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ABSTRACT. The aim of this paper is to propose a numeri-
cal method approximating the solutions of a system of CSIE.
The stability and the convergence of the method are proved
in weighted L2 spaces. An application to the numerical
resolution of CSIE on curves is also given. Finally, some
numerical tests confirming the error estimates are shown.

1. Introduction. Systems of singular integral equations with
Cauchy type kernels may be found in the formulation of many boundary
value problems. In many known physical problems of practical interest,
the coefficients of the equations are constant. The general theory of
such systems is given in [11, 14] (see also the references therein).

In this paper we are interested in the numerical solution of systems
of the following type

(1.1) ajFj(τ) +
bj
π

∫ 1

−1

Fj(t)

t− τ
dt

+
n∑

k=1

∫ 1

−1

hjk(τ, t)Fk(t)dt = Gj(τ), |τ | < 1,

j = 1, . . . , n,

where hjk and Gj , j, k = 1, . . . , n, are known complex-valued functions
defined on [−1, 1]2 and [−1, 1], respectively, and Fj , j = 1, . . . , n, are
the unknowns.
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Moreover, we assume that the constant coefficients aj and bj are real
and such that

a2j + b2j = 1, bj �= 0, for all j ∈ {1, . . . , n}.

Such kinds of systems arise, for instance, in the resolution of Cauchy
singular integral equations of the form

au(x) +
1

π

∫
Γ

M(x, y)

y − x
u(y) dy = g(x), x ∈ Γ,

where Γ = ∪n
j=1Γj is the union of n smooth simple closed arcs Γj in the

complex plane having no common points and being of finite length, M
and g are given complex-valued functions on Γ×Γ and Γ, respectively,
a and b = M(x, x), for all x ∈ Γ, are real numbers such that a2+b2 = 1,
b �= 0 (see Section 6).

In this paper we propose a numerical method in order to approxi-
mate the exact solution (F1, F2, . . . , Fn) of the system (1.1) by means
of polynomial interpolation. The polynomial approximation of the so-
lution is computed by solving a well-conditioned linear system. We
prove the convergence of the method in weighted L2 spaces.

The paper is organized as follows. In Section 2 we give some
preliminary definitions and notations, and in Section 3 we introduce
the spaces in which we are going to study our systems. Section 4 is
devoted to the description of the numerical method. In Section 5 we
state the results dealing with stability and convergence of the method,
and proofs are given in Section 7. In Section 6 we apply the proposed
method to the resolution of CSIE on curves. Finally, in Section 8 we
show some numerical tests.

2. Preliminaries. For any j ∈ {1, . . . , n}, let us consider a Jacobi
weight

vαj ,βj(t) = (1 − t)αj (1 + t)βj

whose exponents −1 < αj , βj < 1 are related to the real coefficients aj
and bj by

(2.1) αj = Mj − 1

2πi
log

(
aj + ibj
aj − ibj

)
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and

(2.2) βj = Nj +
1

2πi
log

(
aj + ibj
aj − ibj

)
,

where i2 = −1 and Mj, Nj are integers chosen such that the index

χj = −(αj + βj) = −(Mj +Nj) ∈ {−1, 0, 1}.

We search the solutions Fj , j = 1, . . . , n, of (1.1) in the following form

Fj(t) = fj(t)v
αj ,βj(t).

Then, defining the operators

(2.3) (Djf) (τ) = ajf(τ)v
αj ,βj(τ) +

bj
π

∫ 1

−1

f(t)

t− τ
vαj ,βj(t) dt

and

(Kjkf) (τ) =

∫ 1

−1

hjk(τ, t)f(t)v
αk,βk(t) dt,

we can rewrite (1.1) in operator form as

(2.4) (Djfj) (τ) +

n∑
k=1

(Kjkfk) (τ) = Gj(τ), |τ | < 1, j = 1, . . . , n.

In order to give a more compact matrix form of the previous system,
we introduce the following notations

f = (f1, f2, . . . , fn)
T , G = (G1, G2, . . . , Gn)

T

and define the operator matrices

D =

⎛⎜⎜⎜⎝
D1 O . . . O

O D2
. . .

...
...

. . .
. . . O

O . . . O Dn

⎞⎟⎟⎟⎠ , K =

⎛⎜⎜⎝
K11 K12 . . . K1n

K21 K22 . . . K2n
...

...
. . .

...
Kn1 Kn2 . . . Knn

⎞⎟⎟⎠ ,

where O denotes the zero operator.
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Then system (2.4) can also be represented as follows

(2.5) (D+K)f(τ) = G(τ), |τ | < 1.

In this paper we shall consider the case in which

χj = −(αj + βj) = 0, for all j ∈ {1, . . . , n}.

Consequently (see [11, page 411], [14, page 42]), system (2.5) has index

χ =

n∑
j=1

χj = 0.

The case when some of the indices χj , j = 1, . . . , n, are not equal to 0
will be the subject of a forthcoming paper. The idea developed there is
the following. If any of the indices χj (say j = q1, q2, . . . , qN ) is equal
to 1, in addition to satisfying system (2.4), the unknown functions fj ,
j = q1, q2, . . . , qN , must satisfy N additional conditions of the following
form (see [7])∫ 1

−1

fj(t)v
αj ,βj(t) dt = Cj , j = q1, q2, . . . , qN ,

where Cj is a constant. If any of the equations has negative index
χj = −1 (say j = r1, r2, . . . , rM ), one can proceed for the jth equation,
j = r1, r2, . . . , rM , of (2.4) following the scheme recently proposed in
[5].

In any event, when the total index χ = χ1 + χ2 + · · · + χn is not
equal to zero, for the solvability of equation (2.5), one also has to take
into account the well-known fundamental Noether theorems (see, for
instance, [11, pages 420, 421], [14, pages 63, 64]).

3. Function spaces. Let us introduce the function spaces in which
we want to study our problem.

Let {pγ,δm }m be the sequence of polynomials which are orthonormal
with respect to the Jacobi weight vγ,δ(t) = (1 − t)γ(1 + t)δ, γ, δ > −1.
We denote by L2

vγ,δ the Hilbert space of all complex-valued functions
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F which are square integrable with respect to vγ,δ, equipped with the
inner product

〈F,G〉vγ,δ =

∫ 1

−1

F (t)G(t)vγ,δ(t) dt

and the corresponding norm

‖F‖vγ,δ,2 =

(∫ 1

−1

|F (t)|2vγ,δ(t) dt
)1/2

.

