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ABSTRACT. This paper deals with the numerical solu-
tion of systems of nonlinear integro-parabolic problems of
Volterra type. The numerical approach is based on the
method of upper and lower solutions. A monotone itera-
tive method is constructed. Existence and uniqueness of a
solution to the nonlinear difference scheme are established.
An analysis of convergence rates of the monotone iterative
method is given. Construction of initial upper and lower
solutions is discussed. Numerical experiments are presented.

1. Introduction. Various reaction-diffusion-convection-type prob-
lems in the chemical, physical and engineering sciences are described
by coupled systems of nonlinear integro-parabolic equations. In this pa-
per, we give a numerical treatment for a coupled system of two nonlin-
ear integro-parabolic equations of Volterra type. The integro-parabolic
system under consideration is given in the form

du; k
5; — Liu; + fi(z,t,u) + / g5 (z,t,8,u(x,s))ds =0,
0

(1.1) (z,t) € w x (0,7,
ui(z,t) = ¢i(x,t), (x,t) € Ow x (0,T],
wi(x,0) =;(z), ze€w, i=12,

where v = (uj,us), w is a connected bounded domain in R*, x =
1,2,..., with boundary dw. The differential operators L;, i = 1,2, are
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given by

" 0 8ul 8U¢ .
Liui—zaxa<D( 8xa> Zv,axtaxa, 1=1,2,

a=1

where the coefficients of the differential operators are smooth and D;,
i =1,2, are positive in @ x [0, T]. It is also assumed that the functions
fis g7, ¢i and 9, ¢ = 1,2, are smooth in their respective domains.

Such problems arise in many applications, including reaction dynam-
ics [3, 7, 9], heat conduction in materials with memory [4], population
dynamics [5], compression of poro-viscoelastic media [6], and diffusion
phenomena with memory effects [13, 15].

To discretize problem (1.1), we use the implicit scheme for parabolic
equations and approximate (1.1) by a nonlinear difference scheme. The
purpose of this paper is to develop a monotone iterative method for
solving the nonlinear difference scheme, including the existence and
uniqueness of a discrete solution, and error estimates of the iterative
method. Our iterative method is based on the method of upper and
lower solutions and associated monotone iterates. By using upper
and lower solutions as two initial iterations, one can construct two
monotone sequences which converge monotonically from above and
below, respectively, to a solution of the nonlinear difference scheme.

Monotone iterative schemes for solving systems of parabolic equa-
tions were used in [8, 10]. Here, the two important points in investi-
gating the monotone iterative methods concerning a stopping criterion
on each time level and estimates of convergence rates were omitted. In
[1], we extended the monotone iterative method from [8, 10] to the
case when, on each time level, a nonlinear difference scheme is solved
inexactly, and gave an analysis of convergence rates of the monotone
iterative method.

In [2], we constructed and investigated the monotone iterative
method for solving a scalar nonlinear integro-parabolic problem of
Volterra type in the case when, on each time level, a nonlinear difference
scheme is solved inexactly, and gave an analysis of convergence rates of
the monotone iterative method. In this paper, we extend the monotone
iterative method from [2] to the case of the system of integro-parabolic
problems of Volterra type (1.1).
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The structure of the paper as follows. In Section 2, we introduce
a nonlinear difference scheme for the numerical solution of (1.1). A
monotone iterative method is presented in Section 3. Existence and
uniqueness of the solution to the nonlinear difference scheme are es-
tablished. An analysis of convergence rates of the monotone iterative
method is given. Convergence of the nonlinear difference scheme to
the nonlinear integro-parabolic problem (1.1) is established. Section 4
deals with construction of initial upper and lower solutions. Finally,
Section 5 presents results of numerical experiments.

2. The nonlinear difference scheme. On the domains w and
[0,T], we introduce meshes @" and @", respectively. The integrals
in (1.1) are approximated by the finite sums g;, i = 1,2, based on the
Riemann sum (the rectangular rule) [14]

k

gl(pa tku U) = ZTlg;k(pu tlmtla U(pv tl)>7 (p7 tk?) € wh X wTv
=1

where w”™ = @" \ {0}, U = (Uy,Us) and time steps 7, = tg — tx—1,
k > 1, tg = 0. By using the implicit method for parabolic equations,
we approximate the integro-parabolic differential equations in (1.1) by
the difference scheme

(21) [’zUl(pv tk) + f’i(py tk7 U) + gi(pa tka U) - Tk;_lUi(pv tk‘—l) = 07

(p7 tk) S wh X wTa [’zUt(p7 tk) = [’?Uz(patk) + Tk_lUi(p7 tk)7 1= 1727
where L', i = 1,2, are approximations of the differential opera-
tors L;, ¢ = 1,2, from (1.1). When no confusion arises, we write
filp, tr, (p,tk)) = fi(p,tx,U), i = 1,2. The boundary and initial
conditions are approximated by

Uz(pa tk) = ¢1(pa tk‘)’ (pa tk) € awh X U')T?
Uz(pv 0) = ¢z(p)7 pe whu

where i = 1,2, and Ow” is the boundary of @". The difference operators
L;,i=1,2, are defined by

E?U’L(pa tk) = dl(p7 tk>U’L(p7 tk) - Z ai(p/7tk)Ui(platk)’ 1= 1727
p'€0i(p)
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where o} (p) = 0;(p)\{p}, 0:(p), i = 1,2, are stencils of the scheme at an
interior mesh point p € w”. We impose the following basis assumptions
on the coefficients of the difference operators E?, i=1,2:

(22) dl(p7 tk) > 07 ai(plvtk) > 07 p/ € U:(p)v
(23) dl(pa tk) - Z ai(platk) >0, (p7 tk) € wh X w’.
p'€0}(p)

These conditions ensure that the corresponding matrices A;(tx), i =
1,2, are M-matrices, and, for any 7, > 0, the inverse matrices
(I + A;(tg))~t, i =1,2, exist and are positive matrices.

We assume that the mesh @" is connected, i.e., for two interior
mesh points p and p, there exists a finite set of interior mesh points
{p1,p2,...,ps} such that

(2'4) p1 € al(ﬁ)v p2 € 0'/(])1), ..., Ds € U/(ps—l)a 1/7\6 U/(ps)~

For linear difference problems without integral terms,

(26) Ez(p7 tk) 2 07 Wi(p7 tk) = ¢i(p7 tk)7 pe 8wh7 1= 1727

the maximum principle and estimates to the solutions are given in the
following lemma (the proof of the lemma can be found in [11]).

Lemma 2.1. Let the coefficients of the difference operators LI, i =
1,2, satisfy (2.2) and the mesh @" be connected.

