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ABSTRACT. We will study ordinary integro-differential
equations of second order with nonlinearity given as a
convolution, but differently from the widely investigated
cases. In addition, the kernel depends on the solution. Such
equations play a key role in the theory of glass-forming
liquids, and we will establish results on global existence
and investigate the long-term behavior. In contrast, we give
examples where blow-ups occur.

1. Introduction. In the theory of glass-forming liquids, which is a
subject of soft-condensed matter physics, the so called mode-coupling
equation appears. It is an integro-differential equation of the form

λϕ̈(t) + ϕ̇(t) + ϕ(t) +

∫ t

0

m(ϕ(t− s))ϕ̇(s) ds = 0,

ϕ(0) = ϕ0,(1.1)

ϕ̇(0) = ϕ1,

where λ > 0 is a constant parameter and m is a matrix-valued function
determined by the physical properties of the studied fluid. The function
ϕ is a correlation function which represents the microscopic dynamics
of the fluid in a statistical mean.

A detailed derivation of this equation by the Zwanzig-Mori formalism
is given in [7]. The function m is mostly assumed to be a second-order
polynomial with positive coefficients in the applications [6, 11], but
also linear ([5]) or higher order cases are of interest ([3]).
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For these applications, the initial conditions are ϕ(0) = 1, ϕ̇(0) = 0,
and the long-term limit has a direct physical meaning; if it is 0 the fluid
stays in its phase and in the other case there is a glass-transition.

New results in the modeling lead to an additional dependence of the
function m on the parameters t and s and to complex-valued problems
[1, 4]. The example given in [1] reads

m(x, t− s) =

(
ms

||(x1, x2, t− s) 0

0 ms
⊥(x1, x2, t− s)

)
with

ms
||(x1, x2, t− s) =

vs1x1 + v2sx2

1− ik||F ex
Φ(t− s)

and

ms
⊥(x1, x2, t− s) =

vs1x2 + v2sℜ(x1)

1 + (k⊥F ex)2
Φ(t− s),

where the function Φ is a known correlator function and vs1, v
2
s , k||, k⊥

and F ex are real constants.

The literature for integro-differential equations (e.g., [2, 9, 13])
concentrates on kernels which do not depend on the solution, and thus
it cannot be applied directly to our nonlinearity. Also, the methods
presented there to deduce the long-term limit cannot be adopted,
because they make use of the sign of m′ or the decay of the kernel,
which both depend again on ϕ in our case.

Some results for the mode-coupling equation with polynomial func-
tions m are established in [10] by physical arguments. If m has positive

coefficients the solution for ϕ(0) > 0 and ϕ̇(0) = 0 will stay positive
and is bounded by ϕ(0), and thus the global existence follows.

In [14], the local existence of solutions to (1) for locally Lipschitz
continuous functions m is shown and, under the additional assumption,
that m is bounded by a linear growing function, the global existence
is deduced without any restrictions on the data. Furthermore, the
damping in (1) is used there to obtain exponentially stable solutions
for small data, if m(x) = O(xα) holds near zero for α > 1.

On this basis, we will investigate a generalized first-order system,
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where both factors in the convolution are nonlinear,

ẋ(t) = −Ax(t) +

∫ t

0

M(x(t− s))G(x(s)) ds+ F (t), t ≥ 0,(1.2)

x(0) = x0

where M ∈ C0(Cn,Cn×n), G ∈ C0(Cn,Cn), F ∈ C0([0,∞),Cn) and
x0 ∈ Cn. The second order mode-coupling equation (1) can easily be
transformed in such a system.

For λ = 0, the system (1) represents an alternative mode-coupling
equation for which first results are shown in [8]. The proofs are based
on the monotonicity of solutions, and we cannot carry this idea over to
our second order systems. Further results can be found in [12]; here
also the non-monotone case is treated.

In Section 2, we deduce the global well-posedness for any data, if the
functions M and G are locally Lipschitz continuous and if each function
is at most of linear growth. To extend the results in [12] we will carry
this over to the first order mode-coupling equation (λ = 0), which is
not of the form (1.2). In Section 3, we give criteria for the monotonicity
of solutions for the second order equation; the important assumptions
therefore are m(ϕ0) < −1 and that m is monotonically decreasing. We
then use this monotonicity in Section 4 to show that our result on the
global well-posedness for large data is sharp in the sense of polynomials.
More precisely, we show that, for any ϵ > 0, there exists a function m
with m(x) = O(|x|1+ε

) for x → −∞ and data ϕ0, ϕ1 ∈ R such that
the local solution to (1) has a blow-up in finite time. In Section 5, we
investigate the case of an exponentially stable linear system and small
data. We extend the results of [14] where, for m(x) = O(xα) near zero
with α > 1 and G(x) = x, the existence of global and exponentially
stable solutions to (1) is established, to the system (1.2). By a similar
technique, we will also treat the case α = 1, which is important in the
applications.

This work is based on the author’s PhD thesis ([15]) written at the
University of Konstanz. Further details and results for partial integro-
differential equations can also be found there.
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2. Well posedness for large Data. To prove the well posedness
of solutions we investigate the equation
(2.1)

ẋ(t) = −Ax(t) +

∫ t

0

M(x(t− s))G(x(s)) ds+ F (t), T ≤ t,

x(t) = Φ(t), 0 ≤ t ≤ T

with T ≥ 0 and given functions Φ ∈ C0([0, T ],Cn) and F ∈
C0([T,∞),Cn). For T = 0 and Φ(0) = x0, we obtain solutions to
(1.2) and, taking T > 0, gives us the possibility of showing that a
bounded solution to (1.2) can be extended onto some larger interval of
existence.

Theorem 2.1. Let T ≥ 0, A ∈ Cn×n and M ∈ C0(Cn,Cn×n),
G ∈ C0(Cn,Cn) locally Lipschitz continuous.

Then, for every

Φ ∈ C0([0, T ],Cn) and F ∈ C0([T,∞),Cn),

there is a ∆T > 0 with ∆T = c(1 + T )−1, where c > 0 is independent
of T , and a unique local solution

x ∈ C1([T, T +∆T ],Cn)

to (2.1).

Proof. We will construct a sequence of solutions to a linearized
equation and deduce the uniform boundedness and, with this, the
convergence to a solution of our nonlinear equation. Let

hE(t) :=

{
Φ(t), 0 ≤ t < T,

h(t), T ≤ t.

For functions h with h(T ) = Φ(T ) we have hE ∈ C0([0,∞),Cn).