For more regular functions, we consider the following weighted Sobolev
type spaces

L2,s
vγ,δ =

{
F ∈ L2

vγ,δ : ‖F‖L2,s

vγ,δ

=

( ∞∑
i=0

(1 + i)2s
∣∣∣〈F, pγ,δi 〉vγ,δ

∣∣∣2 )1/2

< +∞
}
,

where s ∈ R+. Note that L2,0
vγ,δ = L2

vγ,δ . Moreover, with respect to

a set of Jacobi weights vγj ,δj , j = 1, . . . , n, let us define the vector
v = (vγ1,δ1 , vγ2,δ2 , . . . , vγn,δn) and consider the product spaces

L2
v =

{
(F1, F2, . . . , Fn) : Fj ∈ L2

vγj,δj
, j = 1, 2, . . . , n

}
and

L2,s
v =

{
(F1, F2, . . . , Fn) : Fj ∈ L2,s

vγj,δj
, j = 1, 2, . . . , n

}
equipped with the norms

‖F‖L2
v
=

( n∑
j=1

‖Fj‖2vγj,δj ,2

)1/2

, F = (F1, F2, . . . , Fn) ∈ L2
v,

and

‖F‖L2,s
v

=

( n∑
j=1

‖Fj‖2L2,s

v
γj,δj

)1/2

, F = (F1, F2, . . . , Fn) ∈ L2,s
v ,

respectively.
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In the sequel, unless otherwise specified, we shall use for brevity the
following notations. Using the exponents αj and βj defined by (2.1)
and (2.2), we set

vj = vαj ,βj , wj = v−αj ,−βj , j = 1, . . . , n,

and

v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn).

Furthermore, we shall denote by C a positive constant which may have
different values in different formulas. We shall write C �= C(a, b, . . . ) to
indicate that C is independent of the parameters a, b, . . . .

4. A quadrature method. In this section we propose a numerical
method in order to solve (2.5). We are looking for an array of
polynomials which approximates the solution f (when it exists).

To this end, let us consider the Lagrange projection Lγ,δ
m based on

the zeros tγ,δ1 < tγ,δ2 < · · · < tγ,δm of pγ,δm , i.e.,

Lγ,δ
m (F ; t) =

m∑
i=1

F (tγ,δi )lγ,δi (t), lγ,δi (t) =
pγ,δm (t)

(pγ,δm )′(tγ,δi )(t− tγ,δi )
.

Then, we approximate the original system (2.4) by the following finite-
dimensional one

(4.1) L−αj ,−βj
m

(
Djfm,j +

n∑
k=1

K̃m,jkfm,k; τ

)
= L−αj,−βj

m (Gj ; τ) ,

with |τ | < 1 and j = 1, . . . , n, whose unknowns are the polynomials
fm,j ∈ Pm−1, j = 1, . . . , n, (Pm−1 denotes the set of all algebraic
polynomials of degree at most m − 1) and where the approximating

operators K̃m,jk, j, k = 1, . . . , n, are defined as(
K̃m,jkf

)
(τ) =

∫ 1

−1

Lαk,βk
m (hjk(τ, ·); t)f(t)vαk ,βk(t) dt.

By the subscript m in the notation fm,j, as usually done in the
literature (see, for instance, [7, 10, 12]), we want to emphasize the
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dimension of the subspace Pm−1 where the approximating solution is
searched.

Let us observe that, taking into account the well-known property of
preserving the polynomials of the dominant operators Dj defined by
(2.3) (see [10, page 447, equations (33), (34)], [12, page 310, (2)]), i.e.,

Djp
αj ,βj
m = (−1)Mjp

−αj ,−βj

m−χj

= − bj
sin(παj)

p
−αj ,−βj

m−χj

(
p
−αj ,−βj

−1 = 0
)
, m = 0, 1, . . . ,

we have
L−αj ,−βj
m (Djfm,j) = Djfm,j, j = 1 . . . , n.

Then, setting

(Km,jkf) (τ) = L−αj ,−βj
m

(
K̃m,jkf ; τ

)
, j, k = 1, . . . , n,

we can introduce the matrix of operators

Km =

⎛⎜⎜⎝
Km,11 Km,12 . . . Km,1n

Km,21 Km,22 . . . Km,2n

...
...

. . .
...

Km,n1 Km,n2 . . . Km,nn

⎞⎟⎟⎠
and rewrite (4.1) in a more compact form, as follows

(4.2) (D+Km)fm(τ) = Gm(τ), |τ | < 1,

where

(4.3) fm = (fm,1, fm,2, . . . , fm,n)
T

and

Gm =
(
L−α1,−β1
m G1, L

−α2,−β2
m G2, . . . , L

−αn,−βn
m Gn

)T
.

Now we will show how to reduce the solution of equation (4.2) to the
solution of a system of linear equations. To this end, let us expand the
polynomials fm,j, j = 1, . . . , n, with respect to the basis{

(λ
αj ,βj

i )−
1
2 l

αj,βj

i

}
i=1,... ,m

,
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where λ
αj ,βj

i denotes the ith Christoffel number related to the weight
function vαj ,βj . We have

(4.4) fm,j(t) =

m∑
i=1

cji(λ
αj ,βj

i )−1/2l
αj ,βj

i (t), j = 1, . . . , n,

with cji = (λ
αj ,βj

i )1/2fm,j(t
αj ,βj

i ).

It can be proved (see, for instance [10, page 448]) that

(Djfm,j) (t
−αj ,−βj
r ) =

bj
π

m∑
i=1

(λ
αj ,βj

i )1/2
cji

t
αj ,βj

i − t
−αj ,−βj
r

,

for r = 1, . . . ,m and j = 1, . . . , n.

Moreover, let us represent the polynomials appearing on both sides
of (4.1) with respect to the basis{

(λ−αj ,−βj
r )−1/2l−αj,−βj

r

}
r=1,... ,m

with λ
−αj ,−βj
r the rth Christoffel number related to the Jacobi weight

v−αj ,−βj .