(i) If mesh functions W;(p,tx), i = 1,2, satisfy the conditions

(Li +T)Wilp,ti) >0 (<0), pewh,
Wi(pa tk) >0 (S O)a pE awhv

then Wi(p,t) >0 (< 0),i=1,2, in@".
(ii) The following estimates to the solutions to (2.5) hold true:

@,
@.7) Wi, t)llan < max{ngi(tk)nw, max '(pt’”'}

— — =1.2
pewh Gi(p, tr) + 7,

- )
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where

Wi )l = ma [Wi(p, 1),

peW™
ll9i (- tk)llown = max |gi(p,tx)]-
peEdWh

3. The monotone iterative method. We assume that two vec-
tor mesh functions U(p,tr) = (Ui(p,tx),Us(p,tx)) and U(p,tx) =
(Ur(p, tx), Ua(p, tr)) satisfy the inequalities

Ulp,tr) > U(p,tr), (poty) €@ x @'
For notational convenience, we set the sector
(U(t), U(tr)) = {U(p,tx) : Ulp,t) < Ulp,tx) < Ulp,tx), p € @"}.

~

We assume that, on (U(ty),U(t)), the functions f; and g7, i = 1,2,
satisfy the constraints
(3.1)
ofi g}
l_(pat/wU) S ci(pa tk)y 0 S - Ji (pa tk7tl7U)7 1Sl§k, i:1,2’

Ou; Ou;
of; ag: L.
OS_ f (p7tk7U)7 Og_agl (patlmthU)a 1§l§k7 2#1/7
i’ j
where ¢;(p, tx), i = 1,2, are nonnegative bounded functions in @" x @".

The functions f;, i = 1,2, are said to be quasi-monotone nondecreasing
if —=9f;/0uy > 0, i # 4, and the functions g, i = 1,2, are said to be
monotone nondecreasing if —dg}/0u; > 0, —0g;/Ouy >0, i # 1.

Remark 3.1. We say that the functions f;, i = 1,2, are quasi-
monotone nonincreasing functions if —df;/du; < 0, i # ¢/, and the
functions g, i = 1,2, are monotone nonincreasing if —dg}/du; < 0,
—9g;/0uy < 0,4 # i'. When the functions f; and ¢f, i = 1,2, are
quasi-monotone nonincreasing, a transformation given by (u1,us) —
(M — uq,uz) for some constant M > 0 leads to a similar system where
the functions are quasi-monotone nondecreasing.

Two vector mesh functions U(p, t;,) and U(p, t;) are called ordered
upper and lower solutions of (2.1), if U(p,tx) > U(p,tr), (p,tx) €
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@ x @", and if
(32)  LUi(p,tx) + fi(p: t, U) + 9i(p, t, U) = 7 Ui(p, tr—1) > 0,
(p,tr) €W x @, Ui(p.tx) > ¢ilp,te), p € 0w,
Ui(p.0) 2 ti(p), pe@", i=12,
and U satisfies the above inequalities in reverse order.

A monotone iterative method for solving (2.1) is constructed in the
following way. On each time level ¢, k > 1, we calculate U (p, ;) as
follows:

(Li + ci)Zi(n) (p, t) = —Ri(p, tk, U(”_l))7 pe wh7
Ri(p, th, U(”—l)) = EiUi(nfl)(p’ tk) + fi(]% th, U(n—l))
+ gi(p, tx, U("*l)) — Tk_lUi(p7 th_1),

33 Z0 (p,tr) = dilp, tr) — UL (p, 1),
Z(n)(p,tk) =0, n>2, pedu,
U (p,tr) = U D p,te) + 20 (0, 1), p e,
Ui(p.tr) = U (p, ),
Ui(p,0) = ¢i(p), pe”, i=1.2,

where R;(p,t, U"~1), i = 1,2, are the residuals of the difference
scheme (2.1) on U™V, U(p,t) is an approximation of the exact
solution on time level tx, n(tx) is the number of iterative steps on
time level ¢, and ¢;(p, tx), i = 1,2, are defined in (3.1).

3.1. Monotone convergence of the iterative method. We intro-
duce the notation

(34) Fi(pa tka U) = Ci(p7 tk)Ul(pv tk) - fl(p7 tk7U) - gi(p7 tan)v
i=1,2,

and give a monotone property of F;, ¢ = 1,2.

Lemma 3.2. Let (3.1) hold. If U(p,tx), V(p, tx) € (U(ty), U(ty)), such
that U(p,tr) > V(p,tr), then
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Proof. From (3.4), we have
Fl(pa tkv U) - Fl(p7 tka ) - Cl(pat )[Ul(p7 tk) - Vl(py tk)]

[fl( 7tk7U1aU2) fl(pvtlthUZ)]
[fl(pvtkavla 2) fl( 7tk7V17V2)}
= [91(p: t, U1, U2) — g1(p, ti, V1, U2)]
[gl( tk7V17U2) gl(p7tkavl7‘/2)}'
By the mean-value theorem, we have
7]
[fl(pa tk, UlaU2) - fl(pv tk7vla UQ)] = Tq{i(tk)(Ul(tk) - Vl(pa tk))7
0 0
D)= St B ), Balp i) € R0, Tr(0),

fi
0

[fl(pa tk7V17 UQ) - fl(pa tk, Vl; ‘/é)] = E(tk)(Ul(pa tk) - Vl(pa tk))a

A ) = Vi E), Ealpn) € (Va(tn). Va(t),

8UQ
kL ggr
[91(p, tr, Ur, Uz) = g1 (ps t, Vi, U2) = > 7 ull (t)(Ur(p, 1) = Vai(p, 1)),
=1

L (1) = D0, 4, 11,Q1, ). Qulpt) € V(). Un (1),
(5% 8

k *

5’91
te,Vi,Ug) — te, Vi, Vo)| = E
[gl(p, ks V1, 2) gl(p, ks V1, 2)] llelaug

() (U2(p, tr1) — Va(p, tr)),

995 (1) = 995 (p 1 0, V2, Q). Qalpith) € (Va(tr), Untr))-

8’[1,2 8
From here and the assumptions of the lemma, we conclude (3.5) for
i = 1. Similarly, we can prove (3.5) for i = 2. O

Denote the sequences, generated by (3.3), by {U(n)}, it 7" =0
and by {Q(")}, if U©) = U. In the following theorem, we show that
these sequences converge monotonically.
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Theorem 3.3. Let the coefficients of the difference operators LI,
i = 1,2, in (2.1) satisfy (2.2), and let the computational mesh @W"
be connected (2.4). Assume that f;(p,tx,U) and g} (p,tx,U), i = 1,2,
satisfy (3.1), where U and U are ordered upper and lower solutions (3.2)
of (2.1). Then the sequences {U(n)} and {U™} are ordered upper and
lower solutions and converge monotonically from, respectively, above

and below, such that
(3.6)

UMD (p, 1) < U™ (p,ty) <T" (pty) <T

where k >1 andn > 1.