We set x(0)(t) := Φ(T ) for t ≥ T and define (x(l))l ⊂ C1([T,∞),Cn)
by

ẋ(l)(t) =−Ax(l)(t)+

∫ t

0

M
(
x
(l−1)
E (t− s)

)
G
(
x
(l−1)
E (s)

)
ds+F (t), t ≥ T,

x(l)(T ) = Φ(T ).

(2.2)
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It is easy to see that (x(l))l is well defined, and we now show by
induction

(2.3) sup
t∈[T,T+∆T ]

∣∣∣x(l)(t)
∣∣∣2 ≤ 2 sup

t∈[0,T ]

|Φ(t)|2 + 2(1 + |F (T )|)2 =: b

for small ∆T . If the inequality holds for x(l−1),
∣∣∣x(l−1)

E (t)
∣∣∣2 ≤ b also

follows, and thus∣∣∣∣ ∫ t

0

M
(
x
(l−1)
E (t− s)

)
G
(
x
(l−1)
E (s)

)
ds

∣∣∣∣
≤ t sup

|x|2,|y|2≤b

|M(x)| |G(y)| =: tcMG.

We choose ∆T > 0 small enough to guarantee

sup
t∈[T+∆T ]

|F (t)| ≤ 2(1 + |F (T )|).

A multiplication of (2.2) by x(l)(t) leads to∣∣∣x(l)(t)
∣∣∣2 ≤ |Φ(T )|2 + (2cA + 1 + (T +∆T ))

∫ t

T

∣∣∣x(l)(s)
∣∣∣2 ds

+
(
(T +∆T )c2MG + 4(1 + |F (T )|)2

)
∆T,

where cA := sup
|x|=1

|Ax|, and Gronwall’s inequality yields

∣∣∣x(l)(t)
∣∣∣2

≤
(
|Φ(T )|2+

(
(T+∆T)c2MG+4(1+|F (T )|)2

)
∆T

)
e(2cA+1+(T+∆T ))∆T .

We now assume ∆T = δ(1 + T )−1 with a constant δ > 0 independent
of T .

On the one hand, we have ∆T ≤ δ, and on the other hand,

(T +∆T )∆T =

(
T +

δ

1 + T

)
δ

1 + T
≤ (T + δ)

δ

1 + T

= δ

(
T

1 + T
+

δ

1 + T

)
≤ (1 + δ)δ.
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So,∣∣∣x(l)(t)
∣∣∣2 ≤

(
|Φ(T )|2 +

(
(1 + δ)c2MG + 4 |F (T )|2

)
δ
)
e(2cA+1)(1+δ)δ

follows and, for δ sufficiently small, (2.3) holds.

To prove the convergence, we set w(l) := x(l) − x(l−1). For l ≥ 2,
these functions fulfill

ẇ(l)(t) = −Aw(l)(t) +

∫ t

0

M
(
x
(l−1)
E (t− s)

)
G
(
x
(l−1)
E (s)

)
−M

(
x
(l−2)
E (t− s)

)
G
(
x
(l−2)
E (s)

)
ds,

w(l)(T ) = 0,

and we carry out the multiplier method as above. There is a Lipschitz
constant L forM and G, depending only on the bound b of the sequence
(x(l))l, with∣∣∣w(l)(t)

∣∣∣2 ≤ (2LcMG∆T )2∆Te(2cA+1)(t−T ) sup
t∈[T,T+∆T ]

∣∣∣w(l−1)(s)
∣∣∣2 .

This yields

sup
t∈[T,T+∆T ]

∣∣∣w(l)(t)
∣∣∣2 ≤

(
(2LcMGδ)

2δe(2cA+1)δ
)l

sup
t∈[T,T+∆T ]

∣∣∣w(1)(s)
∣∣∣2 ,

and, taking δ additionally small enough to have

(2LcMGδ)
2δe(2cA+1)δ ≤ 1

2
,

we conclude

sup
t∈[T,T+∆T ]

∣∣∣x(i)(t)− x(j)(t)
∣∣∣ ≤ i∑

l=j+1

sup
t∈[T,T+∆T ]

∣∣∣x(l)(t)− x(l−1)(t)
∣∣∣

≤
i∑

l=j+1

1

2l
sup

t∈[T,T+∆T ]

∣∣∣w(1)(s)
∣∣∣2

−→ 0 (i, j → ∞).

So the sequence converges to some x ∈ C0([T, T + ∆T ],Cn), which
implies the convergence of the convolution-term and hence, by the
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equation, ẋ(l) also converges and the limit is a solution. The uniqueness
easily follows by the local Lipschitz continuity of M and G. �

With this local existence theorem we can show that a uniform a priori
bound for x(t) is sufficient to extend the solution.

Lemma 2.2. Under the assumptions of Theorem 2.1 the local solution
of (2.1) exists as long as

|x(t)| ≤ C

holds for some C independent of t.

The following theorem states that, for functions M and G, which
are at most of linear growth, there is a global solution. But, stability
of that solution cannot be expected because, by taking G(x) = x and
M = −2, we obtain exponentially growing solutions for certain initial
values.

Theorem 2.3. Let A ∈ Cn×n and M ∈ C0(Cn,Cn×n), G ∈
C0(Cn,Cn) be locally Lipschitz continuous with

|M(x)G(y)| ≤ c(1 + |x|+ |y|+ |x| |y|)

for some c > 0 and all x, y ∈ Cn.

Then, for any x0 ∈ Cn and F ∈ C0([0,∞),Cn), there is a global
unique solution x ∈ C1([0,∞),Cn) to (1.2).

Proof. For the local solution x ∈ C1([0, T ],Cn), let cT := sup
t∈[0,T ]

|x(t)|.

Multiplication of (1.2) by x(t) gives with cA := sup|x|=1 |Ax| for
T ≤ t ≤ 2T

1

2

d

dt
|x(t)|2 ≤

(
cA +

1

2

)
|x(t)|2

+ c |x(t)|
∫ t

0

1 + 2 |x(s)|+ |x(t− s)||x(s)| ds+ 1

2
|F (t)|2 .
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We separate the integral into two parts and obtain for T ≤ t ≤ 2T∫ t

0

|x(t− s)| |x(s)| ds =
∫ T

0

|x(t− s)| |x(s)| ds

+

∫ t

T

|x(t− s)| |x(s)| ds

≤ cT

∫ T

0

|x(t− s)| ds+ cT

∫ t

T

|x(s)| ds

≤ 2cT

∫ t

0

|x(s)| ds.

