(n1)
i (p, t1)], p ∈ ωh,

W
(1)
i (p, t2) = 0, p ∈ ∂ωh, i = 1, 2.

Since U
(0)

(p, t2) ≥ U (0)(p, t2) and, taking into account (3.11), by
Lemma 3.2, we conclude that the right hand sides of the difference
equations are nonnegative.

The positivity property in Lemma 2.1 implies W
(1)
i (p, t2) ≥ 0,

i = 1, 2, and this leads to

U
(1)
i (p, t2) ≤ U

(1)

i (p, t2), p ∈ ωh, i = 1, 2.

The proof that U
(1)

i (p, t2) and U
(1)
i (p, t2), i = 1, 2, are, respectively,

upper and lower solutions, is similar to the proof of this result on the

time level t1. By induction on n, we can prove that {U (n)
(p, t2)} is a

monotonically decreasing sequence of upper solutions and {U (n)(p, t2)}
is a monotonically increasing sequence of lower solutions, which satisfy
(3.6) for t2.

By induction on k, k ≥ 1, we can prove that {U (n)
(p, tk)} is a

monotonically decreasing sequence of upper solutions and {U (n)(p, tk)}
is a monotonically increasing sequence of lower solutions, which satisfy
(3.6). Thus, the theorem is proved. �

3.2. Existence and uniqueness of a solution to the nonlin-
ear difference scheme. In this section, we investigate existence and
uniqueness of a solution to the nonlinear difference scheme (2.1).

Lemma 3.4. Under the assumptions of Theorem 3.3, a solution to the
nonlinear difference scheme (2.1) exists.

Proof. From (3.6), it follows that limn→∞ U
(n)

(p, t1) = V (p, t1),
p ∈ ωh exists, and

(3.13) V (p, t1) ≤ U
(n)

(p, t1), lim
n→∞

Z
(n)

(p, t1) = 0, p ∈ ωh.
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Similar to (3.10), we can prove that, for i = 1, 2, n ≥ 1,

Ri(p, t1, U
(n)

) = −
(
ci −

∂fi
∂ui

(t1)

)
Z

(n)

i (p, t1) +
∂fi
∂ui′

(t1)Z
(n)

i′ (p, t1)

(3.14)

+ τ1
∂g∗i
∂ui

(t1)Z
(n)

i (p, t1) + τ1
∂g∗i
∂ui′

(t1)Z
(n)

i′ (p, t1).

From (3.14) and (3.13), we conclude that V (p, t1) solves (2.1) at t1. By

the assumption of Lemma 3.4 that Ũ(p, t2) is an upper solution and

from (3.13), it follows that Ũ(p, t2) is an upper solution with respect
to V (p, t1). Using a similar argument, we can prove that the following
limit

lim
n→∞

U
(n)

(p, t2) = V (p, t2), p ∈ ωh,

exists and solves (2.1) at t2, where, according to Theorem 3.3,

{U (n)
(p, t2)} is a sequence of upper solutions with respect to V (p, t1).

By induction on k, k ≥ 1, we can prove that

V (p, tk) = lim
n→∞

U
(n)

(p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear difference scheme (2.1). Similarly, we can
prove that the mesh function V (p, tk) defined by

V (p, tk) = lim
n→∞

U (n)(p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear difference scheme (2.1). �

We now impose the two-sided constraints on fi and g
∗
i , i = 1, 2, cf.,

equation (3.1),

(3.15)

ci(p, tk) ≤
∂fi
∂ui

(p, tk, U) ≤ ci(p, tk),

0 ≤ − ∂fi
∂ui′

(p, tk, U) ≤ c̃i(p, tk),
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0 ≤ −∂g
∗
i

∂ui
(p, tk, tl, U) ≤ qi(p, tk, tl), 1 ≤ l ≤ k,(3.16)

0 ≤ − ∂g∗i
∂ui′

(p, tk, tl, U) ≤ q̃i(p, tk, tl),

1 ≤ l ≤ k, i ̸= i′, i = 1, 2,

U(p, tk) ∈ ⟨Û(tk), Ũ(tk)⟩, k ≥ 1,

where Ũ , Û is a pair of ordered upper and lower solutions to (2.1),
c̃i(p, tk) and ci(p, tk), i = 1, 2, are, respectively, nonnegative bounded
and bounded functions in ωh × ωτ , and qi(p, tk, tl) and q̃i(p, tk, tl),
i = 1, 2, are positive bounded functions in ωh × ωτ . We also assume
that time step τk satisfies the inequality

(3.17) τk <
|γk| − c̃k

4ρk
+

√(
|γk| − c̃k

4ρk

)2

+
1

2ρk
,

c̃k = max
i

∥c̃i(·, tk)∥ω̄h ,

ck = min
i

[
min
p∈ω̄h

ci(p, tk)
]
,

γk = min(0, ck),

ρk = max
i

{
max
1≤l≤k

[max (∥qi(·, tk, tl)∥ω̄h , ∥q̃i(·, tk, tl)∥ω̄h)]
}
, k ≥ 1.

Lemma 3.5. Let the coefficients of the difference operators Li, i =
1, 2, in (2.1) satisfy (2.2), and let the mesh ωh be connected (2.4).
Assume that fi(p, tk, U) and g∗i (p, tk, tl), 1 ≤ l ≤ k, i = 1, 2, satisfy,

respectively, (3.15) and (3.16), where Ũ and Û are ordered upper and
lower solutions (3.2) of (2.1), and the mesh ωτ satisfies (3.17). Then
the nonlinear difference scheme (2.1) has a unique solution.