Then the vector of polynomials fm = (fm,1, fm,2, . . . , fm,n)
T with

fm,j as in (4.4) is a solution of (4.2) if and only if the array

c = (c11, . . . , c1m, c21, . . . , c2m, . . . , cn1, . . . , cnm)T ∈ Rnm

is a solution of the following linear system

(4.5) (λ−αj ,−βj
r )1/2

[ m∑
i=1

bj(λ
αj ,βj

i )1/2

π
(
t
αj ,βj

i − t
−αj ,−βj
r

)cji
+

n∑
k=1

m∑
i=1

(λαk,βk

i )1/2hjk(t
−αj ,−βj
r , tαk,βk

i )cki

]
= (λ−αj ,−βj

r )1/2Gj(t
−αj ,−βj
r ), r = 1, . . . ,m, j = 1, . . . , n,

of nm equations in nm unknowns. Note that the distance between the

zeros t
αj ,βj

i and t
−αj ,−βj
r , for all i, r ∈ {1, . . . ,m}, is large enough in
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order to avoid numerical cancelation. In fact, letting t
αj ,βj

i = cos τm,i

and t
−αj ,−βj
r = cos θm,r, i, r = 1, . . . ,m, in [8] the authors proved that

min
i,r=1,... ,m

|τm,i − θm,r| ≥ C
m
,

wherefrom it is easy to deduce that there exists a positive constant
C �= C(m, i, r) such that

1

|tαj ,βj

i − t
−αj ,−βj
r |

> C.

Summing up, the proposed method consists of solving system (4.5)
and in computing the array of polynomials fm = (fm,1, fm,2, . . . , fm,n)

T

using (4.4). In the next section we show that the linear system (4.5) is
well conditioned and that the array fm converges to the exact solution
f of (2.5), when it exists.

5. Stability and convergence analysis. Now we want to
state stability and convergence results about the described quadrature
method. We first establish compactness of the operator K.

Let us assume that the kernels hjk satisfy the conditions

(5.1) sup
|t|≤1

‖hjk(·, t)‖L2,s
wj

< +∞, j, k = 1, . . . , n,

for some s ≥ 0. Then one can prove the following proposition.

Proposition 5.1. Under the assumptions (5.1) the operator K :
L2
v → L2,t

w is bounded for all t ≤ s. Moreover, it is compact for all
t < s.

For the stability and convergence of the method, we need to make the
following additional assumptions on the known functions appearing in
(2.4). For some s > 1/2, we suppose that

sup
|τ |≤1

‖hjk(τ, ·)‖L2,s
vk

< +∞, j, k = 1, . . . , n,(5.2)

Gj ∈ L2,s
wj

, j = 1, . . . , n.(5.3)
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Theorem 5.1. Let the conditions (5.1), (5.2) and (5.3) be fulfilled for
s > 1/2, and let Ker(D +K) = {0} in L2

v. Then, for any sufficiently
large m (say m > m0), system (4.5) has a unique solution c and
the corresponding array fm, defined by (4.3) and (4.4), is the unique
solution of (4.2).

Moreover, if Am denotes the matrix of the coefficients of (4.5) and
cond (Am) its condition number in the spectral norm, then we have

(5.4) lim
m

cond (Am) = cond (D+K).

Finally, fm converges to the unique solution f of (2.5) in L2
v with the

error

(5.5) ‖f − fm‖L2
v
≤ C

ms
‖G‖L2,s

w
,

where C �= C(m, f).

We emphasize that, according to estimate (5.5), the smoother the
kernels and the known terms, the higher is the convergence order of
the error of the proposed method.

As announced in the introduction, in the next section we will show
an application of the method to the solution of some Cauchy singular
integral equations on curves.

6. An application. Let us consider the following Cauchy singular
integral equations with real constant coefficients

(6.1) au(x) +
1

π

∫
Γ

M(x, y)

y − x
u(y) dy = g(x), x ∈ Γ,

where the integral is understood in the Cauchy principal value sense
and is taken over the curve Γ = ∪n

j=1Γj that is the union of a finite
number n of smooth simple closed arcs Γj in the complex plane which
have no common points and are of finite length. Assume that M and
g are given complex-valued functions on Γ × Γ and Γ, respectively,
and M(x, x) = b, for all x ∈ Γ, with the coefficients a and b real and
satisfying a2 + b2 = 1, b �= 0.
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If we denote by uj := u|Γj and gj := g|Γj the restrictions of the
functions u and g to Γj , respectively, and by Mjk := M |Γj×Γk

, for
j, k = 1, . . . , n, the restriction of the function M to Γj × Γk, we can
rewrite the equation (6.1) as the equivalent system

(6.2)
auj(x) +

1

π

n∑
k=1

∫
Γk

Mjk(x, y)

y − x
uk(y) dy = gj(x),

x ∈ Γj , j = 1, . . . , n.

In order to transform the curvilinear 2D integrals appearing in (6.2)
into 1D integrals on the same reference interval, for each arc Γj , j =
1, . . . , n, we introduce a parametrization σj defined on [−1, 1]:

σj : t ∈ [−1, 1] −→ σj(t) ∈ Γj , j = 1, . . . , n,

and, from (6.1), we get

(6.3)
auj(τ) +

1

π

n∑
k=1

∫ 1

−1

M̂jk(τ, t)σ
′
k(t)

σk(t)− σj(τ)
uk(t) dt = gj(τ),

|τ | < 1, j = 1, . . . , n,

where, for j, k ∈ {1, . . . , n}, we set⎧⎪⎨⎪⎩
uj(t) = uj(σj(t)) t ∈ (−1, 1),

gj(t) = gj(σj(t)) t ∈ (−1, 1),

M̂jk(τ, t) = Mjk(σj(τ), σk(t)) τ, t ∈ (−1, 1).