It follows that

1

2
|x(t)|2 ≤ 1

2
|x0|2 +

(
cA +

1

2
+ 5cT + 4cT cT

)∫ t

0

|x(s)|2 ds

+
1

2

∫ 2T

0

|F (s)|2 ds+ cT 2,

and thus we have a uniform bound in [T, 2T ]. Iteratively, we get a
bound in [T, 2nT ] for any n ∈ N, and so there is a global solution. �

Example 2.4 (Linear functions).
For

m(x) =

d∑
i=1

Cixi,

with matrices Ci ∈ Cd×d, there is, for any ϕ0, ϕ1 ∈ Cd, a global solution
to (1).

Example 2.5 (First order equation). We can also treat the first order
equation investigated in [12] with our results. It reads

ϕ̇(t) + ϕ(t) +

∫ t

0

m(ϕ(t− s))ϕ̇(s) ds = f(t), t ≥ 0,

ϕ(0) = ϕ0.

(2.4)
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Assuming that m and f are C1-functions we obtain

ϕ̈(t) + (id+m(ϕ0))ϕ̇(t)

+

∫ t

0

m′(ϕ(t− s))ϕ̇(t− s)ϕ̇(s) ds = ḟ(t), t ≥ 0,

ϕ(0) = ϕ0,

ϕ̇(0) = −ϕ(0) + f(0),

by differentiating the equation. For x = (ϕ, ϕ̇), we get the first order
system

ẋ(t) = −
(

0 − id
0 id+m(ϕ0)

)
x(t)

−
∫ t

0

(
0 0
0 m′(x1(t− s))x2(t− s)

)
︸ ︷︷ ︸

=̂−M(x(t−s))

(
x1(s)
x2(s)

)
︸ ︷︷ ︸

=̂G(x(s))

ds+

(
0

ḟ(t)

)

x(0) =

(
ϕ0

−ϕ0 + f(0)

)
.

In contrast to (2.4), there is no derivative in the convolution and the
system has the form (1.2).

It follows, that for m ∈ C1(Cn,Cn) with a locally Lipschitz contin-
uous derivative m′, there is for any ϕ0 ∈ Cd and f ∈ C1([0,∞),Cd) a
unique local solution ϕ ∈ C2([0, T ],Cd) to (2.4).

The local solutions can be extended to a global one, if additionally
m′ is bounded, which is equivalent to m being at most of linear growth.
This is an extension of the results in [12], where the boundedness of m
itself is assumed to obtain global solutions.

Choosing in [12, Theorem 7] the function F (x) = x+ x |x|ε − 2 for
an arbitrary ε > 0 we obtain, that for ϕ0 = 1, f = 0 and m(x) = F (x)
there is a blow-up in finite time for the local solution to (2.4).

By a different method than in [12] we will derive a similar result
in Section 4 for the second order equation. So we found the weakest
polynomial growth condition, under which for any data there is a global
solution.
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Remark 2.6. Our results also hold for functions M and G, which
additionally depend continuously on the parameters t and s.

Example 2.7. The functions ms
||,m

s
⊥ : C2 × [0,∞) → C given in [5]

fulfill the necessary estimate; they read

ms
||(x1, x2, t− s) =

vs1x1 + v2sx2

1− ik||F ex
Φ(t− s)

and

ms
⊥(x1, x2, t− s) =

vs1x2 + v2sℜ(x1)

1 + (k⊥F ex)2
Φ(t− s)

with a known function Φ and constants vs1, v
2
s , F

ex, k||, k⊥. In our
notation, we have

M(x, t− s) =

(
ms

||(x1, x2, t− s) 0

0 ms
⊥(x1, x2, t− s)

)
and G(x) = x.

3. Monotonicity of solutions. For m ∈ C1(Rd,R) and ϕ0, ϕ1 ∈
Rd, we treat here the system

λϕ̈k(t) + ϕ̇k(t) + ϕk(t) +

∫ t

0

m(ϕ(t− s))ϕ̇k(s) ds = 0 (1 ≤ k ≤ d),

ϕ(0) = ϕ0,(3.1)

ϕ̇(0) = ϕ1.

The equations for the components of ϕ are coupled by m; this is a
special case of (1), which is in wide use in the physical application.

Integration by parts leads to

λϕ̈k(t) + ϕ̇k(t) + ϕk(t) +m0ϕk(t)−m(ϕ(t))ϕ0k

+

∫ t

0

ϕk(s)(∇m)(ϕ(t− s))ϕ̇(t− s) ds = 0,

where m0 := m(ϕ(0)). Since

(∇m)(ϕ(t− s))ϕ̇(t− s) =

d∑
l=1

∂lm(ϕ(t− s))ϕ̇l(t− s)
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and

m(ϕ(t))ϕ0k = m0ϕ0k + ϕ0k

∫ t

0

d∑
l=1

∂lm(ϕ(t− s))ϕ̇l(t− s) ds,

we have the equivalent system

λϕ̈k(t) + ϕ̇k(t) + ϕk(t) +m0(ϕk(t)− ϕ0k)

+

d∑
l=1

∫ t

0

(ϕk(s)− ϕ0k)∂lm(ϕ(t− s))ϕ̇l(t− s) ds = 0,

ϕ(0) = ϕ0,

ϕ̇(0) = ϕ1.

(3.2)

The form of this system allows us to prove the monotonicity of solutions
under certain assumptions.

Theorem 3.1. Let m ∈ C1(Rd,R), ϕ0, ϕ1 ∈ Rd and ϕ be the local
solution to (3) for this data. If

ϕ0k ≥ 0, ϕ1k ≤ 0 (1 ≤ k ≤ d)

and

m(ϕ0) < −1 and ∂lm(x) ≥ 0 for xk ≤ ϕ0k (1 ≤ k, l ≤ d)

holds, then ϕk (1 ≤ k ≤ d) is monotonically decreasing in its interval
of existence.

Proof. First let 1 ≤ k ≤ d be arbitrary. In the case ϕ0k = ϕ1k = 0,
the conjecture is obvious.

If now ϕ1k = ϕ̇k(0) < 0 or ϕ̇k(0) = 0 and λϕ̈k(0) = −ϕk(0) < 0

holds, there is a tk0 > 0 with ϕ̇k(t) < 0 for t ∈ (0, tk0).