Proof. It suffices to show that

V (p, tk) = V (p, tk), p ∈ ωh, k ≥ 1,

where V (p, tk) and V (p, tk) are solutions to the difference scheme (2.1),
which are defined in Lemma 3.4. From equation (3.6) and Lemma 3.4,
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it follows that

U (n)(p, tk) ≤ V (p, tk) ≤ V (p, tk) ≤ U
(n)

(p, tk),(3.18)

p ∈ ωh, k ≥ 1.

Letting W (p, tk) = V (p, tk)− V (p, tk), from (2.1), we have

LiWi(p, t1) + [fi(p, t1, V )− fi(p, t1, V )]

+ [gi(p, t1, V )− gi(p, t1, V )] = 0, p ∈ ωh,

Wi(p, t1) = 0, p ∈ ∂ωh, i = 1, 2.

Using the mean-value theorem, we obtain(
Li +

∂fi
∂ui

(t1)

)
Wi(p, t1) = − ∂fi

∂ui′
(t1)Wi′(p, t1)− τ1

∂g∗i
∂ui

(t1)Wi(p, t1)

− τ1
∂g∗i
∂ui′

(t1)Wi′(p, t1), p ∈ ωh,

Wi(p, t1) = 0, p ∈ ∂ωh, i′ ̸= i, i = 1, 2,

where the partial derivatives are calculated at intermediate points
which lie in the sector ⟨V (t1), V (t1)⟩. From (3.18), it follows that the
partial derivatives satisfy (3.15) and (3.16). From this, equations (2.7),
(3.15) and (3.16) with ci(p, tk) = 0, i = 1, 2, we obtain the estimate

wi(t1) ≤
c1 + 2τ1ρ1

τ−1
1 + |γ1|

w(t1),

where the following notation is in use

(3.19)
wi(tk) = ∥Wi(·, tk)∥ω̄h ,

w(tk) = max
i
wi(tk), k ≥ 1.

By the assumption on τ1 in (3.17) and w(t1) ≥ 0, we conclude that
w(t1) = 0. From (3.19), using the mean-value theorem, we get(

Li +
∂fi
∂ui

(t2)

)
Wi(p, t2) = − ∂fi

∂ui′
(t2)Wi′(p, t2)− τ2

∂g∗i
∂ui

(t2)Wi(p, t2)

−−τ2
∂g∗i
∂ui′

(t2)Wi′(p, t2), p ∈ ωh,

Wi(p, t2) = 0, p ∈ ∂ωh, i′ ̸= i, i = 1, 2.
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Similar to the proof that w(t1) = 0, we conclude that w(t2) = 0. Now,
by induction on k, k ≥ 1, we can prove that w(tk) = 0, k ≥ 1. Thus,
we have proved the lemma. �

3.3. Convergence of the monotone iterative method on each
time level. We now establish convergence properties of the iterative
method (3.3) on each time level tk, k ≥ 1.

Instead of (3.15), we now assume that, in (3.15),

(3.20) c̃k ≤ ∂fi
∂ui

(p, tk, U) ≤ ci(p, tk), k ≥ 1,

where c̃k is defined in (3.17).

Remark 3.6. We mention that the assumption ∂fi/∂ui ≥ c̃k > 0 in
(3.20) can always be obtained via a change of variables. Indeed, we
introduce the following function zi(x, t) = e−λtui(x, t), i = 1, 2, where
λ is a constant. Now, z = (z1, z2) satisfies (1.1) with

f̃i = λzi + e−λtfi(x, t, e
λtz),

g̃∗i = e−λtg∗i (x, t, s, e
λsz(x, s)),

instead of fi and g
∗
i , i = 1, 2, and we have

∂f̃i
∂zi

= λ+
∂fi
∂ui

,
∂f̃i
∂zi′

=
∂fi
∂ui′

, i′ ̸= i, i = 1, 2,

−∂g̃
∗
i

∂zi
= −e−λ(t−s) ∂g

∗
i

∂ui
, − ∂g̃∗i

∂zi′
= −e−λ(t−s) ∂g

∗
i

∂ui′
,

i′ ̸= i, i = 1, 2.

Thus, if λ ≥ maxk≥1(c̃k + |γk|), where c̃k and γk are defined in (3.17),

then from this and (3.15), we conclude that ∂f̃i/∂zi satisfies (3.20).
Since 0 < e−λ(t−s) ≤ 1, λ > 0, then ∂g̃∗i /∂zi and ∂g̃

∗
i /∂zi′ still satisfy

(3.16).

We state the discrete Gronwall’s inequality from [12] in the following
form.
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Lemma 3.7. Let {wk} be a sequence of nonnegative real numbers
satisfying

wk ≤ ak +
k∑

l=1

blwl, k ≥ 1,

where {ak} is a nondecreasing sequence of nonnegative numbers, and
bl ≥ 0. Then

wk ≤ ak exp

( k∑
l=1

bl

)
, k ≥ 1.