Moreover if we define, for j, k ∈ {1, . . . , n},

M jk(τ, t) =

⎧⎨⎩
M̂jk(τ,t)σ

′
k(t)(t−τ)

σk(t)−σj(τ)
j = k,

M̂jk(τ,t)σ
′
k(t)

σk(t)−σj(τ)
j �= k,

we can rewrite (6.3) as follows

(6.4) auj(τ) +
1

π

∫ 1

−1

M jj(τ, t)

t− τ
uj(t) dt

+
1

π

n∑
k=1
k �=j

∫ 1

−1

M jk(τ, t)uk(t) dt = gj(τ),

where j = 1, . . . , n.
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Now, let us consider the following transformation:

M jj(τ, t)

t− τ
=

M jj(τ, t)−M jj(τ, τ)

t− τ
+

M jj(τ, τ)

t− τ
. j = 1, 2,

and, moreover, note that

M jj(τ, τ) = M̂jj(τ, τ) = Mjj(σj(τ), σj(τ)) = b, for all τ ∈ (−1, 1).

Then, setting

hjk(τ, t) =

{
1
π

Mjk(τ,t)−Mjk(τ,τ)
t−τ j = k,

1
πM jk(τ, t) j �= k,

(6.4) becomes

(6.5) auj(τ) +
b

π

∫ 1

−1

uj(t)

t− τ
dt

+
n∑

k=1

∫ 1

−1

hjk(τ, t)uk(t) dt = gj(τ), j = 1, . . . , n.

System (6.5) represents a particular case of the more general system
of Cauchy singular integral equations of type (1.1). If the functions
M and g appearing in (6.1) and the parametrizations σj , j = 1, . . . , n,
are sufficiently smooth to assure that the functions hjk and gj , j, k =
1, . . . , n, satisfy the hypotheses of Theorem 5.1, then system (6.5) can
be solved using the method proposed in Section 4.

7. Proofs. We first give some preliminary definitions and results.

In the sequel we will denote by Pm the following set

(7.1) Pm = {(p1, . . . , pn) : pj ∈ Pm, j = 1, . . . , n} .

For a Jacobi weight vγ,δ, γ, δ > −1 and a real number s ≥ 0, let us
denote by

Em(F )L2,s

vγ,δ
= inf

P∈Pm

‖F − P‖L2,s

vγ,δ

the error of best approximation of a function F ∈ L2,s
vγ,δ by means of

polynomials of degree at most m.
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Moreover, let us denote by Sγ,δ
m : L2

vγ,δ → L2
vγ,δ the Fourier projection

Sγ,δ
m F =

m−1∑
k=0

〈F, pγ,δk 〉vγ,δpγ,δk .

The following two lemmas provide Fourier and Lagrange interpolation
error estimates for functions belonging to L2,s

vγ,δ spaces (see [2, 3, 9]).

Lemma 7.1. Let vγ,δ, γ, δ > −1, be a Jacobi weight. For s ≥ 0 and
F ∈ L2,s

vγ,δ , we have

(7.2) ‖F − Sγ,δ
m F‖L2,t

vγ,δ
≤ C

ms−t
‖F‖L2,s

vγ,δ
, 0 ≤ t ≤ s,

where C �= C(m,F ).

Proof. The proof is given in [2].

Lemma 7.2. Let vγ,δ, γ, δ > −1, be a Jacobi weight. For s > 1/2
and F ∈ L2,s

vγ,δ , the estimate

(7.3) ‖F − Lγ,δ
m F‖L2,t

vγ,δ
≤ C

ms−t
‖F‖L2,s

vγ,δ
, 0 ≤ t ≤ s,

holds true, where C �= C(m,F ).

Proof. We first observe that, for F = �F + i
F , one has

‖F‖2
L2,s

vγ,δ

= ‖�F‖2
L2,s

vγ,δ

+ ‖
F‖2
L2,s

vγ,δ

.

Consequently, since Lγ,δ
m F = Lγ,δ

m �F + iLγ,δ
m 
F ,

‖F − Lγ,δ
m ‖2

L2,s

vγ,δ

= ‖�F − Lγ,δ
m �F‖2

L2,s

vγ,δ

+ ‖
F − Lγ,δ
m 
F‖2

L2,s

vγ,δ

holds true. Then, by applying Theorem 3.4 in [9] to estimate both
norms on the right-hand side, the thesis follows.
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Proof of Proposition 5.1. It is sufficient to prove thatKjk : L2
vk

→ L2,t
wj

is bounded for t ≤ s and compact for t < s, for all j, k = 1, . . . , n. To
this end, we can apply Lemma 4.2 in [2]. Nevertheless, we want to give
here an alternative proof of the compactness of Kjk.

Let t < s; since Kjkf ∈ L2,t
wj

for any f ∈ L2
vk
, we can use estimate

(7.2) obtaining

Em−1(Kjkf)L2,t
wj

≤ ‖Kjkf − S−αj ,−βj
m (Kjkf)‖L2,t

wj

≤ Cmt−s‖Kjkf‖L2,s
wj

≤ Cmt−s‖f‖vk,2
with C �= C(m, f). Then, setting S = {f ∈ L2

vk : ‖f‖vk,2 ≤ 1}, we have

lim
m

sup
f∈S

Em(Kjkf)L2,t
wj

= 0

wherefrom we deduce that Kjk : L2
vk → L2,t

wj
is a compact operator (see

[13, page 44]) for all t < s.

In order to prove Theorem 5.1, we need the following results.

Proposition 7.1. Under assumptions (5.1) and (5.2), we have

(7.4) ‖K−Km‖L2
v−→L2

w
≤ C

ms
,

where C is a positive constant that does not depend upon m but depends
linearly upon order n of matrix K.

Proof. In this proof, for brevity, we use the following notations

‖Kjk −Km,jk‖ = ‖Kjk −Km,jk‖L2
vk

→L2
wj

.

For f = (f1, f2, . . . , fn) ∈ L2
v, by applying at first Minkowski’s inequa-

lity and then Holder’s inequality, we have

‖(K−Km)f‖L2
w
=

( n∑
j=1

∥∥∥∥ n∑
k=1

(Kjk −Km,jk) fk

∥∥∥∥2

wj ,2

)1/2
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≤
( n∑

j=1

( n∑
k=1

‖(Kjk −Km,jk) fk‖wj ,2

)2)1/2

≤
( n∑

j=1

( n∑
k=1

‖Kjk −Km,jk‖ ‖fk‖vk,2
)2)1/2

≤
n∑

k=1

‖fk‖vk,2
( n∑

j=1

‖Kjk −Km,jk‖2
)1/2

≤
( n∑

k=1

‖fk‖2vk,2
)1/2( n∑

k=1

n∑
j=1

‖Kjk −Km,jk‖2
)1/2

= ‖f‖L2
v

( n∑
k=1

n∑
j=1

‖Kjk −Km,jk‖2
)1/2

.