Assume that ϕ is not monotonically decreasing in every component.
Then there is a smallest t1 > 0 with ϕ̇l(t) ≤ 0 (0 ≤ t ≤ t1, 1 ≤ l ≤ d)

and a component ϕk for which we have ϕ̇k(t1) = 0 and ϕ̈k(t1) ≥ 0.
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Equation (3.2) yields

ϕ̇k(t1) = −λϕ̈k(t1)− (1 +m0)ϕk(t1) +m0ϕ0k

−
d∑

l=1

∫ t1

0

(ϕk(s)− ϕ0k)∂lm(ϕ(t1 − s))ϕ̇l(t1 − s) ds

≤ −(1 +m0)ϕk(t1) +m0ϕ0k

−
d∑

l=1

∫ t1

0

(ϕk(s)− ϕ0k)∂lm(ϕ(t1 − s))ϕ̇l(t1 − s) ds.

(3.3)

In (0, t1), the function ϕk(t) is monotonically decreasing and not
constant because of (0, tk0) ⊂ (0, t1). This implies ϕk(t1) − ϕ0k < 0
for the case ϕk(t1) ≥ 0, and hence

−(1 +m0)ϕk(t1) +m0ϕ0k = −ϕk(t1)−m0(ϕk(t1)− ϕ0k) < 0.

If ϕk(t1) < 0, then 1 +m0 < 0 also leads to

−(1 +m0)ϕk(t1) +m0ϕ0k < 0.

Since ∂lm(ϕ(t1 − s)) ≥ 0, we have

d∑
l=1

∫ t1

0

(ϕk(s)− ϕ0k)∂lm(ϕ(t1 − s))ϕ̇l(t1 − s) ds ≥ 0,

and, by inserting this into (3.3), we conclude

ϕ̇k(t1) < 0,

which is a contradiction to ϕ̇k(t1) = 0, thus ϕ is in every component
monotonically decreasing. �

By investigating the derivative of equation (3),

λ
...
ϕk(t) + ϕ̈k(t) + (1 +m0)ϕ̇k(t)

+

∫ t

0

d∑
l=1

∂lm(ϕ(t− s))ϕ̇l(t− s)ϕ̇k(s) ds = 0,

we can carry over this result to the derivatives ϕ̇k, if also ϕ0 + ϕ1 > 0
holds.
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Lemma 3.2. Assume additionally to the preliminaries of Theorem 3.1,
that

ϕ0k + ϕ1k > 0 (1 ≤ k ≤ d).

Then also ϕ̇k is monotonically decreasing for 1 ≤ k ≤ d.

Remark 3.3. Under the assumptions of Lemma 3.2 ϕ̇k is monotoni-
cally decreasing and ϕ0k + ϕ1k > 0 excludes the case ϕ̇k(t) = 0 for all

t. So we can find some tk0 ≥ 0 with ϕ̇k(t
k
0) < 0, and this implies

ϕk(t) = ϕk(t
k
0) +

∫ t

tk0

ϕ̇k(s) ds

≤ ϕk(t
k
0) + (t− tk0)ϕ̇k(t

k
0) → −∞ (t → T ∗)

for some T ∗ ∈ (0,∞]. Thus, ϕ is not bounded from below.

We can combine our global existence Theorem 2.3 with the mono-
tonicity result.

Corollary 3.4. Let m ∈ C1(Rd,R) and ϕ0, ϕ1 ∈ Rd. If

ϕ0k ≥ 0, ϕ1k ≤ 0 (1 ≤ k ≤ d)

as well as

m(ϕ(0)) < −1, ∂lm(x) ≥ 0 and |m(x)| ≤ c(1 + |x|)
(xk ≤ ϕ0k, 1 ≤ k, l ≤ d)

hold for some c > 0, then there is a global unique solution to (3), which
is monotonically decreasing.

4. Blow up in finite time. In this section, we show that, without
the estimate |m(x)| ≤ c(1 + |x|), global solvability for arbitrary data
cannot be expected.

We will investigate for m ∈ C1(Rd,R), ϕ0, ϕ1 ∈ Rd the system of
coupled integro-differential equations
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λϕ̈k(t) + ϕ̇k(t) + ϕk(t) +

∫ t

0

m(ϕ(t− s))ϕ̇k(s) ds = 0 (1 ≤ k ≤ d),

ϕ(0) = ϕ0, ϕ̇(0) = ϕ1.

Under the assumptions of Lemma 3.2 we get an estimate for the local
solution, which we can use to show a blow-up in finite time.

Lemma 4.1. Let m ∈ C1(Rd,R), ϕ0, ϕ1 ∈ Rd and ϕ be the local
solution of (3) to this data. If

ϕ0k ≥ 0, ϕ1k ≤ 0, ϕ0k + ϕ1k > 0 (1 ≤ k ≤ d),

m(ϕ0) < −1

and
∂lm(x) ≥ 0 (xk ≤ ϕ0k, 1 ≤ k, l ≤ d),

hold, then there is, for any c > 0, a t0 > 0 with ϕk(t0) ≤ −c (1 ≤ k ≤ d)
and

(4.1) (t− t0+λ) |ϕk(t)| ≥ λc+ |ϕ1k|
∫ t

t0

∫ s

0

∫ r

0

|1 +m(ϕ(v))| dv dr ds

for t ≥ t0.

Proof. ϕk and ϕ̇k are monotonically decreasing and, as seen in
Remark 3.3, we can find for any c > 0 a t0 with

(4.2) ϕk(t0) ≤ −c− 1

2λ
ϕ0k.

By using ϕk(t) = ϕ0k +
∫ t

0
ϕ̇k(s) ds, we obtain

λϕ̈k(t) + ϕ̇k(t) + ϕ0k +

∫ t

0

(1 +m(ϕ(t− s)))ϕ̇k(s) ds = 0.

Integration leads to

λϕ̇k(t)− λϕ1k + ϕk(t)− ϕ0k + tϕ0k

+

∫ t

0

∫ s

0

(1 +m(ϕ(s− r)))ϕ̇k(r) dr ds = 0,
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and because of ϕ1k ≤ 0, there follows

λϕ̇k(t) + ϕk(t) = λϕ1k + ϕ0k(1− t)

−
∫ t

0

∫ s

0

(1 +m(ϕ(s− r)))ϕ̇k(r) dr ds

≤ ϕ0k(1− t)−
∫ t

0

∫ s

0

(1 +m(ϕ(s− r)))ϕ̇k(r) dr ds.

A second integration gives

λϕk(t) +

∫ t

t0

ϕk(s) ds ≤ ϕ0k

∫ t

t0

(1− s) ds+ λϕk(t0)

−
∫ t

t0

∫ s

0

∫ r

0

(1 +m(ϕ(r − v)))ϕ̇k(v) dv dr ds

≤ −λc−
∫ t

t0

∫ s

0

∫ r

0

(1 +m(ϕ(r − v)))ϕ̇k(v) dv dr ds,

where we used (4.2).