We assume that time step τk satisfies the inequality

τk <

√(
ck + c̃k
4ρk

)2

+
1

2ρk
− ck + c̃k

4ρk
,(3.21)

ck = max
i

∥ci(·, tk)∥ω̄h , k ≥ 1,

where c̃k and ρk are defined in (3.17), and we introduce the notation

(3.22) z
(n)
i (tk) = ∥Z(n)

i (·, tk)∥ω̄h , z(n)(tk) = max
i
z
(n)
i (tk)

Lemma 3.8. Let the coefficients of the difference operator Lh
i , = 1, 2,

in (2.1) satisfy (2.2), let the mesh ωh be connected with (2.4) and the
mesh ωτ satisfy (3.21). Assume that fi(p, tk, U) and g∗i (p, tk, tl, U),

i = 1, 2, satisfy (3.15), (3.16) and (3.20), where Ũ and Û are ordered
upper and lower solutions (3.2) of (2.1). Then, for the sequences

{U (n)}, U (0)
= Ũ and {U (n)}, U (0) = Û , generated by (3.3), the

following estimate holds

(3.23) z(n)(tk) ≤ rn−1
k z(1)(tk), rk = τk (ck + c̃k + 2τkρk) < 1.

Proof. Using (2.7), from (3.3), we have

(3.24) z
(n)
i (tk) ≤ τk∥Ri(·, tk, U (n−1))∥ωh , i = 1, 2.
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Similar to (3.10), we can prove that
(3.25)

Ri(p, tk, U
(n)) = −

(
ci −

∂fi
∂ui

(tk)

)
Z

(n)
i (p, tk) +

∂fi
∂ui′

(tk)Z
(n)
i′ (p, tk)

+ τk
∂g∗i
∂ui

(tk)Z
(n)
i (p, tk) + τk

∂g∗i
∂ui′

(tk)Z
(n)
i′ (p, tk).

From equations (3.25), (3.15), (3.16) and (3.20), we conclude that

∥Ri(·, tk, U (n−1))∥ωh ≤ (ck + c̃k + 2τkρk) z
(n−1)(tk), i = 1, 2,

where c̃k and ρk are defined in (3.17) and ck is defined (3.21). From
this and (3.24), by using (2.7), we have

z(n)(tk) ≤ τk (ck + c̃k + 2τkρk) z
(n−1)(tk).

From (3.21), it follows that rk = τk(ck + c̃k + 2τkρk) < 1. Thus, we
have proved the lemma. �

To simplify our analysis, we assume that τk = τ , n(tk) = n∗, where
τ and n∗ are constants for k ≥ 1.

Theorem 3.9. Let all the conditions in Lemma 3.8 be satisfied. Then,

for the sequences {U (n)} and {U (n)}, the following estimate holds:

max
i

[
max
tk∈ωτ

∥Ui(·, tk)− U∗
i (·, tk)∥ω̄h

]
≤ C(T )rn−1,(3.26)

r = max
k≥1

rk < 1,

where U∗(p, tk) is the unique solution to (2.1), rk is defined in (3.23),
constant C is independent of τ and the number of iterative steps on
each time level n ≥ 2.

Proof. The difference problem for U(p, tk) = U (n∗)(p, tk), k ≥ 1, can
be represented in the form

LiUi(p, tk)+fi(p, tk, U)+gi(p, tk, U)− 1

τ
Ui(p, tk−1)=Ri(p, tk, U

(n∗)),

p ∈ ωh, Ui(p, tk) = ϕi(p, tk), p ∈ ∂ωh, i = 1, 2.
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From this, equation (2.1) and using the mean-value theorem, we get
the difference problem for Wi(p, tk) = Ui(p, tk)− U∗

i (p, tk), i = 1, 2,(
Li +

∂fi
∂ui

(tk)

)
Wi(p, tk) = Ri(p, tk, U) +

1

τ
Wi(p, tk−1)

− ∂fi
∂ui′

(tk)Wi′(p, tk)−τ
k∑

l=1

∂g∗i
∂ui

(tl)Wi(p, tl)(3.27)

− τ

k∑
l=1

∂g∗i
∂ui′

(tl)Wi′(p, tl), p ∈ ωh,

Wi(p, tk) = 0, p ∈ ∂ωh, i′ ̸= i, i = 1, 2,

where the partial derivatives are calculated at intermediate points,
which lie between U(p, tk) and U

∗(p, tk). Thus, the partial derivatives
satisfy equations (3.16) and (3.20). From equations (3.27) and (3.25),
for k ≥ 1, p ∈ ωh, we conclude that(
Li +

∂fi
∂ui

(tk)

)
Wi(p, tk) = −

(
ci −

∂fi
∂ui

(tk)

)
Zi(p, tk)

+
∂fi
∂ui′

(tk)Zi′(p, tk) + τ
∂g∗i
∂ui

(tk)Zi(p, tk)

+ τ
∂g∗i
∂ui′

(tk)Zi′(p, tk) +
1

τ
Wi(p, tk−1)(3.28)

− ∂fi
∂ui′

(tk)Wi′(p, tk)−
k∑

l=1

τ
∂g∗i
∂ui

(tl)Wi(p, tl)

−
k∑

l=1

τ
∂g∗i
∂ui′

(tl)Wi′(p, tl), i′ ̸= i,

where Zi(p, tk) = Z
(n∗)
i (p, tk), i = 1, 2. From equations (3.28), (3.15),

(3.16) and (3.20), by using (2.7), and in the notation of (3.19) and
(3.22), we have

w(tk) ≤
1

τ−1 + c̃k

[
(ck + c̃k + 2τρk) z(tk) + c̃kw(tk)

+

k∑
l=1

2τρlw(tl) + τ−1w(tk−1)
]
,



NUMERICAL METHODS FOR SYSTEMS 327

where c̃k, ck, ρk and ck are defined in (3.17) and (3.21), respectively.
From this and equation (3.23), we obtain the estimate
(3.29)

w(tk) ≤ τ (ck + c̃k + 2τρk) r
n−1
k z(1)(tk) +

k∑
l=1

2τ2ρlw(tl) + w(tk−1).