-1
(n )(pvtk)v pewhu

Proof. Since U(O) = U is an upper solution, then from (3.2) and

(3.3) we conclude that
(Li+e)Z (p,t1) <0, pewl,
ZP(p,t) <0, pedwh i=1,2
From Lemma 2.1, it follows that
(3.7) ZWp,t) <0, pewh, i=1,2
Similarly, for a lower solution U ) — (7, we conclude that
(3.8) ZW(pt)) >0, pew’, i=1,2
We now prove that
(3.9) UDp,t) <T p,ty), peah, i=1,2

By (3.3), for i = 1,2,

(L + )T (p.t1) = (ot T (0, t1) — il t1, T )

—(0 -~
_gZ(pathU( )) +T1 1Ui(p70)7 p S wh7
—1
UZ( )(p7t1):¢1(pat1)7 peawha

and
(Li+ Ci)QZ('l)(pvtl) = CiQEO) (p,t1) — fi(p, t1,U?)
_gi(p7t17g(0))+Tf1Ui(p70)7 pewhv
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le)(pﬂfl) = ¢i(pat1)7 pE 8wh-

From here, taking into account that U;(p,0) = ¢;(p), ¢ = 1,2, in the

notation Wi(”) = ﬁl(-n) — an), n>0,1=1,2, we have

(‘CZ + Ci)Wi(l)(pa tl) = Fi(pa tlaU(O)) - Fi(p7t17Q(0))7 pe wha
Wi(l)(pvtl) = Oa peE 6wh7

where F;, i = 1,2, are defined in (3.4). Since 7 (p,t1) > UV (p, 1),
by Lemma 3.2, we conclude that the right hand sides in the difference
equations are nonnegative. The positivity property in Lemma 2.1
implies W " (p,t1) > 0, i = 1,2, and this leads to (3.9).

We now prove that UEI)(p,tl) and le)(p,tl), 1t = 1,2, are upper
and lower solutions (3.2), respectively. Taking into account that

(n—1)

—(n —(n—1 * —(n * — .
gi('vU( ))_gi('aU( )) = Tk[gi ('atka( ))_gi ('7tk7U )L 1=1,2,

where g¢;(-,U) and g;(-,t5,U) stand, respectively, for g;(p,tr,U) and

95 (p, i, tr, U(p, tr)). From this, and by the mean-value theorem, we
obtain

(n_l) 891

0 n
) - a gl (tk)Z'E’ )(p7tk)7

(tk:)Z(n) (p, tk)""Tk:a

0:(.T")=gi( T

where i' # i, and partial derivatives are calculated at intermediate
points which lie in the sector (U(n) (tk),U(nfl)
tion (3.3), and by the mean-value theorem for f;(p, tl,ﬁ(l)), we obtain

(tx)). From this, equa-

(3.10)
TT7 6 1 K3
Relp 1,0 == (e = 220 20 ) + 2002 1)
gl . = dq’ _
t g ()2 () + na%m)ZS’(p, ),

where ' # i, and the partial derivatives are calculated at intermediate
points which lie in the sector (U(l)(tl),ﬁ(o)(t1)>. From this and
equations (3.7), (3.8) and (3.9), it follows that the partial derivatives
satisfy (3.1). From equations (3.1), (3.7) and (3.10), we conclude that,
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fori=1,2,
(1) h
Ri(l%tl,U ) Zoa pew )

TN (p,ty) = dilp.tr), p € Owh

Thus, ﬁ(l)(p,tl) is an upper solution. Similarly, we can prove that
Q(l)(p, t1) is a lower solution, that is, for i = 1,2,

Ri(pvtlvg(l)) SO, pewhv

UM (p,t1) = ¢i(p,t1), pe .

By induction on n, we can prove that {U(n) (p,t1)} is a monotonically
decreasing sequence of upper solutions and {U (n) (p,t1)} is a monoton-
ically increasing sequence of lower solutions, which satisfy (3.6) for ¢;.

From (3.6) with ¢, it follows that
(3.11)

ﬁl(p7 tl) S anl)(pa tl) § Ugnl)(patl) § ﬁz(pa tl)a p € wh, 1= 1a2

From this and by the assumption of the theorem that U(p,ts) and

ﬁ(p, to) are, respectively, upper and lower solutions (3.2), we conclude
that U(p,ts) and U(p,ts) are upper and lower solutions with respect

to U(nl)(p7 t1) and Q("l)(p,tl), that is, for 1 = 1,2,

(3.12)

‘Ciﬁi(pat2) + fl(pa t27[7) +gl(pa t27[7) - 7—2_1?7(;”1)(1771;1) Z Oa p e wh)
‘Ciﬁi(pat2) + fl(pa t27[7) +gl(pa t27[7) - Tg_lggm)(]%tl) S Oa pe wh'

By (3.3) with to, we have, for i = 1,2,

—a —© —( —(0
(Li + Ci)Uz(‘ )(p, ty) = CiUZ(' )(1% ta) — fi(p, tz,U( )) - gi(p, t27U( ))
_157=5(n —(1
+7—2 1U£ 1)(p7t1)7 p S wh) UE )(p7 t2) = ¢l(p7 t2)a p S 6wh7

and
(L; + Cz’)Ql('l)(P, to) = CiQZ('O)(pv ta) — fi(pyt2, UQ) — gi(p, ta, U?)
+ U (1), pewh,

UM (p,t2) = ¢i(p, t2), p € O
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(1)(

From here, we conclude that W) (p,ty) = U ' (p,ta) — Q(l)(p, ta)

satisfies
(i + )W (p,t) = Fi(pt2,T"") = Filp, t2,U?)
+r5 0 (o t) — U (o 1)), p e
I/Vi(l)(p7 t) =0, pedw’, i=1,2.

Since ﬁ(o)(p, ty) > U(p,t2) and, taking into account (3.11), by
Lemma 3.2, we conclude that the right hand sides of the difference
equations are nonnegative.

The positivity property in Lemma 2.1 implies Wi(l)(p7 ta) > 0,
i = 1,2, and this leads to

Qil) (pa tQ) S UEI) (pa t2)7 p S wh7 1= 1) 2.

The proof that Ugl)(p, t2) and le)(p,tg), 1 = 1,2, are, respectively,
upper and lower solutions, is similar to the proof of this result on the
time level ¢;. By induction on n, we can prove that {U(n)(p, to)} is a
monotonically decreasing sequence of upper solutions and {U (”)(p, ta)}

is a monotonically increasing sequence of lower solutions, which satisfy
(3.6) for ts.

By induction on k, k > 1, we can prove that {U(n)(p7 tp)} is a
monotonically decreasing sequence of upper solutions and {Q(”) (p,tr)}
is a monotonically increasing sequence of lower solutions, which satisfy
(3.6). Thus, the theorem is proved. O

3.2. Existence and uniqueness of a solution to the nonlin-
ear difference scheme. In this section, we investigate existence and
uniqueness of a solution to the nonlinear difference scheme (2.1).

Lemma 3.4. Under the assumptions of Theorem 3.3, a solution to the
nonlinear difference scheme (2.1) exists.