Then, in order to prove the thesis, it is sufficient to show that

‖Kjk −Km,jk‖ ≤ C
ms

, for all j, k ∈ 1, . . . , n.

To this end, using Lemma 7.2, one can proceed as in [4, Proof of Lemma
3.1], and the proof is complete.

Lemma 7.3. Let vγj ,δj and vρj ,θj , γj , δj , ρj , θj > −1, j = 1, 2, . . . , n,
be Jacobi weights, and set

v = (vγ1,δ1 , vγ2,δ2 , . . . , vγn,δn) and w = (vρ1,θ1 , vρ2,θ2 , . . . , vρn,θn).

Assume that B : L2
v → L2

w and Bm : L2
v → Pm−1 ⊂ L2

w, m ∈ N, are
bounded linear operators such that

(7.5) lim
m→∞ ‖B−Bm‖L2

v→L2
w
= 0.

Then

(7.6) lim
m→∞

∥∥Bm|Pm−1

∥∥
L2

v→L2
w
= ‖B‖L2

v→L2
w
,

where Bm|Pm−1 denotes the restriction of Bm to the subspace Pm−1.
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Proof. We give the main idea of the proof following step-by-step the
proof of Theorem 2.3 in [6]. In order to simplify the notations, we set
‖B‖ := ‖B‖L2

v→L2
w
.

Let ε > 0 be arbitrarily chosen, but fixed. By the definition of the
operator norm, there exists a function Fε ∈ L2

v such that

(7.7) ‖BFε‖L2
w
> ‖B‖ − ε

2
, ‖Fε‖L2

v
= 1.

For j = 1, 2, . . . , n, let Tm,j be a projection of L2
vγj,δj

onto Pm−1 such
that

(7.8) sup
m

‖Tm,j‖L2

v
γj,δj

→L2

v
γj ,δj

< ∞.

If we denote by Tm the matrix

Tm =

⎛⎜⎜⎜⎜⎝
Tm,1 O . . . O

O Tm,2
. . .

...
...

. . .
. . . O

O . . . O Tm,n

⎞⎟⎟⎟⎟⎠ ,

then, for any F = (F1, F2, . . . , Fn) ∈ L2
v, we have

‖TmF− F‖L2
v
=

( n∑
j=1

‖Tm,jFj − Fj‖2vγj,δj ,2

)1/2

.

Thus, since by (7.8), for any j ∈ {1, 2, . . . , n}, it follows that

‖Tm,jFj − Fj‖vγj,δj ,2 −→ 0, as m → ∞,

we get

(7.9) ‖TmF− F‖L2
v
−→ 0, as m → ∞,

for any F ∈ L2
v. By (7.9) applied to Fε, we deduce that there exists an

index m0 ∈ N such that

(7.10) ‖TmFε − Fε‖L2
v
<

ε

2‖B‖ , for all m ≥ m0,
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and then, by (7.7) and (7.10), we obtain

‖BTmFε‖L2
w
≥ ‖BFε‖L2

w
− ‖B(TmFε − Fε)‖L2

w

> ‖B‖ − ε

2
− ε

2
= ‖B‖ − ε.

Consequently, we get

‖B‖ − ε <
∥∥B|Pm−1TmFε

∥∥
L2

w
≤ ∥∥B|Pm−1

∥∥ · ‖TmFε‖L2
v

and, taking into account (7.7) and (7.9), we obtain

‖B‖ − ε ≤ lim inf
m

∥∥B|Pm−1

∥∥ ‖Fε‖L2
v
= lim inf

m

∥∥B|Pm−1

∥∥
and then

‖B‖ − ε ≤ lim inf
m

∥∥B|Pm−1

∥∥ ≤ lim sup
m

∥∥B|Pm−1

∥∥ ≤ ‖B‖.

Now, since ε is arbitrarily chosen, we can deduce that there exists
limm ‖B|Pm−1‖ and

(7.11) lim
m

∥∥B|Pm−1

∥∥ = ‖B‖.

Finally, since∣∣∥∥Bm|Pm−1

∥∥− ‖B‖∣∣ ≤ ∣∣∥∥Bm|Pm−1

∥∥− ∥∥B|Pm−1

∥∥∣∣
+

∣∣∥∥B|Pm−1

∥∥− ‖B‖∣∣
≤ ∥∥Bm|Pm−1 −B|Pm−1

∥∥
+

∣∣∥∥B|Pm−1

∥∥− ‖B‖∣∣ ,
by (7.11) and taking into account that, by hypothesis (7.5),∥∥Bm|Pm−1 −B|Pm−1

∥∥ −→ 0, as m → ∞,

holds true, then (7.6) follows.

Now we can prove Theorem 5.1.
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Proof of Theorem 5.1. Since the operator D : L2
v → L2

w is invertible
(see for example [12, page 311]) with

D−1 =

⎛⎜⎜⎜⎜⎝
D−1

1 O . . . O

O D−1
2

. . .
...

...
. . .

. . . O
O . . . O D−1

n

⎞⎟⎟⎟⎟⎠ ,

and, by Proposition 5.1, the operator K : L2
v → L2

w, is compact, the
Fredholm alternative is true for equation (2.5) and, then, the operator
D+K : L2

v → L2
w is invertible. By (7.4) and some well-known results

(see for example [1, page 55]), we deduce that, for a sufficiently large
m (say m > m0), the inverse operators (D + Km)−1 exist and are
uniformly bounded with respect to m. More precisely, one has

(7.12)
∥∥(D+Km)−1

∥∥
L2

w→L2
v

≤
∥∥(D+K)−1

∥∥
L2

w→L2
v

1− ‖(D+K)−1‖L2
w→L2

v
· ‖K−Km‖L2

v→L2
w

,

which assures the stability of the method. Then (4.2) has a unique
solution fm which is a vector of polynomials since we have

fm = D−1 (Gm −Kmfm) ,

and, for all j, operator D−1
j satisfies the following property (see [10,

page 447, (33), (34)], [12, page 310, (2)]),

D−1
j p−αj,−βj

m = − bj
sin(παj)

p
αj ,βj

m+χj
, m = 0, 1, 2, . . . .