From (3.3) and by (2.7),

z
(1)
i (t1) ≤ τ∥LiU

(0)
i (·, t1) + fi(·, t1, U (0))

+ gi(·, t1, U (0))− τ−1Ui(·, t0)∥ωh .

Since U (0)(p, t1) and U(p, t0) are independent of τ , for sufficiently small

τ , z
(1)
i (t1), i = 1, 2, are independent of τ , that is,

z(1)(t1) ≤ A1,

where the constant A1 is independent of τ . Now by induction on k, we
prove that

(3.30) z(1)(tk) ≤ Ak, k ≥ 1,

where constants Ak, k ≥ 1, are independent of τ . From equations
(3.30) and (3.29), we have

(3.31) w(tk) ≤ Bτrn−1 + 2τ2ρ
k∑

l=1

w(tl) + w(tk−1),

where the constant B is independent of τ , such that

B ≥ max
k≥1

[(ck + c̃k + 2Tρk)Ak], ρ = max
k≥1

ρk.

From this and taking into account that w(t0) = 0, by induction on k,
we prove the inequality

w(tk) ≤ B(kτ)rn−1 + 2τ2ρ

( k∑
l=1

(k − l + 1)w(tl)

)
.

By Lemma 3.7 with ak = B(kτ)rn−1, k ≥ 1 and bl = 2τ2ρ(k − l + 1),
1 ≤ l ≤ k, we get

w(tk) ≤ B(kτ)rn−1 exp

(
2τ2ρ

k∑
l=1

l

)
.
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From this and taking into account that

k∑
l=1

l ≤ k2/2, kτ ≤ T,

we prove equation (3.26) with C(T ) = BT exp(ρT 2). �

Remark 3.10. The implicit two-level difference scheme (2.1) is of first
order with respect to time steps. As follows from (3.23), if ck = O(1),
c̃k = O(1) and ρk = O(1), k ≥ 1, then rk = O(τ). To guarantee the
consistency of the global errors in the implicit difference scheme and in
the monotone iterative method (3.3) we can choose n = 2 in (3.26).

3.4. Convergence of the monotone iterative method to the
solution of the nonlinear difference scheme on [0, T ]. We now
investigate convergence of the monotone iterative method (3.3) to
the solution of the nonlinear difference scheme (2.1). We choose the
stopping criterion of the iterative method (3.3) in the form

(3.32) max
i

∥Ri(·, tk, U (n))∥ωh ≤ δ,

where δ is a prescribed accuracy and set up U(p, tk) = U (nk)(p, tk),
p ∈ ωh, such that n(tk) is minimal subject to (3.32).

We assume that time step τk satisfies the inequality

(3.33) τk <

√(
c̃k
4ρk

)2

+
1

2ρk
− c̃k

2ρk
, k ≥ 1.

To simplify our analysis, we assume that τk = τ , k ≥ 1, and with
the aid of Lemma 3.7, prove the following convergence result for the
iterative method (3.3), (3.32).

Theorem 3.11. Assume that the mesh ωτ satisfies (3.33), and let all
other conditions in Lemma 3.8 be satisfied. Then, for the sequences

{U (n)} and {U (n)} generated by equations (3.3) and (3.32), the follow-
ing estimate holds:

(3.34) max
i

[ max
tk∈ωτ

∥Ui(·, tk)− U∗
i (·, tk)∥ω̄h ] ≤ C(T )δ,
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where U∗(p, tk) is the unique solution to (2.1), and the constant C is
independent of τ .

Proof. The existence and uniqueness of the solution to (2.1) have
been proved in Lemmas 3.4 and 3.5, respectively. From equations
(3.16), (3.20) and (3.27), using equation (2.7) and taking into account
that, according to Theorem 3.3 the stopping criterion (3.32) can always
be satisfied, we have

wi(tk)≤
1

c̃k + τ−1

[
δ+τ−1wi(tk−1)+c̃kwi′(tk)+τρ

k∑
l=1

(wi(tl) + wi′(tl))
]
,

ρ = max
k≥1

ρk, wi(tk) = ∥Wi(·, tk)∥ω̄h , i′ ̸= i, i = 1, 2,

where ρk is defined in equation (3.17). From this, in the notation
w(tk) = maxi wi(tk), we have

w(tk) ≤
1

c̃k + τ−1

[
δ + τ−1w(tk−1) + c̃kw(tk) + 2τρ

k∑
l=1

w(tl)

]
.

Thus, taking into account that

1− c̃k
c̃k + τ−1

> 0,

we obtain the inequality

w(tk) ≤ w(tk−1) + 2τ2ρ

k∑
l=1

w(tl) + τδ.

From this and taking into account that w(t0) = 0, by induction on k,
we prove the following inequality:

w(tk) ≤ kτδ + 2τ2ρ

k∑
l=1

(k − l + 1)w(tl).