Proof. From (3.6), it follows that lim,_, . U(n) (p,t1) = V(p,t1),
p € W" exists, and

313) Vi) <T (),  lim ZW(p,t) =0, pea

n— oo
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Similar to (3.10), we can prove that, for i = 1,2, n > 1,

(3.14)
Relp 00,0 = = (e = 200 200,00 + 51 02 1)
997 ., \5(n 997 | \5n
Jrﬁ%(tl)zl(' )(pvtl)‘i’Tl%(tl)Zi(")(pvtl)'

From (3.14) and (3.13), we conclude that V(p,¢;) solves (2.1) at t;. By
the assumption of Lemma 3.4 that ﬁ(p, to) is an upper solution and
from (3.13), it follows that 0(p, to) is an upper solution with respect
to V(p,t1). Using a similar argument, we can prove that the following
limit

nh_{lgo U(n)(n ts) =V(p,t2), pew’,

exists and solves (2.1) at ¢, where, according to Theorem 3.3,

{U(n)(p, ty)} is a sequence of upper solutions with respect to V(p, t1).

By induction on k, k > 1, we can prove that

V(pv tk) = 114{1’1 U(n)(pa tk)a pe whv k> ]-7

is a solution of the nonlinear difference scheme (2.1). Similarly, we can
prove that the mesh function V(p, ;) defined by

V(p,ty) = lim U™ (p,ty), pew”, k>1,

is a solution of the nonlinear difference scheme (2.1). ]

We now impose the two-sided constraints on f; and g}, 1 = 1,2, cf,,
equation (3.1),

K2

O (pa tk» U) < Ci(pv tk)v

Ofi
(’)ui/

Qi(patk) <
(3.15)
0< -

(pa tka U) S Ez(p7 tk)7
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oag*
(3.16) 0< =22 (p byt U) < qilpitist), 1<I<k,
g7 N
0< _831-, (0, e t1, U) < @i(py e, 1),

1<1<k, i#4, i=12,

U(pa tk) € <U(tk)>U(tk)>v k> 17

where U , Uis a pair of ordered upper and lower solutions to (2.1),
¢;(p,tr) and ¢;(p,tr), © = 1,2, are, respectively, nonnegative bounded
and bounded functions in @" x @”, and ¢;(p,tr,t;) and G(p,t, b)),
i = 1,2, are positive bounded functions in @" x @". We also assume
that time step 74 satisfies the inequality

V| — Cr <|’Yk| —Ek>2 1
3.17 O ] SR g 011 S I
(3:17) ¥ 4pk dpx 2pk

& = max |G-, t0) ot

¢ = min | min ¢ (p, )],
i pEwh

e = min(0, ¢,),

pie = macx { mae fmace (gt t0) o [t ) o)) o k2 1,

Lemma 3.5. Let the coefficients of the difference operators L;, i =
1,2, in (2.1) satisfy (2.2), and let the mesh @" be connected (2.4).
Assume that fi(p,tr,U) and g (p,te,t1), 1 <1 <k, i = 1,2, satisfy,
respectively, (3.15) and (3.16), where U and U are ordered upper and
lower solutions (3.2) of (2.1), and the mesh @™ satisfies (3.17). Then

the nonlinear difference scheme (2.1) has a unique solution.

Proof. 1t suffices to show that

V(pvtk) :K(pﬂtk)i p S wha k Z 17

where V (p, t1,) and V (p, t1,) are solutions to the difference scheme (2.1),
which are defined in Lemma 3.4. From equation (3.6) and Lemma 3.4,
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it follows that

(318) U™ (p,tx) < V(pts) < Vip,te) < U (p, 1),

pew", k>1.

Letting W (p,tx) = V(p,tx) — V(p, tx), from (2.1), we have

LW;(p.t1) + [fi(p, t1,V) — fi(p, t1,V)]

+[gi(pat1av)_gi(p7tlvz)] :05 pewh7
Wi(p,t1) =0, pedw, i=1,2.

Using the mean-value theorem, we obtain

) *

(ﬁi + aﬁ(tl)) Wi(p,t1) = —gfl (t)Wi(p,t1) =71 ggi (t)Wilp, t1)

ou; Wy u;

*

oq’
— T Ji (tl)”i’(patl)a p€wh7
Ouyr

Wi(p,t1) =0, peow', i'#i, i=12,

where the partial derivatives are calculated at intermediate points

which lie in the sector (V (1), V(t1)). From (3.18), it follows that the
partial derivatives satisfy (3.15) and (3.16). From this, equations (2.7),
(3.15) and (3.16) with ¢;(p,tx) = 0, i = 1,2, we obtain the estimate

c 2
wity) < Mw(tl),
o+l

where the following notation is in use

wi(te) = (Wi, t)llon,

(3.19) w(ty) = maxw;(ty), k> 1.

By the assumption on 7 in (3.17) and w(¢1) > 0, we conclude that
w(t;) = 0. From (3.19), using the mean-value theorem, we get

*
2

<['i + 0F, (tz)) Wi(p, t2) = — 0l; (t2)Wi (p, t2) — 72 %9 (t2)Wi(p, 12)

ou; Our Ou;

39i h
—_ t2)Wir (p, ta), p € Wb,
Tzaui,(2) w(pt2), pEW

Wz(pth) :Oa peawhv i,#’% i = 1a2
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Similar to the proof that w(t;) = 0, we conclude that w(ty) = 0. Now,
by induction on k, k > 1, we can prove that w(ty) = 0, k > 1. Thus,
we have proved the lemma. O

3.3. Convergence of the monotone iterative method on each
time level. We now establish convergence properties of the iterative
method (3.3) on each time level ¢, k > 1.

Instead of (3.15), we now assume that, in (3.15),
~ _0fi
(320) cp < 87(2)’ tka U) < Ci(p7 tk)7 k > 17

where ¢} is defined in (3.17).

Remark 3.6. We mention that the assumption 9f;/0u; > ¢ > 0 in
(3.20) can always be obtained via a change of variables. Indeed, we
introduce the following function z;(z,t) = e Mu;(x,t), i = 1,2, where
A is a constant. Now, z = (21, 22) satisfies (1.1) with

ﬁ = \z; + efoi(x, t, e>‘tz)7

G = e Mgl (a.t 5,2z, 9)),

instead of f; and g}, i = 1,2, and we have

Ofi _\ , 0fi  0fi _ 0fi

= , = , i A i=1,2,
azi Bul 822-/ 8’LLZ-/ 7&

_99F _ w9090 097 _ x990

822‘ 8ul ’ 82’1'/ 611,’/ ’
i #d, i=1,2.

Thus, if A > maxy>1(¢k + |V&|), where ¢ and ~, are defined in (3.17),
then from this and (3.15), we conclude that Jf;/0z; satisfies (3.20).
Since 0 < e~ (=) < 1, X\ > 0, then 9g}/0z; and 95} /0zy still satisfy
(3.16).