The monotonicity of ϕk and ϕ̇k gives, on the one hand, ϕ̇k(t) ≤
ϕ1k < 0 for all t > 0 and, on the other hand, ϕk(t) < ϕk(t0) < 0 for all
t > t0.

So m(ϕ(t)) is also monotonically decreasing and, especially, 1 +
m(ϕ(t)) ≤ 1 +m(ϕ(0)) < 0, which implies

λϕk(t) +

∫ t

t0

ϕk(s) ds ≤ −λc− ϕ1k

∫ t

t0

∫ s

0

∫ r

0

(1 +m(ϕ(r − v))) dv dr ds.

Since
∫ t

t0
ϕk(s) ds ≥ (t− t0)ϕk(t), we now see

(t− t0 + λ)ϕk(t) ≤ −λc− ϕ1k

∫ t

t0

∫ s

0

∫ r

0

(1 +m(ϕ(v))) dv dr ds,

or equivalently,

(t− t0 + λ) |ϕk(t)| ≥ λc+ |ϕ1k|
∫ t

t0

∫ s

0

∫ r

0

|1 +m(ϕ(v))| dv dr ds. �

The easy proof of the following Gronwall-type inequality is omitted
here.
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Lemma 4.2. Let k ∈ C0([0,∞),R) be monotonically increasing,
c1, c2, c3 > 0, t0 > t1 ≥ 0 and u,w : [0, T ) 7→ [0,∞) piecewise con-
tinuous with

u(t) ≥ 1

c2 + t− t0
c1 +

1

c2 + t− t0
c3

∫ t

t0

∫ s

t1

∫ r

t1

k(u(v)) dv dr ds

and

w(t) <
1

c2 + t− t0
c1 +

1

c2 + t− t0
c3

∫ t

t0

∫ s

t1

∫ r

t1

k(w(v)) dv dr ds

for t ≥ t0 and u(t) ≥ w(t) for t < t0. Then

u(t) > w(t)

holds in [t0, T ).

Now we can give explicit examples for blow-ups in finite time in the
case d = 1.

Conclusion 4.3. Let ε > 0 be arbitrary. Set

ϕ1 = −(λ+ 1)

(
3

ε
+ 2

)(
3

ε
+ 1

)
3

ε
and ϕ0 > |ϕ1| arbitrary

and
m(x) = −2− ϕ1+ε

0 + x |x|ε .

Then the local solution ϕ to (3) has a finite time of existence.

Proof. The assumptions of Lemma 4.1 are fulfilled for the initial
values (ϕ0 > 0, ϕ1 < 0 and ϕ0 +ϕ1 > |ϕ1|+ϕ1 = 0) and, by definition,
we havem(ϕ0) = −2 andm′(x) = (1+ε) |x|ε ≥ 0. So ϕ is monotonically
decreasing, and corresponding to

cε :=
λ+ 2

λ

(
1 +

3

ε
+

1

2

3

ε

(
3

ε
+ 1

))
,

there is a t0 with ϕ(t0) ≤ −cε and

(t−t0 + λ) |ϕ(t)| ≥ λcε + |ϕ1|
∫ t

t0

∫ s

0

∫ r

0

1 + ϕ1+ε
0 − ϕ(v) |ϕ(v)|ε dvdrds
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for t ≥ t0.

We simplify the integral by using the fact that ϕ has exactly one
root t1. ϕ

1+ε
0 −ϕ(v) |ϕ(v)|ε > 0 holds for 0 < v ≤ t1, and it follows that

(t− t0 + λ) |ϕ(t)| ≥ λcε + |ϕ1|
∫ t

t0

∫ s

t1

∫ r

t1

k(|ϕ(v)|) dv dr ds,

with k(x) := ϕ1+ε
0 + x1+ε.

We now set T := t0 + 1 and define w : [0, T ) 7→ R by

w(t) =

{
0 t < t0,
(T − t)−3/ε t ≥ t0.

In [t0, T ), we have∫ t

t0

∫ s

t1

∫ r

t1

k(w(v)) dv dr ds

≥
∫ t

t0

∫ s

t1

∫ r

t1

w(v)1+ε dv dr ds

≥ −1

2
α−1
2 − (α1α2)

−1 − (α0α1α2)
−1 + (α0α1α2)

−1(T − t)−α0 ,

with α0 := 3/ε, α1 := 3/ε + 1, α2 := 3/ε + 2 and α3 := 3/ε + 3
(remember that T − t0 = 1).

Because of |ϕ1| = (λ+ 1)α0α1α2, we conclude that

λcε + |ϕ1|
∫ t

t0

∫ s

t1

∫ r

t1

k(w(v)) dv dr ds

≥ (λ+ 1)w(t) + λcε − (λ+ 1)

(
1 + α0 +

1

2
α0α1

)
,

and, by the choice of cε,

λcε − (λ+ 1)

(
1 + α0 +

1

2
α0α1

)
= (λ+ 2)

(
1 + α0 +

1

2
α0α1

)
− (λ+ 1)

(
1 + α0 +

1

2
α0α1

)
> 0.
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It follows that

λcε + |ϕ1|
∫ t

t0

∫ s

t1

∫ r

t1

k(w(v)) dv dr ds

> (λ+ 1)w(t) ≥ (λ+ t− t0)w(t).

and, with ϕ fulfilling the estimate,

(t− t0 + λ) |ϕ(t)| ≥ λcε + |ϕ1|
∫ t

t0

∫ s

t1

∫ r

t1

k(|ϕ(v)|) dv dr ds,

we can apply Lemma 4.2, so

|ϕ(t)| > w(t)

holds in [t0, T ) and ϕ exists at most in [0, T ). �

5. Long term behavior for small data. In this section, we show
that the integro-differential equation (1.2) with G(x) = x and F = 0

ẋ(t) = −Ax(t) +

∫ t

0

M(x(t− s))x(s) ds, t ≥ 0,

x(0) = x0,

(5.1)

has global solutions for small data, if the linear system is stable.

Our main assumption on M will be M(x) = O(|x|α) for some α ≥ 1.
We obtain exponentially decaying solutions if α > 1, α = 1 leads to a
polynomial decay.

A function G decaying faster than linear for x → 0 does not change
the qualitative behavior; it would just change certain constants. We
also drop the right hand side F for simplicity.