By Lemma 3.7 with ak = kτδ, k ≥ 1 and bl = 2τ2ρ(k−l+1), 1 ≤ l ≤ k,
we get

w(tk) ≤ (kτδ) exp

(
2τ2ρ

k∑
l=1

l

)
.
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From here and taking into account that
∑k

l=1 l ≤ k2/2, kτ ≤ T , we
prove equation (3.34) with C(T ) = T exp(ρT 2). �

3.5. Convergence of the nonlinear difference scheme (2.1) to
the solution of problem (1.1). The following notation:

E(p, tk) = U∗(p, tk)− u∗(p, tk), ei(tk) = ∥Ei(·, tk)∥ω̄h ,

e(tk) = max
i
ei(tk), ξi(tk) = ∥Ξi(·, tk)∥ωh ,

ξ(tk) = max
i
ξi(tk), ξ = max

k≥1
ξ(tk),

is introduced, where U∗(p, tk) and u
∗(p, tk) are unique solutions to, re-

spectively, equations (2.1) and (1.1), and Ξ(p, tk) is the local truncation
error of u∗(x, t) on the nonlinear difference scheme (2.1). To simplify
our analysis, we assume that τk = τ , k ≥ 1.

The following theorem presents convergence of the nonlinear differ-
ence scheme (2.1) to the solution of problem (1.1).

Theorem 3.12. Let all the conditions in Theorem 3.11 be satisfied.
Then the error in the nonlinear difference scheme (2.1) satisfies the
inequality

(3.35) e(tk) ≤ C(T )ξ,

where the constant C is independent of τ .

Proof. Under the assumptions of Theorem 3.11 on fi and g
∗
i , i = 1, 2,

the nonlinear integro-parabolic problem (1.1) has a unique solution (see
[9, page 73, Theorem 6.1], for details). From (2.1), by the mean-value
theorem, we get the difference problem for the error E(p, tk)(

Li +
∂fi
∂ui

(tk)

)
Ei(p, tk) = − ∂fi

∂ui′
Ei′(p, tk)−

k∑
l=1

τ
∂g∗i
∂ui

(tl)Ei(p, tl)

−
k∑

l=1

τ
∂g∗i
∂ui′

(tl)Ei′(p, tl) +
1

τ
Ei(p, tk−1)

− Ξi(p, tk),

p ∈ ωh, Ei(p, tk) = 0, p ∈ ∂ωh, Ei(p, 0) = 0, p ∈ ωh,
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where the partial derivatives are calculated at intermediate points,
which lie between U(p, tk) and u(p, tk). From this and equations (3.16)
and (3.20), and by using (2.7), we have

ei(tk) ≤
1

c̃k + τ−1

[
c̃kei′(tk) + τρ

k∑
l=1

(ei(tl) + ei′(tl))

+
1

τ
ei(tk−1) + ξi(tk)

]
,

where ρ = maxk≥1 ρk and ρk, k ≥ 1, are defined in (3.17). From this,
we obtain

e(tk) ≤
1

c̃k + τ−1

[
c̃ke(tk) + 2τρ

k∑
l=1

e(tl) +
1

τ
e(tk−1) + ξ

]
.

Thus, taking into account that

1− c̃k
c̃k + τ−1

> 0,

we obtain the inequality

e(tk) ≤ e(tk−1) + 2τ2ρ
k∑

l=1

e(tl) + τξ.

From this and e(t0) = 0, by induction on k, we prove the following
inequality:

e(tk) ≤ kτξ + 2τ2ρ
k∑

l=1

(k − l + 1)e(tl).

By Lemma 3.7 with ak = kτξ, k ≥ 1 and bl = 2τ2ρ(k−l+1), 1 ≤ l ≤ k,
we get

e(tk) ≤ (kτξ) exp

(
2τ2ρ

k∑
l=1

l

)
.

Taking into account that
∑k

l=1 l ≤ k2/2, kτ ≤ T , we prove (3.35) with
C(T ) = T exp(ρT 2). �

We now formulate the discrete problem (2.1) obtained by the finite
difference method. Consider the rectangular mesh ωh of the form

ωh = {xjα = jαhα, jα = 0, 1, . . . ,Mα;α = 1, . . . , κ}.
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Let j = (j1, . . . , jκ) be a multiple index with jα = 0, 1, . . . ,Mα, and
let xj = (xj1 , . . . , xjκ) be an arbitrary mesh point in ωh. We use
the standard central difference approximations for the first and second
order spatial partial derivatives

δ
(α)
i Ui(xj , tk) =

1

2hα

[
Ui(x

(+1α)
j , tk)− Ui(x

(−1α)
j , tk)

]
,

∆
(α)
i Ui(xj , tk) =

1

h2α

[
Ui(x

(+1α)
j , tk)− 2Ui(xj , tk) + Ui(x

(−1α)
j , tk)

]
,

x
(±1α)
j = (xj1 , . . . , xjα−1, xjα ± hα, xjα+1, . . . , xjMα

),

Thus, the difference operators Lh
i , i = 1, 2, in (2.1) are defined by

Lh
i Ui(xj , tk) =

κ∑
α=1

[(
Di(xj , tk)∆

(α)
i + vi,α(xj , tk)δ

(α)
i

)
U(xj , tk)

]
.

To ensure that the conditions in (2.2) are satisfied, we choose

(3.36) hα ≤ min
i,j,k

2Di(xj , tk)

|vi,α(xj , tk)|
, α = 1, . . . , κ.

For this finite difference scheme, the maximum of the local truncation
error ξ in Theorem 3.12 is estimated as ξ = O(τ + h2), where h =
maxα hα. If the effect of convection dominates diffusion to the extent
that condition (3.36) requires a prohibitively small hα, then an upwind
scheme can be used to remove any restrictions on hα. In this case, the
local truncation error ξ is estimated as ξ = O(τ + h).