We state the discrete Gronwall’s inequality from [12] in the following
form.
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Lemma 3.7. Let {wy} be a sequence of nonnegative real numbers

satisfying
k

wr < ag +Zblwl7 k>1,
=1

where {ar} is a nondecreasing sequence of nonnegative numbers, and

by > 0. Then
k
wi < ag exp (Zbl), k> 1.
=1

We assume that time step 7 satisfies the inequality

PSP _ -

Cr + Ck 1 Ck + Ck
3.21 T < +— - ,
(3.21) : \/< 4py, ) 2px dpg

o = max i t)lon, B2 1,

where ¢, and py are defined in (3.17), and we introduce the notation

(322) () = 120t 2 (k) = max " (t)

%

Lemma 3.8. Let the coefficients of the difference operator L, = 1,2,
in (2.1) satisfy (2.2), let the mesh @" be connected with (2.4) and the
mesh WT satisfy (3.21). Assume that f;(p,tx,U) and g} (p,t,t;,U),
i = 1,2, satisfy (3.15), (3.16) and (3.20), where U and U are ordered
upper and lower solutions (3.2) of (2.1). Then, for the sequences
{U(n)}, 79 = U and (UMY, UO = U, generated by (3.3), the
following estimate holds

(3.23)  2M(t) <rpt2W(ty), vk =Tk (@ + S + 2epr) < 1.

Proof. Using (2.7), from (3.3), we have

(3.24) 2 (1) < TRl Ri oty U™ D) |on, i = 1,2,

7
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Similar to (3.10), we can prove that
(3.25)

Rz(patk'aU(n)) = _<C’L - afl

8ui

(n) Ofi
(tk)>Zi (p.tr) + oy

il

()25 (p, i)

*
3

097, o o "
7 (0 2 (0 ta) + 7 I (0) 207 (b ).

U; (7
From equations (3.25), (3.15), (3.16) and (3.20), we conclude that
IRi (ot U™ [[on < (@ + T + 27e00) 2" D(tr), i=1,2,

where ¢, and py are defined in (3.17) and ¢ is defined (3.21). From
this and (3.24), by using (2.7), we have

2 (1) < 7 (@ + G 4 27mpr) 2V (8.

From (3.21), it follows that rp = 7% (¢x + ¢k + 27kpx) < 1. Thus, we
have proved the lemma. (|

To simplify our analysis, we assume that 7, = 7, n(t;) = n., where
7 and n, are constants for & > 1.

Theorem 3.9. Let all the conditions in Lemma 3.8 be satisfied. Then,
for the sequences {ﬁ(n)} and {U™}, the following estimate holds:
(3:26)  max [ max Ui t) = U5 (t)llan | < C(T)r Y,

[ rEWT

r=maxrg < 1,
E>1

where U*(p, tx) is the unique solution to (2.1), i is defined in (3.23),
constant C is independent of T and the number of iterative steps on
each time level n > 2.

Proof. The difference problem for U(p, t,) = U™ (p,t},), k > 1, can
be represented in the form

1
clUl(p’ tk)—i_fl(p’tk’ U)+gl(p’ tk? U)_ ;Ul(pﬂtkfl):RZ(pa tku U(n*))a
pE wha U1(p7 tk) = ¢’L(pa tk)a pE awhv 1= 152
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From this, equation (2.1) and using the mean-value theorem, we get
the difference problem for W;(p,tx) = U;(p,tr) — U (p, tx), i = 1,2,

of; 1
(Ei + 81{ (tk)>W¢(p, tx) = Ri(p, tr, U) + ;Wv:(p, th—1)

6f’< bWt -3 2 (01021
811/2 i \Ds Uk, - 8u1 l WDy UL

(3.27)

,t Ewh,
a ((p,t), p

Wi(p, ti) =0, Peawh, i #i, i=1,2,

where the partial derivatives are calculated at intermediate points,
which lie between U (p, t) and U*(p, tx). Thus, the partial derivatives
satisfy equations (3.16) and (3.20). From equations (3.27) and (3.25),
for k > 1, p € w", we conclude that

A O

ofi _ 995 _
8U, ( )Zl/(pv tk) + Taui (tk)ZZ(pv tk)

(3.28) e gzz( 1) Zir (p, 1) + 1W(p,tk D)

*

k
ofi 99;
- au7 (tk p7 tk ;Tauv p7 tl)

k. pgr
— 1 -y ! y
l§=1 aul (tl)Hz (p7 tl)7 1 7& 1,

where Z;(p,tx) = Zi(n*)(p7 tr), ¢ = 1,2. From equations (3.28), (3.15),
(3.16) and (3.20), by using (2.7), and in the notation of (3.19) and
(3.22), we have

1 - ~
w(ty) < e [(519 + ¢ + 27pk) 2(tk) + Crw(ty)

k
+ Z 2rprw(t;) + Tﬁlw(tk_l)} ,
=1
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where ¢, ¢, pr and ¢ are defined in (3.17) and (3.21), respectively.
From this and equation (3.23), we obtain the estimate

(3.29)
k

w(ty) < 7 (@ + 0 + 2mpk) i 2 W (1) + Y 20 prw(ty) + w(te-).
=1

From (3.3) and by (2.7),
Zgl)(h) < T||l:iUi(O)(',t1) + fi(t1, U®)
+ 91(7 tla U(O)) - TﬁlU’L‘(', tO) ||wh .
Since U (p, t1) and U(p, to) are independent of 7, for sufficiently small
T, zi(l)(tl), 1= 1,2, are independent of 7, that is,
2D () < Ay,

where the constant A; is independent of 7. Now by induction on k, we
prove that

(3.30) 2W(t) < A, k>1,
where constants Ag, k > 1, are independent of 7. From equations
(3.30) and (3.29), we have

k
(3.31) w(ty) < Brr" ™' 42720 " w(t) + w(te—1),
=1

where the constant B is independent of 7, such that
> C C; = .
B > max|(ex + ¢ +2Tpp) Axl,  p = maxpy

From this and taking into account that w(tp) = 0, by induction on &,
we prove the inequality

k
w(ty) < Blkr)r" ™! + 272p<2(l€ -1+ 1)w(tl)>.

=1

By Lemma 3.7 with a;, = B(kr)r"" !, k> 1 and b, = 27%p(k — [ + 1),
1 <1<k, we get

k
w(ty) < B(kt)r" 'exp (27’%2 Z).
=1
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From this and taking into account that
k
S I<k/2, kr<T,
1=1
we prove equation (3.26) with C(T) = BT exp(pT?). O

Remark 3.10. The implicit two-level difference scheme (2.1) is of first
order with respect to time steps. As follows from (3.23), if ¢, = O(1),
¢ = O(1) and pr, = O(1), k > 1, then r, = O(7). To guarantee the
consistency of the global errors in the implicit difference scheme and in
the monotone iterative method (3.3) we can choose n = 2 in (3.26).

3.4. Convergence of the monotone iterative method to the
solution of the nonlinear difference scheme on [0,7]. We now
investigate convergence of the monotone iterative method (3.3) to
the solution of the nonlinear difference scheme (2.1). We choose the
stopping criterion of the iterative method (3.3) in the form

(3.32) max | R; (-, tg, U("))Hwh <39,
1

where § is a prescribed accuracy and set up U(p,t) = U™ ) (p,ty),
p € w", such that n(t;) is minimal subject to (3.32).