Hence, in virtue of the equivalence between (4.2) and (4.5), we can
deduce also that the linear system (4.5) has a unique solution c related
to fm according to (4.3) and (4.4).

In order to prove (5.5), we use the identity

f − fm = (D+Km)−1
[
(G−Gm)− (K−Km)(D+K)−1G

]
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and, by (7.12), for m > m0 and C �= C(m), we get

(7.13) ‖f − fm‖L2
v
≤ C [‖G−Gm‖L2

w
+ ‖K−Km‖Lv2→L2

w
‖G‖L2

w

]
.

Thus, taking into account (7.4), we have only to estimate ‖G−Gm‖L2
w
.

But, applying hypothesis (5.3) and (7.3), we have

‖G−Gm‖L2
w
=

( n∑
j=1

‖Gj − L−αj ,−βj
m Gj‖2wj,2

)1/2

≤ C
ms

( n∑
j=1

‖Gj‖2L2,s
wj

)1/2

=
C
ms

‖G‖Lw
2,s .

Finally, combining the last inequality with (7.4) and (7.13), since

‖G‖L2
w
≤ ‖G‖L2,s

w
,

then (5.5) follows.

It remains to prove (5.4). To this end, let us introduce some notation.

Let Pm−1 be defined as in (7.1), and let ‖d‖2 = (
∑N

i=1 |di|2)1/2 denote
the Euclidean norm of an array d ∈ RN .

Taking c = (c11, . . . , c1m, . . . , cn1, . . . , cnm)T ∈ Rnm as an arbitrary
array, then the vector g = (g11, . . . , g1m, . . . , gn1, . . . , gnm)T satisfies
Amc = g if and only if (D+Km)fm = Gm with

fm = (fm,1, fm,2, . . . , fm,n)
T ,

fm,j(t) =
m∑
i=1

cji(λ
αj ,βj

i )−1/2l
αj ,βj

i (t),

and
Gm = (Gm,1, Gm,2, . . . , Gm,n)

T ,

Gm,j(t) =
m∑
i=1

gji(λ
−αj ,−βj

i )−1/2l
−αj,−βj

i (t).
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Since

‖fm‖2L2
v
=

n∑
j=1

‖fm,j‖2vj ,2

=

n∑
j=1

m∑
i=1

λ
αj ,βj

i |fm,j(t
αj ,βj

i )|2

=

n∑
j=1

m∑
i=1

|cji|2

= ‖c‖22
and, analogously, ‖Gm‖L2

w
= ‖g‖2, we can deduce

‖Am‖ = sup
c∈Rnm

c�=0

‖Amc‖2
‖c‖2

= sup
fm∈Pm−1

fm �=0

‖(D+Km)fm‖L2
w

‖fm‖L2
v

=
∥∥(D+Km)|Pm−1

∥∥
L2

v→L2
w
,

where the matrix norm is the spectral one. Now, since by (7.4), one
has

‖(D+K)− (D+Km)‖L2
v→L2

w
−→ 0, as m → ∞,

by applying (7.6), we get

(7.14) ‖Am‖ −→ ‖D+K‖L2
v→L2

w
, as m → ∞.

In the same way, for the inverse matrix, we can write

‖A−1
m ‖ = sup

g∈Rnm

g �=0

‖A−1
m g‖2
‖g‖2

= sup
Gm∈Pm−1

Gm �=0

‖(D+Km)−1Gm‖L2
v

‖Gm‖L2
w

=
∥∥[(D+Km)−1]|Pm−1

∥∥
L2

w→L2
v
.
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Now, taking into account that∥∥(D+Km)−1 − (D+K)−1
∥∥
L2

w→L2
v

≤ ∥∥(D+K)−1
∥∥
L2

w→L2
v
‖K−Km‖L2

v→L2
w

∥∥(D+Km)−1
∥∥
L2

w→L2
v
,

and also using (7.4) and (7.12), we obtain∥∥(D+Km)−1 − (D+K)−1
∥∥
L2

v→L2
w
−→ 0, as m → ∞.

Then, by applying (7.6) again, we get

(7.15) ‖A−1
m ‖ −→ ∥∥(D+K)−1

∥∥
L2

w→L2
v
, as m → ∞.

Hence (5.4) follows from (7.14) and (7.15).

8. Numerical examples. In the following examples we show that
our theoretical results are confirmed by numerical tests.

Where the exact solutions of the systems of integral equations are
unknown, one thinks of their approximate solutions as being exact for
m = 512.

Example 1. Consider the system
(8.1)

(Djfj) (τ) +

2∑
k=1

∫ 1

−1

hjk(τ, t)fk(t)v
αk,βk(t) dt = Gj(τ), j = 1, 2,

with

α1 =
1

4
, β1 = −1

4
, α2 =

1

2
, β2 = −1

2
,

a1 = cos(πα1), a2 = cos(πα2),

b1 = − sin(πα1), b2 = − sin(πα2),

(hjk(τ, t))j,k=1,2 =

( √
2t3τ2

2 + i tτ
2

2

√
2(t−τ)2

π + it2τeτ√
2(t−τ)3

π + iτ2t4 t2eτ + i (t+τ)4

π

)
,

and

G(τ) =

(
G1(τ)
G2(τ)

)
,
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where

G1(τ) =

(
768− 11π

√
2 + 32π

128
√
2

)
τ2 +

(
3
√
2− 2πeτ

)
τ

+

√
2 + 3√
2

+ i

[(
512− 11π

√
2− 8π

64
√
2

)
τ2 +

(
8
√
2 + 3πeτ

2

)
τ

+ 2(1 +
√
2)

]
and

G2(τ) = −4τ4 + 7τ3 −
(
1632 + 31π

√
2

128

)
τ2

+
39

8
τ +

85 + 96πeτ

64

+ i

[
3τ4 − 8τ3 +

(
1920 + 31

√
2π

256

)
τ2

− 27

4
τ +

153 + 64πeτ

32

]
.