4. Construction of initial upper and lower solutions. Here,
we give some conditions on functions fi and g

∗
i , i = 1, 2, to guarantee

the existence of upper Ũ and lower Û solutions, which are used as the
initial iterations in the monotone iterative method (3.3).

4.1. Bounded functions. Let functions fi, g
∗
i , ϕi and ψi, i = 1, 2,

from (1.1) satisfy the following conditions:
(4.1)
fi(x, t, 0)≤0, g∗i (x, t, s, 0)≤0, ϕi(x, t)≥0, ψi(x)≥0,

fi(x, t, u)≥−χi, g∗i (x, t, s, u)≥−νi, ui≥0, i = 1, 2,

where χi and νi, i = 1, 2, are positive constants.
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From (4.1) and (3.2), it follows that the functions

(4.2) Ûi(p, tk) =

{
ψi(p), k = 0,

0, k ≥ 1,
p ∈ ωh, i = 1, 2,

are lower solutions of (2.1).

We introduce the linear problems for i = 1, 2,
(4.3)

Li(p, tk)Ũi(p, tk) = τ−1
k Ũi(p, tk−1) + χi + νitk, p ∈ ωh, k ≥ 1,

Ũi(p, tk) = ϕi(p, tk), p ∈ ∂ωh, k ≥ 1,

Ũi(p, 0) = ψi(p), p ∈ ωh.

Lemma 4.1. Let the conditions in (4.1) be satisfied. Then Û and Ũ
from, respectively, (4.2) and (4.3), are ordered lower and upper solutions
to (2.1), such that

(4.4) 0 ≤ Ûi(p, tk) ≤ Ũi(p, tk), p ∈ ωh, k ≥ 0, i = 1, 2.

Proof. From (4.1) and (4.3), by the maximum principle in Lemma 2.1,
we conclude (4.4), for k = 1,

Ũi(p, t1) ≥ 0, p ∈ ωh, i = 1, 2.

By induction on k, we prove (4.4) for k ≥ 1. We now show that Ũ is
an upper solution (3.2) to (2.1). From (3.2), (3.3), (4.1) and (4.3), we
have for i = 1, 2,

Ri(p, tk, Ũ) = Li(p, tk)Ũi(p, tk) + fi(p, tk, Ũ)

+ gi(p, tk, Ũ)− τ−1
k Ũi(p, tk−1)

= [χi + fi(p, tk, Ũ)] + [νitk + gi(p, tk, Ũ)] ≥ 0,

where p ∈ ωh. Since Ũ satisfies the boundary-initial conditions, we

prove that Ũ is an upper solution to (2.1). From this and (4.4), we

conclude that Û and Ũ from, respectively, (4.2) and (4.3), are ordered
lower and upper solutions to (2.1). �
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4.2. Constant upper and lower solutions. Let the functions fi,
g∗i , ϕi and ψi, i = 1, 2, from (1.1) satisfy the following conditions.

(4.5)
fi(x, t, 0) ≤ 0, g∗i (x, t, s, 0) ≤ 0,

ϕi(x, t) ≥ 0, ψi(x) ≥ 0, i = 1, 2.

It is clear that the functions from (4.2) are lower solutions of (2.1).

We assume that there exist positive constantsMi, i = 1, 2, such that

fi(p, tk,M) +
k∑

l=1

τlg
∗
i (p, tk, tl,M) ≥ 0, M = (M1,M2),(4.6)

ϕi(p, tk) ≤Mi, p ∈ ∂ωh,

ψi(p) ≤Mi, p ∈ ωh, i = 1, 2, k ≥ 1,(4.7)

and introduce the functions

(4.8) Ũi(p, tk) =

{
ψi(p), k = 0,

Mi, k ≥ 1,
p ∈ ωh, i = 1, 2.

Lemma 4.2. Let conditions (4.5) and (4.6) be satisfied. Then Û and Ũ
from, respectively, (4.2) and (4.8), are ordered lower and upper solutions
to (2.1) and satisfy (4.4).

Proof. The proof of Lemma 4.2 repeats the proof of Lemma 4.1, with
the following modification:

Ri(p, tk, Ũ) = Li(p, tk)Ũi(p, tk) + fi(p, tk, Ũ) + gi(p, tk, Ũ)

− τ−1
k Ũi(p, tk−1) ≥ fi(p, tk,M) + gi(p, tk,M) ≥ 0,

where p ∈ ωh. �

5. Numerical experiments. In this section, we give applications
of the monotone iterative method (3.3) for numerical solutions of three
test problems. Exact solutions of the test problems are unknown, and
numerical solutions, obtained by the monotone iterative method, are
compared to reference solutions.

We choose the stopping criterion in the form (3.32) with δ = 10−5.
In all of the numerical experiments, the monotone property of upper
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and lower solutions is observed at each mesh point of the computational
domain.