We assume that time step 7 satisfies the inequality

- 2 -
Ck 1 Cp

3.33 T < — ] ===, k>1

(3:33) * <4Pk) 206 2px

To simplify our analysis, we assume that 7, = 7, £ > 1, and with

the aid of Lemma 3.7, prove the following convergence result for the

iterative method (3.3), (3.32).

Theorem 3.11. Assume that the mesh W™ satisfies (3.33), and let all
other conditions in Lemma 3.8 be satisfied. Then, for the sequences
{ﬁ(n)} and {U™Y generated by equations (3.3) and (3.32), the follow-
ing estimate holds:

(834)  max[max Ui t) — U7 (- t)en] < C(T)5,

i tpEw
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where U*(p,t) is the unique solution to (2.1), and the constant C is
independent of T.

Proof. The existence and uniqueness of the solution to (2.1) have
been proved in Lemmas 3.4 and 3.5, respectively. From equations
(3.16), (3.20) and (3.27), using equation (2.7) and taking into account
that, according to Theorem 3.3 the stopping criterion (3.32) can always
be satisfied, we have

k

7 wi(th—1)+Erwir (k) +7p Y (wilte) +wir (B) |,
=1

(t )< 1
w; =
k Ck—‘rT_l

p=maxpy, wi(ty) = [Wil te)llon, i #d, i=12

where py is defined in equation (3.17). From this, in the notation
w(ty) = max; w;(ty), we have

k
1
th) < =——— |6+ 7 w(te—1) + crw(ty) + 2 t)|.
w8) S gt 87 it () + 270Dl

Thus, taking into account that

¢
1——* > 0,
cp+71
we obtain the inequality

k

w(ty) <w(tp_1) + 2T2pr(tl) + 74.
=1

From this and taking into account that w(tp) = 0, by induction on k,
we prove the following inequality:

k
w(ty) < k16 +21%p Z(k — 1+ Dw(ty).
=1

By Lemma 3.7 with ay, = k78, k > 1 and b = 272p(k—1+1),1 <1 < k,
we get

w(ty) < (kTd) exp <2T2pil).

=1
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From here and taking into account that Z;;ll < k%/2, kt < T, we
prove equation (3.34) with C(T") = T exp(pT?). O

3.5. Convergence of the nonlinear difference scheme (2.1) to
the solution of problem (1.1). The following notation:

E(pa ) U*(p7 tk) —u (pa tk) el(tk) = ||Ei('7tk')||c7.)h7
e(ty) = maxe;(ty), §i(te) = IZi( te)lwn
§(tk) = max & (tx), € = max£(tx),

is introduced, where U*(p, t.) and u*(p, t;) are unique solutions to, re-
spectively, equations (2.1) and (1.1), and Z(p, tx) is the local truncation
error of u*(x,t) on the nonlinear difference scheme (2.1). To simplify
our analysis, we assume that 7, =7, k > 1.

The following theorem presents convergence of the nonlinear differ-
ence scheme (2.1) to the solution of problem (1.1).

Theorem 3.12. Let all the conditions in Theorem 3.11 be satisfied.
Then the error in the nonlinear difference scheme (2.1) satisfies the
inequality

(3.35) e(ty) < O(T)E,

where the constant C is independent of T.

Proof. Under the assumptions of Theorem 3.11 on f; and ¢/, ¢ =1, 2,
the nonlinear integro-parabolic problem (1.1) has a unique solution (see
[9, page 73, Theorem 6.1], for details). From (2.1), by the mean-value
theorem, we get the difference problem for the error E(p, )

*

k
(’C + afl( ))E’L(pv tk) = _%Ei’(pa tk) — ;ngl (tl)_EZ(p7 tl)

Uq

k
t E t
; auz p7 l)+ (pa k— 1)
— Zi(p,

pew', Eipty) =0, péawh, Ei(p,0)=0, pew”,
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where the partial derivatives are calculated at intermediate points,
which lie between U (p, t;,) and u(p, tx). From this and equations (3.16)
and (3.20), and by using (2.7), we have

k

L [t + 03 st + e (0)

Cr+71°
kT =

+ éei(tk—l) + fi(tk)}v

e;i(ty) <

where p = maxy>1 pr and pg, k > 1, are defined in (3.17). From this,
we obtain

1 b 1
€(t) < = [aveltn) + 29 3 elt) +

—e
T
=1

(tr—1) +€]-

Thus, taking into account that

¢
1-— ,\,716_1 > 0,
cr + 7
we obtain the inequality

k

e(tr) < e(ti-1) +2r%p ) e(ti) + 7¢.
=1

From this and e(tp) = 0, by induction on k, we prove the following

inequality:
k

e(t) < k€ +27%p S (b — 1+ De(ty).
=1

By Lemma 3.7 with ay = k7€, k > 1and by = 272p(k—1+1),1 <1 < k,

we get

k
e(ty) < (k7€) exp (Qszz l).
=1
Taking into account that Zle | <k?/2, kr < T, we prove (3.35) with
C(T) = T exp(pT?). O

We now formulate the discrete problem (2.1) obtained by the finite
difference method. Consider the rectangular mesh @" of the form

wh:{xja =jaha,ja=0,1,... . My;a=1,... k}.
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Let 5 = (j1,...,Jx) be a multiple index with j, = 0,1,..., M,, and
let ; = (vj,,...,7;,) be an arbitrary mesh point in @". We use
the standard central difference approximations for the first and second
order spatial partial derivatives

1 _
5§a)Ui($j7tk) _ ﬁ [Ui(I§-+1a),tk) B Uz(l'g 1&)’tk):| 7
a 1 _
AU, t0) = 75 (Uil 00) = 20, 00) + Uil 1)
+1,
xg ):(lev"'vmjaflaxja:thaﬂwjaJrlv"'»ija)a

Thus, the difference operators £, i = 1,2, in (2.1) are defined by

E?Ui(Ij,tk) = Z [(Di(l’j,tk)Aga) + vi,a(xj,tk)éga)) U(l‘j,tk)} .

a=1

To ensure that the conditions in (2.2) are satisfied, we choose

2D;(x;,t
(3.36) ha < min 220 t).

=1,...,K.
ik Vi (@), te)| T

For this finite difference scheme, the maximum of the local truncation
error ¢ in Theorem 3.12 is estimated as & = O(7 + h?), where h =
maxy hy. If the effect of convection dominates diffusion to the extent
that condition (3.36) requires a prohibitively small h,,, then an upwind
scheme can be used to remove any restrictions on h,. In this case, the
local truncation error £ is estimated as £ = O(7 + h).

4. Construction of initial upper and lower solutions. Here,
we give some conditions on functions f; and g}, ¢ = 1,2, to guarantee
the existence of upper U and lower U solutions, which are used as the
initial iterations in the monotone iterative method (3.3).