The exact solution is

f(τ) =

(
1 + i2
3 + i4

)
.

Solving the above system using our method with m = 3 we get an
approximation of the exact solution with 14 exact decimal digits. In
Table 1 we show that the sequence of the condition numbers of matrices
of the solved linear systems is convergent and, by virtue of (5.4), they
can be considered to be approximations of the condition number of
operator D+K related to system (8.1).

TABLE 1.

m cond (Am)

4 11.91667299603004

8 11.92684144373887

16 11.92684144374379
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Example 2. Now we consider the system of integral equations

(Djfj) (τ) +

3∑
k=1

∫ 1

−1

hjk(τ, t)fk(t)v
αk,βk(t) dt = Gj(τ), j = 1, 2, 3,

with

α1 =
1

3
, β1 = −1

3
, α2 =

1

2
, β2 = −1

2
, α3 =

1

5
, β3 = −1

5
,

a1 = cos(πα1), a2 = cos(πα2), a3 = cos(πα3),

b1 = − sin(πα1), b2 = − sin(πα2), b3 = − sin(πα3),

(hjk(τ, t))j,k=1,2,3

=

( |τ − t|7/2 + iet−τ τt cos(τ + t) + ieτ sin(t) τt2 sin(τ − t) + iτeτ+t

|τ − t|9/2 + i sin(τ + t) τ3et + i(τ2 + t2) (τ + t) cos(τ − t) + iτ3eτ−t

(τt)2 + i cos(τ) sin(t) τ3t4 + it2 cos2(τ) | sin(τ − t)|9/2 + i cos(τ + t)

)
,

and

G(τ) =

⎛⎝ |τ |11/2
τ cos(τ)
τ2eτ

⎞⎠ ,

whose exact solution is unknown. In this case not all the kernels and
right-hand sides are very smooth so that, according to (5.5), we need
to increase m to take some exact digits in the approximation of the
solutions of the system. In Table 2 we show the condition numbers
of the matrices Am, and in Tables 3 5 we show the values of the
approximate solutions computed in the point 0.5.

TABLE 2.

m cond (Am)

8 49.37306654177218

16 49.37280039226505

32 49.37280318970958

64 49.37280347482547

128 49.37280348988397

256 49.37280349059117
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TABLE 3.

m fm,1(0.5)

8 0.3208187252362181 + i 0.4447419102329236

16 0.3206134683482964 + i 0.4447677809862061

32 0.3206154439095880 + i 0.4447686331026605

64 0.3206154406932612 + i 0.4447686676428222

128 0.3206154401649992 + i 0.4447686691262363

256 0.3206154401583543 + i 0.4447686691911085

TABLE 4.

m fm,2(0.5)

8 -0.6030621160766333 + i 1.532017462701152

16 -0.6031162916284238 + i 1.531993295914450

32 -0.6031170690580403 + i 1.531993457171011

64 -0.6031171045004728 + i 1.531993475674232

128 -0.6031171060711339 + i 1.531993476779080

256 -0.6031171061405157 + i 1.531993476834780

TABLE 5.

m fm,3(0.5)

8 0.6218708551225152 + i 0.3715244490699837

16 0.6219006414075582 + i 0.3714922734386401

32 0.6219006424168296 + i 0.3714920984177940

64 0.6219006419218478 + i 0.3714920943196969

128 0.6219006418865786 + i 0.3714920941846753

256 0.6219006418846876 + i 0.3714920941793784

Now we apply the proposed method to some Cauchy singular integral
equations considered in Section 6.
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FIGURE 1.

Example 3. Let the equation

(8.2)

√
3

2
u(x)− 1

π

∫
Γ

cos(i(x− y) + (π/3))

y − x
u(y) dy = ieix, x ∈ Γ,

be given with Γ = Γ1 ∪ Γ2, Γ1 is an arc of the parabola having axes
coincident with the x-axis, vertex in the point −1 and passing through
point −2 + i and Γ2 is the arc of the circle centered in 1 − i and of
radius 1 (see Figure 1).

The exact solution of equation (8.2) is unknown.

Following the procedure shown in Section 6 with the following
parametrizations of arcs Γ1 and Γ2:

σ1 : t ∈ [−1, 1] −→ σ1(t) = −
(
t2 + 2t+ 5

4

)
+ i

(
t+ 1

2

)
∈ Γ1

and

σ2 : t ∈ [−1, 1] −→ σ2(t) = (1 − i) + ei{π[(t+1)/4]+(π/2)} ∈ Γ2,

respectively, we transform (8.2) into the system of integral equations

(Djfj) (τ) +
2∑

k=1

∫ 1

−1

hjk(τ, t)fk(t)v
αk,βk(t) dt = Gj(τ), j = 1, 2,
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with

α1 =
1

6
, β1 = −1

6
, α2 =

1

6
, β2 = −1

6
,

a1 = cos(πα1), a2=cos(πα2), b1=− sin(πα1), b2=− sin(πα2),

h11(τ, t) =
2−2i+τ+t−4(1−i+t) sin((π/6)+(1/4)i(τ−t)(2−2i+τ+t))

2π(t−τ)(2−2i+τ+t) ,

h12(τ, t) =
ie(1/4)iπ(1+t) sin(e(1/4)iπ(1+t)−(π/6)−(1/4)i(9−6i+τ(2−2i+τ)))

4e(1/4)iπ(1+t)−i(9−6i+τ(2−2i+τ))
,

h21(τ, t) =
2(1−i+t) sin(((3/2)+(9/4)i)−e(1/4)iπ(1+τ)−(π/6)+(1/4)it(2−2i+t))

π(9−6i+4ie(1/4)iπ(1+τ)+t(2−2i+t))
,

h22(τ, t) =
2(e(1/4)iπ(1+τ)−e(1/4)iπ(1+t))

4π(t−τ)(e(1/4)iπ(1+τ)−e(1/4)iπ(1+t))
,

+
ie(1/4)iπ(1+t)π(t−τ) sin(e(1/4)iπ(1+τ)−e(1/4)iπ(1+t)+(π/6))

4π(t−τ)(e(1/4)iπ(1+τ)−e(1/4)iπ(1+t))
,

G1(τ) = iei((1/2)i(1+τ)−(1/4)(1+τ)2−1),

G2(τ) = iei((1−i)+ei((π/2)+(1/4)π(1+τ))),

and we apply to it the proposed quadrature method. In Table 6 we
show the values of the condition numbers of matrices Am. Moreover,
denoting by um the approximations of the solution u of (8.2), in Tables 7
and 8 we show their values in the points x1 = −[(25)/(16)]+i(3/4) ∈ Γ1

and x2 = (1−[
√
2 +

√
2/2])−i(1−[

√
2−√

2/2]) ∈ Γ2, respectively. As
one can see, solving a linear system of order 128, we get approximations
with 15 exact decimal digits.