Example 5.1. In

ω = {0 < x1 < 1, 0 < x2 < 1},

we consider the following test problem:

∂u1
∂t

−D1∆u1 + ζ1u1(1 + e−u2)−
∫ t

0

u2(x, s) ds = 0,

∂u2
∂t

−D2∆u2 + ζ2u2

(
1 +

1

1 + u1

)
−
∫ t

0

u1(x, s) ds = 0,

(x, t) ∈ ω × (0, T ], ui(x, t) = 0, (x, t) ∈ ∂ω × (0, T ],

ui(x, 0) = sin(πx1) sin(πx2), x ∈ ω,

where ∆u = (ux1x1 +ux2x2), and Di, ζi, i = 1, 2, are positive constants.
For this test problem, we have

f1 = ζ1u1(1 + e−u2), f2 = ζ2u2

(
1 +

1

1 + u1

)
, g∗i = −ui′ , i ̸= i′,

where, for ui ≥ 0, i = 1, 2,

0 ≤ ∂f1
∂u1

= ζ1(1 + e−u2) ≤ 2ζ1, 0 ≤ − ∂f1
∂u2

= ζ1u1e
−u2 ,

0 ≤ ∂f2
∂u2

= ζ2

(
1 +

1

1 + u1

)
≤ 2ζ2, 0 ≤ − ∂f2

∂u1
=

ζ2u2
(1 + u1)2

,

∂g∗i
∂ui

= 0, − ∂g∗i
∂ui′

= 1, i ̸= i′, i = 1, 2.

From this, we choose ci = 2ζi, i = 1, 2, in the monotone iterative
method (3.3).

The conditions in (4.5) hold true without any extra restrictions.

To guarantee (4.6), we assume that Mi, i = 1, 2, satisfies the
inequalities

ζ1M1 −M2T ≥ 0, ζ2M2 −M1T ≥ 0.

Thus, if we choose M1 = M2 = M ≥ 1 and denote ζ = min(ζ1, ζ2),

then impose the condition ζ ≥ T , by Lemma 4.2, we conclude that Û
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and Ũ from, respectively, (4.2) and (4.8), are ordered lower and upper
solutions and satisfy (4.4).

We discretize the differential problem by the finite difference ap-
proximation on an uniform space mesh with the step size h1 = h2 = h
(N = 1/h).

In Table 1, for the two sets of parameters Di = 1, ζi = 2, i = 1, 2,
and Di = 0.1, ζi = 10, i = 1, 2, we present the numerical error

error (h) = max
i=1,2

[
∥Ûi(·, T )− Û ref

i (·, T )∥ω̄h

]
, T = 1,

where Û ref
i (p, tk), i = 1, 2, are reference solutions with N = 128, the

order of the numerical error

order(h) = log2

(
error(h)

error(h/2)

)
,

and numbers of monotone iterations on each time level for different
mesh sizes h and τ = h2. The data in the table indicate that the
numerical solution has the second-order accuracy in the space variables,
and numbers of iterations decrease as N increases. We mention here
that numerical experiments show that if, in the reference solution, N
increases, then the order of the numerical error tends to the second
one.

In Table 2, for the same two sets of parameters as in Table 1, we
present the numerical error based on lower solutions as in Table 1, the
order of the numerical error and numbers of monotone iterations on

Table 1. Numerical results for Example 5.1 with τ = h2.

N 4 8 16 32 64

Di = 1, ζi = 2, i = 1, 2

error 5.120e-4 1.276e-4 3.157e-5 7.533e-6 1.508e-6
order 2.01 2.02 2.07 2.32

# of iterations 3 3 3 2 2

Di = 0.1, ζi = 10, i = 1, 2

error 1.794e-4 6.097e-5 1.668e-5 4.077e-6 8.214e-7
order 1.56 1.87 2.03 2.31

# of iterations 3 3 2 2 2
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Table 2. Numerical results for Example 5.1 with τ = h.

N 32 64 128 256 512

Di = 1, ζi = 2, i = 1, 2

error 6.672e-5 3.148e-5 1.470e-5 6.345e-6 2.120e-6
order 1.08 1.10 1.21 1.58

# of iterations 3 3 3 3 3

Di = 0.1, ζi = 10, i = 1, 2

error 1.033e-4 5.659e-5 2.830e-5 1.258e-5 4.274e-6
order 0.87 1.00 1.17 1.56

# of iterations 3 3 3 2 2

each time level for different mesh sizes h and τ = h. The data in the
table show that the numerical solution has the first-order accuracy in
the time variable. Numbers of iterations decrease as N increases.

Example 5.2. In

ω = {0 < x1 < 1, 0 < x2 < 1},

we consider the second test problem:

∂u1
∂t

−D1∆u1 + u1 − α

∫ t

0

u2(x, s) ds = 0, (x, t) ∈ ω × (0, T ],

∂u2
∂t

−D2∆u2 − φ(u1) + βu2 = 0,

φ(u1) =
u21

1 + u21
, (x, t) ∈ ω × (0, T ],

ui(x, t) = 0, (x, t) ∈ ∂ω × (0, T ],

u1(x, 0) = κ sin(πx1) sin(πx2),

u2(x, 0) = φ(u1(x, 0)), x ∈ ω,

where Di, i = 1, 2, α, β and κ are positive constants. For this test
problem, we have

f1 = u1, f2 = −φ(u1) + βu2, g∗1 = −αu2, g∗2 = 0,

where, for ui ≥ 0, i = 1, 2,

∂f1
∂u1

= 1,
∂f1
∂u2

= 0,
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− ∂f2
∂u1

=
2u1

(1 + u21)
2
≥ 0,

∂f2
∂u2

= β > 0,

−∂g
∗
1

∂u1
= 0, −∂g

∗
1

∂u2
= α,

∂g∗2
∂ui

= 0, i = 1, 2.

From this, we choose c1 = 1 and c2 = β in the monotone iterative
method (3.3).

The conditions in (4.5) hold true without any extra restrictions.