4.1. Bounded functions. Let functions f;, ¢, ¢; and ¢;, i = 1,2,
from (1.1) satisfy the following conditions:

(4.1)
fl(l‘,t,O)S(), g:(x,t,s,O)SO, ¢l(m7t)207 %(@20,
fi(lE,t,U)Z*Xiv gf(x,t,s,u)zfyi, ’LMZO, 7::1527

where x; and v;, ¢ = 1,2, are positive constants.
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From (4.1) and (3.2), it follows that the functions
Iy ¢Z(p)> k= 07 —h .

4.2 Ui(p, t) = . i=1,2,
(4.2) (p,tr) {0, k> 1 pEW 7

are lower solutions of (2.1).

We introduce the linear problems for ¢ = 1, 2,

(4.3)
Li(p,ti)Ui(p, ty) = 7, ' Us(py ti—1) + X + vity,  pewh, k>1,
ﬁl(pa tk) = ¢Z(pa tk)a p € awhv k 2 13
Ui(p,0) = ¥i(p), pew™

Lemma 4.1. Let the conditions in (4.1) be satisfied. Then U and U
from, respectively, (4.2) and (4.3), are ordered lower and upper solutions
to (2.1), such that

Proof. From (4.1) and (4.3), by the maximum principle in Lemma 2.1,
we conclude (4.4), for k =1,

Uilp,t1) >0, pea", i=1,2.

By induction on k, we prove (4.4) for k > 1. We now show that U is
an upper solution (3.2) to (2.1). From (3.2), (3.3), (4.1) and (4.3), we
have for i =1, 2,

Ri(py tan) = ‘Cl(p7 tk)Ul(pv tk) + fl(p7 tk7 U)
+gl(p7 tkvﬁ) - Tk_lﬁi(p) tk—l)

where p € Lgh. Since U satisfies the boundary-initial conditions, we
prove that U is an upper solution to (2.1). From this and (4.4), we
conclude that U and U from, respectively, (4.2) and (4.3), are ordered
lower and upper solutions to (2.1). O
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4.2. Constant upper and lower solutions. Let the functions f;,
g, ¢; and v;, i = 1,2, from (1.1) satisfy the following conditions.
fi(.]?,t,()) Soa g:(w7t78a0) Soa

o ¢i(z,t) >0, wi(x) >0, i=1,2.

It is clear that the functions from (4.2) are lower solutions of (2.1).
We assume that there exist positive constants M;, i = 1, 2, such that

k

(46) fi(p7tk7M)+ZTlg:(p7tk7tlaM) 207 M:(M17M2)7
=1

¢z(p7 tk) S Miu p € awh7

(4.7) bilp) < M;, pew", i=12 k>1,
and introduce the functions

r7 1/)1(]7)7 k= 07 —h
4.8 Ui(p,tr) = ,i=1,2.
( ) (p k) {Mz k>, pew’, 1

Lemma 4.2. Let conditions (4.5) and (4.6) be satisfied. Then U and U
from, respectively, (4.2) and (4.8), are ordered lower and upper solutions
to (2.1) and satisfy (4.4).

Proof. The proof of Lemma 4.2 repeats the proof of Lemma 4.1, with
the following modification:

- Tz;lﬁi(lﬁ tk,l) Z fl(p7 tk>M) +gl(patk7M) Z 07

where p € wh. O

5. Numerical experiments. In this section, we give applications
of the monotone iterative method (3.3) for numerical solutions of three
test problems. Exact solutions of the test problems are unknown, and
numerical solutions, obtained by the monotone iterative method, are
compared to reference solutions.

We choose the stopping criterion in the form (3.32) with § = 107°.
In all of the numerical experiments, the monotone property of upper
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and lower solutions is observed at each mesh point of the computational
domain.

Example 5.1. In

w={0<z1 <1, 0<as <1},

we consider the following test problem:

6 t
% — DlA’U,]_ + Clul(l + €_u2) _/ UQ(LL',S) ds = 0,
0
5u2 1 ¢
92 _ p,A 1 - ds =
ot 2 u2+§2U2< +1+u1> /Oul(l'vS) 5=0,

(x,t) e wx (0,T], wui(x,t)=0, (z,t)€ dwx (0,T],

u;(x,0) = sin(mwzy ) sin(rxs), = € w,

where Au = (Ugy 2, +Usyz, ), and Dy, (;, @ = 1,2, are positive constants.
For this test problem, we have

1
= 14 e U2 = 1 Y=y, 1A
J1=CGui(1+e"2), fo C2U2( +1+u1>’ gi Wiry ©F 1

where, for u; > 0,¢=1,2,

df1 _ df1 _
< L u2) < <2 uz
0 Ju, G(l+e™2) <2, 0< Dy Cruie™ "2,
df 1 dfa Cauz
< 2= 1 <2 < L2
0 - 8u2 <2< + 1 +’U,1> - CQ’ 0 - 8u1 (1 +U1)2,
89; _ ag: _ . g
an—O, aui/_l’ 1#£i,i=1,2.

From this, we choose ¢; = 2(;, ¢ = 1,2, in the monotone iterative
method (3.3).

The conditions in (4.5) hold true without any extra restrictions.
To guarantee (4.6), we assume that M;, i = 1,2, satisfies the
inequalities
G My — MT >0, oMy — MLT > 0.
Thus, if we choose M; = My = M > 1 and denote ¢ = min((y, (2),

~

then impose the condition { > T, by Lemma 4.2, we conclude that U
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and U from, respectively, (4.2) and (4.8), are ordered lower and upper
solutions and satisfy (4.4).

We discretize the differential problem by the finite difference ap-
proximation on an uniform space mesh with the step size hy = ho = h
(N =1/h).

In Table 1, for the two sets of parameters D; =1, ; = 2,1 = 1,2,
and D; = 0.1, (; =10, i = 1,2, we present the numerical error

error (h) = max [|0:( T) = D7, T)an ], T =1,
=1,

where fj{ef(p, t), i = 1,2, are reference solutions with N = 128, the
order of the numerical error

order(h) = log, ( error(h) >

error(h/2)

and numbers of monotone iterations on each time level for different
mesh sizes h and 7 = h2. The data in the table indicate that the
numerical solution has the second-order accuracy in the space variables,
and numbers of iterations decrease as N increases. We mention here
that numerical experiments show that if, in the reference solution, NV
increases, then the order of the numerical error tends to the second
one.

In Table 2, for the same two sets of parameters as in Table 1, we
present the numerical error based on lower solutions as in Table 1, the
order of the numerical error and numbers of monotone iterations on

TABLE 1. Numerical results for Example 5.1 with 7 = h2.

N 4 8 16 32 64
D;i=1¢=2,i=1,2
error 5.120e-4 1.276e-4 3.157e-5 7.533e-6 1.508e-6
order 2.01 2.02 2.07 2.32
# of iterations 3 3 3 2 2
D;=01,(=10,:=1,2
error 1.794e-4 6.097e-5 1.668e-5 4.077e-6 8.214e-7
order 1.56 1.87 2.03 2.31

# of iterations 3 3 2 2 2
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TABLE 2. Numerical results for Example 5.1 with 7 = h.