5.1. Exponential stability.

Theorem 5.1. Let x0 ∈ Cn and M ∈ C0(Cn,Cn×n) be locally
Lipschitz continuous. Assume that the real parts of the eigenvalues
of A ∈ Cn×n are strictly positive and denote by µA > 0, cA ≥ 1 as
constants with

∣∣e−Atx
∣∣ ≤ cAe

−µAt |x| (x ∈ Cn, t ∈ [0,∞)).
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Suppose, for some constants cM > 0, α > 1 and an arbitrary
ce > cA,

|M(z)x| ≤ cM |z|α |x| (x, z ∈ Cn, |z| ≤ |x0| ce).

If the smallness condition

cM |x0|α ≤ ce/cA − 1

cα+1
e

(α− 1)µ(µA − µ)

holds for some µ ∈ (0, µA), then there is a unique global solution
x ∈ C1([0,∞),Cn) to (5.1) with

|x(t)| ≤ |x0| cee−µt.

Proof. We show that the operator K : X ⊂ C0([0,∞),Cn) →
C0([0,∞),Cn) defined as

(K(x))(t) = e−Atx0 +

∫ t

0

e−A(t−s)

∫ s

0

M(x(s− r))x(r) dr ds

has a fixed-point in the set

X :=
{
x ∈ C0([0,∞),Cn)

∣∣∣ |x(t)| ≤ |x0| cee−µt
}
.

A direct calculation yields, with µA − µ > 0 and α− 1 > 0,

|K(x)(t)| ≤ |x0| cAe−µAt

+ cAe
−µAt

∫ t

0

eµAs

∫ s

0

cMcα+1
e |x0|α+1

e−αµseµ(α−1)r dr ds

≤ |x0| cA
(
1 +

cMcα+1
e |x0|α

µ(α− 1)(µA − µ)

)
e−µt

for x ∈ X, and our smallness condition gives |K(x)(t)| ≤ |x0| cee−µt,
which means K(X) ⊂ X.

By the Lipschitz continuity of M , we deduce the continuity of K
on X and, for x ∈ X follows, that | ddt (K(x))(t)| ≤ c for some c > 0

independent of x, so the set K(X) is bounded in C1([0,∞),Cn).

Therefore, for (xn)n ⊂ X, the sequences (yn)n := (K(xn))n and
(ẏn)n are bounded, and thus there is, for every t ≥ 0, a pointwise limit
y(t) of a subsequence. The convergence is uniform on any compact
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interval, which implies y ∈ X. Hence, y decays exponentially, and this
yields the uniform convergence of a subsequence on [0,∞).

We now have that K is compact, and so we can apply Schauder’s
fixed-point theorem. This fixed-point is a solution to (5.1). The
uniqueness follows as in Section 2. �

Applying these results to the special case (1) we obtain stable
solutions for the mode-coupling equation.

Corollary 5.2. Let λ > 0, id the unit matrix in Cd×d and

A :=

(
0 − id
1
λ id 1

λ id

)
,

where cA ≥ 1, µA > 0 are constants with
∣∣e−Atx

∣∣ ≤ cAe
−µAt |x|

(x ∈ C2d, t ≥ 0). Let ϕ0, ϕ1 ∈ Cd be given, and suppose that
m ∈ C0(Cd,Cd×d) is locally Lipschitz continuous with

|m(z)x| ≤ cm |z|α |x| (x, z ∈ Cd, |z| ≤ |(ϕ0, ϕ1)| ce)

for constants cm > 0, α > 1 and an arbitrary ce > cA.

If

(5.2) cm |(ϕ0, ϕ1)|α ≤ λ
ce/cA − 1

cα+1
e

(α− 1)µ(µA − µ)

holds for some µ ∈ (0, µA), then there is a unique solution ϕ ∈
C2([0,∞),Cd) to (1) with∣∣∣(ϕ̇(t), ϕ(t))∣∣∣ ≤ |(ϕ0, ϕ1)| cee−µt.

Remark 5.3 (Possible extensions).

(i) We dropped for simplicity the right hand sides f , but it is easy
to see that we can carry over the proofs for f ∈ C0

b ([0,∞),Cd),

when cf := (1/λ) sup
t∈[0,∞)

∫ t

0
eµAs |f(s)| ds < ∞. This changes the

smallness condition to

cm(|(ϕ0, ϕ1)|+ cf )
α ≤ λ

ce/cA − 1

cα+1
e

(α− 1)µ(µA − µ).
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(ii) For functions m, which additionally depend continuously on the
parameter s and t, we need an estimate of the form

|m(t, s, x)| ≤ cmh(t, s) |x|α

with a bounded function h, to adopt the proofs. For h ∈
C0

b (R2,R) only the constant ∥h∥∞ appears in the smallness condi-
tion, while an exponentially decaying h leads to better decay rates
for the solution, limited by the decay rate of the linear system.

Remark 5.4 (Choice of constants).

(i) Taking µ := µA/2 gives the greatest value for µ(µA − µ), but
µ > µA/2 leads to better decay rates.

(ii) If the estimate |m(z)x| ≤ cm |z|α |x| holds on Cd, the choice
ce := cA(α+ 1/α) is optimal.

Together with µ = µA/2, the weakest assumption on the data
then reads

cm(|(ϕ0, ϕ1)|+ cf )
α ≤ λ

4

αα(α− 1)

(α+ 1)α+1
c
−(α+1)
A µ2

A.

Example 5.5 (d = 1). For d = 1, the eigenvalues of A are

µ± =
1

2λ
(1±

√
1− 4λ).

To estimate e−Atx we have to distinguish two cases:

λ ̸= 1
4 : Here we have

|e−Atx| ≤ |µ+|
√
2

(
1 +

1

λ |µ+ − µ−|
+

2

|µ+ − µ−|

)
e−tµ− .

λ = 1
4 : In this case, A has only one eigenvalue µ = 2 and is not

diagonalizable. This means that we cannot choose µA = µ− =
2, but for µA ∈ (0, 2) arbitrary, e−Atx can be estimated by

∣∣e−Atx
∣∣ ≤ 2e

√
2

2− µA
e−µAt |x| .
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Example 5.6 (Quadratic kernels). For d = 1, λ ̸= 1/4 and m(z) =
cmz2,

cm(|ϕ0|2 + |ϕ1|2) ≤
1

27c3A

(ℜ1−
√
1− 4λ)2

4λ

is the weakest condition to obtain solutions ϕ by Corollary 5.2. We
then have

|ϕ(t)|2 +
∣∣∣ϕ̇(t)∣∣∣2 ≤ 9

4
c2A(|ϕ0|2 + |ϕ1|2)e−(ℜ1−

√
1−4λ)/λt.