TABLE 6.

m cond (Am)

8 3.048841913959566

16 3.048841940843055

32 3.048841940843052
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TABLE 7.

m um(x1)

8 1.496922102477298 - i 0.032011031307591

16 1.496922100725485 - i 0.032011042414615

32 1.496922100724677 - i 0.032011042414120

64 1.496922100724676 - i 0.032011042414120

TABLE 8.

m um(x2)

8 -0.4612132128020694 + i 2.175802671268618

16 -0.4612132436793596 + i 2.175802204035568

32 -0.4612132315721915 + i 2.175802192213993

64 -0.4612132315721912 + i 2.175802192213990

Example 4. As the last example we take the singular integral
equation

1

π

∫
Γ

ei(x−y+π)

y − x
u(y) dy = ix2 cos2 x, x ∈ Γ,

where Γ = Γ1 ∪Γ2 ∪Γ3 and Γ1 is an arc of the parabola having an axis
that is parallel to the y-axis, a vertex in the point 1 + i and passing
through the point 2+ i3, Γ2 is the segment joining points 5/2+ i(14/5)
and 7/2 and Γ3 is the segment joining the points 4 + i and 5 + i2 (see
Figure 2). Also, in this case, one does not know the exact solution.

Considering the following parametrizations

σ1 : t ∈ [−1, 1] −→ σ1(t) =

(
t+ 3

2

)
+ i

(
t2 + 2t+ 3

2

)
∈ Γ1,

σ2 : t ∈ [−1, 1] −→ σ2(t) =

(
t+ 6

2

)
− i

(
7(t− 1)

5

)
∈ Γ2

and

σ3 : t ∈ [−1, 1] −→ σ3(t) =

(
t+ 9

2

)
+ i

(
t+ 3

2

)
∈ Γ3
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of arcs Γ1, Γ2 and Γ3, respectively, we solve the system

(Djfj) (τ) +
3∑

k=1

∫ 1

−1

hjk(τ, t)fk(t)v
αk,βk(t) dt = Gj(τ), j = 1, 2, 3,

where

h11(τ, t) =
2− i+ τ + t+ e−

1
2 (τ−t)(2−i+τ+t)(i − 2− 2t)

π(t− τ)(2 − i+ τ + t)
,

h12(τ, t) = − (14 + 5i)e−(1/10)(1+15i+5τ(2−i+τ)+(14+5i)t)

π(1 + 15i+ 5τ(2 − i+ τ) + (14 + 5i)t)
,

h13(τ, t) =
(1 + i)e−(1/2)(6i+τ(2−i+τ)−(1−i)t)

π(−6 + (1 + 2i+ iτ)τ − (1 + i)t)
,

h21(τ, t) = −5e(1/10)(1+15i+(14+5i)τ+5t(2−i+t))(2− i + 2t)

π(1 + 15i+ (14 + 5i)τ + 5t(2− i+ t))
,

h22(τ, t) =
1− e[(7/5)+(i/2)](τ−t)

π(t− τ)
,

h23(τ, t) = −5(1 + i)e(1/10)(1−15i+(14+5i)τ+5t(1−i))

π(15 + i− (5− 14i)τ + 5t(1 + i))
,

h31(τ, t) =
e(1/2)(6i−(1−i)τ+t(2−i+t))(i − 2− 2t)

π(6i− (1− i)τ + t(2− i+ t))
,
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h32(τ, t) =
(5− 14i)e(i/10)(15+i+5(1+i)τ−(5−14i)t)

π(15 + i+ 5(1 + i)τ − (5− 14i)t)
,

h33(τ, t) =
−1 + e[−(1/2)+(i/2)](τ−t)

π(τ − t)
,

G1(τ) = − i

8
(3(1 − i) + τ(2 − i+ τ))2

× (1 + cos(3(1 + i) + (1 + 2i+ iτ)τ)),

G2(τ) = − i

100
(30i− 14 + (14 + 5i)τ)2 cos2

((
3 +

7

5
i

)
+

(
1

2
− 7

5
i

)
τ

)
and

G3(τ) = −1

4
(6 − 3i+ τ)2(1 + cos(9 + 3i+ (1 + i)τ)).

In Table 9 we show the values of the condition numbers, and in Tables
10 12 we show the values of the approximate solutions um in the points
x1 = −[(25)/(16)] + i(3/4) ∈ Γ1, x2 = (13/4) + i(7/10) ∈ Γ2 and
x3 = (19/4) + i(7/4) ∈ Γ3, respectively.

TABLE 9.

m cond (Am)

8 26.425614167183726

16 26.425247809212281

32 26.42524786252493

TABLE 10.

m um(x1)

8 687.2469651366328 - i 649.744464069650

16 688.9514329720981 - i 648.566296428546

32 688.9164768918923 - i 648.515709396098

64 688.9164804888837 - i 648.515702927682

128 688.9164804888829 - i 648.515702927681
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TABLE 11.

m um(x2)

8 622.652653218937 + i 106.4300154346315

16 622.700128323161 + i 106.0381793811991

32 622.701111024852 + i 106.0310498810687

64 622.701110838627 + i 106.0310501442189

128 622.701110838629 + i 106.0310501442187

TABLE 12.

m um(x3)

8 17.87034933914506 + i 231.89957193126585

16 17.87083768977788 + i 231.89920684791701

32 17.87083768966272 + i 231.89920684768012

64 17.87083768966258 + i 231.89920684768006

128 17.87083768966271 + i 231.89920684768012
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