N 32 64 128 256 512
D;i=1,(=2,i=1,2
error 6.672e-5 3.148¢-5 1.470e-5 6.345e-6 2.120e-6
order 1.08 1.10 1.21 1.58
# of iterations 3 3 3 3 3
D;,=01,(=10,1=1,2
error 1.033e-4 5.659e-5 2.830e-5 1.258e-5 4.274e-6
order 0.87 1.00 1.17 1.56
# of iterations 3 3 3 2 2

each time level for different mesh sizes h and 7 = h. The data in the
table show that the numerical solution has the first-order accuracy in
the time variable. Numbers of iterations decrease as N increases.
Example 5.2. In

w={0<z1<1, 0< a2 <1},

we consider the second test problem:

t
%_D1Au1+U1—a/ uz(z,s)ds =0, (x,1) € wx(0,T],
0

ou
67152 — DoAug — p(uy) + Bug =0,
i
@(ul): 1_’_u%a (x,t)wa(O,T],

ui(z,t) =0, (z,t) € 0w x (0,7,
u1(x,0) = ksin(rzy) sin(rxs),
us(z,0) = p(ui(z,0)), z €w,
where D;, i = 1,2, a, 8 and k are positive constants. For this test
problem, we have
fi=u,  fa=—p(w)+Puz, g =—auz, g3 =0,
where, for u; > 0,7 =1,2,

on ., on

8’[1,1 ’ 8UQ ’
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A fo 2uy dfa
_Y)2 L 2 _
Oup  (1+wu2)2 ~ 0 Ous >0,
991 991 993 ,
_ — _ = = =1,2.
3u1 07 8u2 & 8’LLZ 0, ! ’

From this, we choose ¢; = 1 and ¢y = (8 in the monotone iterative
method (3.3).

The conditions in (4.5) hold true without any extra restrictions.

To guarantee (4.6), we assume that M;, i = 1,2, satisfies the
inequalities

M2
My —aMsT >0, M; > ———— +BMy >0, My>1.
1 — oMol >0, 12K, 1+M12+ﬁ 220, 22
Thus, if we choose M7 = max(k,aM>T) and My = max(1,1/4), then,
by Lemma 4.2, we conclude that U and U from, respectively, (4.2) and
(4.8), are ordered lower and upper solutions and satisfy (4.4).

We choose D; = 1073, Dy = 107%, o = 2.5, 3 = 1. In Table 3,
for kK = 2 and k = 0.3, we present the numerical error based on lower
solutions as in Table 1, the order of the numerical error and numbers
of monotone iterations on each time level for different mesh sizes h and
7 = h%. The data in the table indicate that the numerical solution
has the second-order accuracy in the space variables, and numbers of
iterations do not increase as /N increases.

In Table 4, for the same two sets of parameters as in Table 3, we
present the numerical error based on lower solutions as in Table 1, the

TABLE 3. Numerical results for Example 5.2 with 7 = hZ.

N 4 8 16 32 64
k=2
error 2.328e-2  5.920e-3 1.470e-3 3.505e-4 7.013e-5
order 1.98 2.01 2.07 2.32
# of iterations 4 3 3 3 3
k=0.3
error 3.230e-3 8.231e-4  2.052e-4 4.973e-5 9.695e-6
order 1.97 2.00 2.04 2.36

# of iterations 3 3 3 3 2
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TABLE 4. Numerical results for Example 5.2 with 7 = h.

N 32 64 128 256 512
k=2
error 1.130e-2 5.503e-3 2.576e-3 1.106e-3 3.689e-4
order 1.04 1.10 1.21 1.58
# of iterations 4 3 3 3 3
xk=0.3
error 1.553e-3 7.566e-4 3.542e-4 1.520e-4 5.072e-5
order 1.04 1.09 1.22 1.58
# of iterations 3 3 3 3 3

order of the numerical error and numbers of monotone iterations on
each time level for different mesh sizes h and 7 = h. The data in the
table show that the numerical solution has the first-order accuracy in
the time variable. Numbers of iterations do not increase as IV increases.

Example 5.3. In
w={0<z1 <1, 0< a2 <1},

we consider the third test problem which arises in population dynamics

[5]:

¢
Ou _ Aug +up (1 —ug) — / 0e ==y (2, 8) ds = 0,
ot 0

ou

87152 — AUQ —uz(ul — 1) = O,

(x,t) €w x (0,T], wui(z,t)=0, (x,t)€ dwx (0,T],
ui(x,0) = sin(wxy ) sin(mras), z€w, =12,
where u; and us are, respectively, prey and predator population den-

sities, and @ is a positive constant. The integral term represents com-
petition for resources. For this test problem, we have

fi=ui(1—uz), f2 = —uz(u1 — 1),
g =070y () 5), gs = 0.
where, for u; > 0,i=1,2,
% =1—ug, fiafl ,
Oouy Oug = uy
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8’U/]_ 2, 6u2 1 )
991, _o(i—s) g7 _

3’114 = fe ’ 8u2 - 0’
995 .

= =1,2
81&1' 07 1 )

From this, we choose ¢; = 1, ¢ = 1, in the monotone iterative method
(3.3). The conditions in (4.1) hold true with x; = 0,4 =1,2, 11 =0
and v, = 0. Thus, the functions ﬁi(p, tr), i = 1,2, from (4.2), are lower
solutions.

In Table 5, for 6 = 1 and # = 10, we present the numerical error
based on lower solutions as in Table 1, the order of the numerical error

and numbers of monotone iterations on each time level for different

TABLE 5. Numerical results for Example 5.3 with 7 = hZ.

N 4 8 16 32 64
=1
error 2.062e-2  5.238e-3 1.299e-3 3.099e-4 6.195e-5
order 1.98 2.01 2.07 2.32
# of iterations 4 3 3 3 2
6 =10
error 6.831e-2 1.692e-2 4.160e-3 9.893e-4 1.978e-4
order 2.01 2.02 2.07 2.32
# of iterations 6 4 3 3 3

TABLE 6. Numerical results for Example 5.3 with 7 = h.

N 32 64 128 256 512

=1

error 8.195e-3 3.963e-3 1.849e-3 7.924e-4 2.641e-4

order 1.05 1.10 1.22 1.59

# of iterations 3 3 3 3 3

f =10

error 3.420e-2  1.619e-2 7.470e-3 3.184e-3 1.060e-3

order 1.07 1.16 1.23 1.58

# of iterations 5 4 4 3 3
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mesh sizes h and 7 = h2. The data in the table indicate that the
numerical solution has the second-order accuracy in the space variables,
and numbers of iterations do not increase as N increases.

In Table 6, for the same values of parameter 6 as in Table 5, we
present the numerical error based on lower solutions as in Table 1, the
order of the numerical error and numbers of monotone iterations on
each time level for different mesh sizes h and 7 = h. The data in the
table show that the numerical solution has the first-order accuracy in
the time variable. Numbers of iterations do not increase as N increases.
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