In [3], there are several examples given for physically relevant kernels,
which are quadratic. Also, other polynomials without a linear part are
considered there.

Example 5.7. Once again, we take d = 1, but now we investigate a
kernel with different powers in z,

m(z) = azα + bzβ ,

where a, b ∈ C\{0} and 1 < α < β. Here, cm depends on the choice of
ce, because the dominating term is bzβ for large z and azα for small z.

For z ∈ Cd, |z| ≤ ce |(ϕ0, ϕ1)| it holds that

|m(z)| ≤ |a| |z|α + |b| |z|β ≤ (|a|+ |b| (ce |(ϕ0, ϕ1)|)β−α) |z|α =: cm |z|α .

The smallness condition now reads:

(|a|+ |b| (ce |(ϕ0, ϕ1)|)β−α) |(ϕ0, ϕ1)|α ≤ λ

4

ce/cA − 1

cα+1
e

µ2
A,

and so the optimal choice of ce depends not only on α and β, we also
have to take |(ϕ0, ϕ1)| as well as a and b into account.

5.2. Polynomial stability.

Theorem 5.8. Let x0 ∈ Cn and M ∈ C0(Cn,Cn×n) be locally
Lipschitz continuous. Assume that the real parts of the eigenvalues of
A ∈ Cn×n are strictly positive, and denote by µA > 0, cA ≥ 1 constants
with

∣∣e−Atx
∣∣ ≤ cAe

−µAt |x| (x ∈ Cn, t ∈ [0,∞)).
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Take p > 1 arbitrary, and set

k(p) :=

{
1 p < µA,

eµA−p
(

p
µA

)p

p ≥ µA.

Suppose, for cM > 0, α ≥ 1 and an arbitrary cp > k(p)cA,

|M(z)x| ≤ cM |z|α |x| (x, z ∈ Cn, |z| ≤ |x0| cp).

Choose t0 ≥ 0 with t0 > (p/µA)− 1, and set

kt0 :=

∫ t0

0

eµAs 1

(1 + s)p
ds.

If

cm |(ϕ0, ϕ1)|α≤ λ

(
cp
cA

−k(p)

)
c−α−1
p

p− 1

2p

(
kt0k(p)+

1 + t0
µA(1 + t0)− p

)−1

holds, then there is a unique solution x ∈ C1([0,∞),Cn) to (5.1) with

|x(t)| ≤ |x0| (1 + t)−p.

Proof. As in the proof of Theorem 5.1 we investigate the operator
K : X → C0([0,∞),Cn), defined as

(K(x))(t) = e−Atx0 +

∫ t

0

e−A(t−s)

∫ s

0

M(x(s− r))x(r) dr dsds,

now in the set

X :=
{
x ∈ C0([0,∞),Cn)

∣∣|x(t)| ≤ |x0| cp(1 + t)−p
}
.

For x ∈ X, it follows that

|M(x(s− r))x(r)| ≤ cMcα+1
p |x0|α+1

(1 + s− r)−p(1 + r)−p.

Using

(1 + s− r)−p(1 + r)−p = (2 + s)−p

(
1

1 + s− r
+

1

1 + r

)p

,
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we obtain∫ s

0

(1 + s− r)−p(1 + r)−p dr

≤ (2 + s)−p2p−1

∫ s

0

1

(1 + s− r)p
+

1

(1 + r)p
dr ≤ 2p

p− 1
(1 + s)−p,

and thus,∫ s

0

|M(x(s− r))x(r)| dr ≤ cMcα+1
p |x0|α+1 2p

p− 1
(1 + s)−p.

It follows that

|(K(x))(t)| ≤ cA |x0| e−µAt

+ cAcMcα+1
p |x0|α+1 2p

p− 1

∫ t

0

e−µA(t−s)(1 + s)−p ds.

To handle
∫ t

0
e−µA(t−s)(1 + s)−p ds, we choose a t0 ≥ 0 with t0 >

p/µA − 1.

For t ≥ t0, we separate the integral and integrate by parts to
conclude:∫ t

0

eµAs

(1 + s)p
ds =

∫ t0

0

eµAs

(1 + s)p
ds+

∫ t

t0

eµAs

(1 + s)p
ds

=

∫ t0

0

eµAs

(1 + s)p
ds+

1

µA

eµAt

(1 + t)p
− 1

µA

eµAt0

(1 + t0)p

+
p

µA

∫ t

t0

eµAs

(1 + s)p+1
ds

≤
∫ t0

0

eµAs

(1 + s)p
ds+

1

µA

eµAt

(1 + t)p

+
p

µA

1

1 + t0

∫ t

t0

eµAs

(1 + s)p
ds

=

∫ t0

0

eµAs

(1 + s)p
ds+

1

µA

eµAt

(1 + t)p

+
p

µA

1

1 + t0

∫ t

0

eµAs

(1 + s)p
ds
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− p

µA

1

1 + t0

∫ t0

0

eµAs

(1 + s)p
ds

=
µA(1 + t0)− p

µA(1 + t0)

∫ t0

0

eµAs

(1 + s)p
ds

+
1

µA

eµAt

(1 + t)p
+

p

µA

1

1 + t0

∫ t

0

eµAs

(1 + s)p
ds.

=⇒
∫ t

0

eµAs

(1 + s)p
ds ≤

∫ t0

0

eµAs

(1 + s)p
ds+

1 + t0
µA(1 + t0)− p

· eµAt

(1 + t)p
.

For t < t0, obviously∫ t

0

eµAs

(1 + s)p
ds ≤

∫ t0

0

eµAs

(1 + s)p
ds+

1 + t0
µA(1 + t0)− p

· eµAt

(1 + t)p

holds. These estimates lead, along with kt0 :=
∫ t0
0

eµAs 1
(1+s)p ds, to∫ t

0

e−µA(t−s)(1 + s)−p ds ≤ kt0e
−µAt +

1 + t0
µA(1 + t0)− p

· 1

(1 + t)p
,

and hence,

|(K(x))(t)| ≤ cA |x0| e−µAt + cAcMcα+1
p |x0|α+1 2p

p− 1(
kt0e

−µAt +
1 + t0

µA(1 + t0)− p
· 1

(1 + t)p

)
.