To guarantee (4.6), we assume that Mi, i = 1, 2, satisfies the
inequalities

M1 − αM2T ≥ 0, M1 ≥ κ, − M2
1

1 +M2
1

+ βM2 ≥ 0, M2 ≥ 1.

Thus, if we choose M1 = max(κ, αM2T ) and M2 = max(1, 1/β), then,

by Lemma 4.2, we conclude that Û and Ũ from, respectively, (4.2) and
(4.8), are ordered lower and upper solutions and satisfy (4.4).

We choose D1 = 10−3, D2 = 10−5, α = 2.5, β = 1. In Table 3,
for κ = 2 and κ = 0.3, we present the numerical error based on lower
solutions as in Table 1, the order of the numerical error and numbers
of monotone iterations on each time level for different mesh sizes h and
τ = h2. The data in the table indicate that the numerical solution
has the second-order accuracy in the space variables, and numbers of
iterations do not increase as N increases.

In Table 4, for the same two sets of parameters as in Table 3, we
present the numerical error based on lower solutions as in Table 1, the

Table 3. Numerical results for Example 5.2 with τ = h2.

N 4 8 16 32 64

κ = 2

error 2.328e-2 5.920e-3 1.470e-3 3.505e-4 7.013e-5
order 1.98 2.01 2.07 2.32

# of iterations 4 3 3 3 3

κ = 0.3

error 3.230e-3 8.231e-4 2.052e-4 4.973e-5 9.695e-6
order 1.97 2.00 2.04 2.36

# of iterations 3 3 3 3 2
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Table 4. Numerical results for Example 5.2 with τ = h.

N 32 64 128 256 512

κ = 2

error 1.130e-2 5.503e-3 2.576e-3 1.106e-3 3.689e-4
order 1.04 1.10 1.21 1.58

# of iterations 4 3 3 3 3

κ = 0.3

error 1.553e-3 7.566e-4 3.542e-4 1.520e-4 5.072e-5
order 1.04 1.09 1.22 1.58

# of iterations 3 3 3 3 3

order of the numerical error and numbers of monotone iterations on
each time level for different mesh sizes h and τ = h. The data in the
table show that the numerical solution has the first-order accuracy in
the time variable. Numbers of iterations do not increase as N increases.

Example 5.3. In

ω = {0 < x1 < 1, 0 < x2 < 1},

we consider the third test problem which arises in population dynamics
[5]:

∂u1
∂t

−∆u1 + u1(1− u2)−
∫ t

0

θe−θ(t−s)u1(x, s) ds = 0,

∂u2
∂t

−∆u2 − u2(u1 − 1) = 0,

(x, t) ∈ ω × (0, T ], ui(x, t) = 0, (x, t) ∈ ∂ω × (0, T ],

ui(x, 0) = sin(πx1) sin(πx2), x ∈ ω, i = 1, 2,

where u1 and u2 are, respectively, prey and predator population den-
sities, and θ is a positive constant. The integral term represents com-
petition for resources. For this test problem, we have

f1 = u1(1− u2), f2 = −u2(u1 − 1),

g∗1 = θe−θ(t−s)u1(x, s), g∗2 = 0.

where, for ui ≥ 0, i = 1, 2,

∂f1
∂u1

= 1− u2, − ∂f1
∂u2 = u1

,
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− ∂f2
∂u1

= u2,
∂f2
∂u2

= −(u1 − 1),

−∂g
∗
1

∂u1
= θe−θ(t−s),

∂g∗1
∂u2

= 0,

∂g∗2
∂ui

= 0, i = 1, 2.

From this, we choose c1 = 1, c2 = 1, in the monotone iterative method
(3.3). The conditions in (4.1) hold true with χi = 0, i = 1, 2, ν1 = θ

and ν2 = 0. Thus, the functions Ûi(p, tk), i = 1, 2, from (4.2), are lower
solutions.

In Table 5, for θ = 1 and θ = 10, we present the numerical error
based on lower solutions as in Table 1, the order of the numerical error
and numbers of monotone iterations on each time level for different

Table 5. Numerical results for Example 5.3 with τ = h2.

N 4 8 16 32 64

θ = 1

error 2.062e-2 5.238e-3 1.299e-3 3.099e-4 6.195e-5
order 1.98 2.01 2.07 2.32

# of iterations 4 3 3 3 2

θ = 10

error 6.831e-2 1.692e-2 4.160e-3 9.893e-4 1.978e-4
order 2.01 2.02 2.07 2.32

# of iterations 6 4 3 3 3

Table 6. Numerical results for Example 5.3 with τ = h.

N 32 64 128 256 512

θ = 1

error 8.195e-3 3.963e-3 1.849e-3 7.924e-4 2.641e-4
order 1.05 1.10 1.22 1.59

# of iterations 3 3 3 3 3

θ = 10

error 3.420e-2 1.619e-2 7.470e-3 3.184e-3 1.060e-3
order 1.07 1.16 1.23 1.58

# of iterations 5 4 4 3 3
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mesh sizes h and τ = h2. The data in the table indicate that the
numerical solution has the second-order accuracy in the space variables,
and numbers of iterations do not increase as N increases.

In Table 6, for the same values of parameter θ as in Table 5, we
present the numerical error based on lower solutions as in Table 1, the
order of the numerical error and numbers of monotone iterations on
each time level for different mesh sizes h and τ = h. The data in the
table show that the numerical solution has the first-order accuracy in
the time variable. Numbers of iterations do not increase as N increases.
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