For µA ≤ p, we have

e−µAt ≤
(

p

µA

)p

eµA−p(1 + t)−p

for all t ∈ [0,∞), and it follows that

|(K(x))(t)| ≤ cA

(
p

µA

)p

eµA−p |x0|
(1 + t)p

+ cAcMcα+1
p |x0|α

2p

p− 1(
kt0

(
p

µA

)p

eµA−p +
1 + t0

µA(1 + t0)− p

)
|x0|

(1 + t)p
.
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cp > eµA−p(p/µA)
pcA for p ≥ µA implies

δµA≤p :=

(
cp
cA

− eµA−p

(
p

µA

)p)
c−α−1
p

p− 1

2p(
kt0

(
p

µA

)p

eµA−p +
1 + t0

µA(1 + t0)− p

)−1

> 0,

and if
cM |x0|α ≤ δµA≤p

holds, it is

cA

(
p

µA

)p

eµA−p + cAcMcα+1
p |x0|α

2p

p− 1(
kt0

(
p

µA

)p

eµA−p +
1 + t0

µA(1 + t0)− p

)
≤ cp,

and thus K(x) ∈ X.

In the case µA > p, we have

e−µAt ≤ (1 + t)−p,

and thus,

|(K(x))(t)|

≤ cA
|x0|

(1 + t)p
+cAcMcα+1

p |x0|α
2p

p− 1

(
kt0 +

1 + t0
µA(1 + t0)− p

)
|x0|

(1 + t)p
.

Because of cp > cA, it follows that

δµA>p :=

(
cp
cA

− 1

)
c−α−1
p

p− 1

2p

(
kt0 +

1 + t0
µA(1 + t0)− p

)−1

> 0,

and if
cM |x0|α ≤ δµA>p

holds, we also have

cA + cAcMcα+1
p |x0|α

2p

p− 1

(
kt0 +

1 + t0
µA(1 + t0)− p

)
≤ cp.

This gives K(x) ∈ X. The rest of the proof follows as before. �
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We again carry over the result for the system (5.1) to the special
case (1).

Corollary 5.9. Let λ > 0, id be the unit matrix in Cd×d and

A :=

(
0 − id
1
λ id 1

λ id

)
,

where cA ≥ 1 and µA > 0 are constants with
∣∣e−Atx

∣∣ ≤ cAe
−µAt |x|

(x ∈ C2d, t ≥ 0). Let ϕ0, ϕ1 ∈ Cd be given.

Take p > 1 arbitrary, and set

k(p) :=

{
1 p < µA,

eµA−p
(

p
µA

)p

p ≥ µA.

Suppose m ∈ C0(Cd,Cd×d) is locally Lipschitz continuous, and

|m(z)x| ≤ cm |z|α |x| (x, z ∈ Cd, |z| ≤ |(ϕ0, ϕ1)| cp)

for constants cm > 0 and α ≥ 1 and some arbitrary cp > k(p)cA.
Choose t0 ≥ 0 with t0 > (p/µA)− 1, and set

kt0 :=

∫ t0

0

eµAs 1

(1 + s)p
ds.

If

cm |(ϕ0, ϕ1)|α

≤ λ

(
cp
cA

− k(p)

)
c−α−1
p

p− 1

2p

(
kt0k(p) +

1 + t0
µA(1 + t0)− p

)−1

holds, then there is a unique solution ϕ ∈ C2([0,∞),Cd) to (1) with∣∣∣(ϕ̇(t), ϕ(t))∣∣∣ ≤ |(ϕ0, ϕ1)| (1 + t)−p.

Remark 5.10 (Choice of constants).

(i) If d = 1, we have by Remark 5.5 µA ≤ 1 for λ ≥ 1/2, and thus
only p ≥ µA is possible. For λ ∈ (0, 1

2 ), we have µA ∈ (1, 2), and
so we can choose p ∈ (1, µA).
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(ii) t0 can be chosen independent of µA and p in such a way that we
get a smallness condition as weak as possible. Therefore, we have
to find a minimizer of the function

g(t0) := k(p)

∫ t0

0

eµAs

(1 + s)p
ds+

1 + t0
µA(1 + t0)− p

in [0,∞) ∩ (p/µA − 1,∞). The derivative g′ is negative in a
neighborhood of the lower interval boundary and g is not bounded
for t0 → ∞. So there is some minimizer tmin > t1, which means
that, for p ≤ µA, the choice t0 = 0 is not optimal.

(iii) Here we have that cp = cA(α+ 1/α)k(p) gives the weakest condi-
tion for functions m, which can globally be estimated by a mono-
mial.

Remark 5.11. As in Remark 5.3, we can handle the right hand sides
of f and an additional time dependence of the function m. For m, we
then need an estimate of the form

|m(t, s, x)| ≤ cmh(t, s) |x|α

with some h ∈ C0
b (R2,R). An example for such an h is h(t) =

1/(1 + (γ̇t)2) where γ̇ > 0, which is introduced in [4] and in a more
general setting in [1] to describe special physical systems.

The next example shows that, even if the result is stronger, the
smallness condition to obtain exponential stability can be weaker than
the one for polynomial stability.

Example 5.12 (Quadratic kernel). We once again investigate d = 1
and kernels with

m(z) = cmz2.

In Example 5.6 it was shown that, for λ = 1/3, and thus µA = 3/2, the
smallness condition

cm(|ϕ0|2 + |ϕ1|2) ≤
1

36c3A
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implies the existence of an exponentially stable solution. Our result for
polynomial stability leads to

cm(|ϕ0|2 + |ϕ1|2) ≤
4

81c3A
k(p)−2 p− 1

2p

(
kt0k(p) +

1 + t0
µA(1 + t0)− p

)−1

.

It holds that k(p) ≥ 1,

kt0k(p) +
1 + t0

µA(1 + t0)− p
≥ 1 + t0

µA(1 + t0)− p
>

1

µA
=

2

3
,

and the maximum of (p− 1)/2p is 1/(2 ln(2)e). This implies the rough
estimate

cm(|ϕ0|2 + |ϕ1|2) ≤
1

27e ln(2)c3A
.

Example 5.13. For
m(z) = az2 + bz,

we have α = 1, and only the result for polynomial stability can be
applied. These functions play an important role in the mode-coupling
theory; they are linked to the so-called F12-model ([1, 3, 7, 4, 11]).
Here, again, we have to restrict m to the set |z| ≤ cp |(ϕ0, ϕ1)| to obtain
the needed estimate. It then reads

|m(z)| ≤
∣∣az2∣∣+ |bz| ≤ (|a| cp |(ϕ0, ϕ1)|+ |b|) |z| =: cm |z| .
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