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ABSTRACT. Asymptotic expansions at the node points for
approximate solutions of the second kind Fredholm integral
equation with a kernel of Green’s type function are obtained
in the Nystrom method based on the composite midpoint,
the composite Simpson and the composite modified Simpson
rules. Similar expansions are also obtained for the iterated col-
location method associated with piecewise constant, piecewise
linear and piecewise quadratic functions. Richardson extrap-
olation is used to obtain approximate solutions with higher
order of convergence at the node/partition points. Numerical
examples are given to illustrate various results.

1. Introduction. Asymptotic expansions of approximate solutions
of second kind Fredholm integral equations with a smooth kernel
have been extensively studied in the research literature. Some of the
important methods for finding an approximate solution are Nystréom
methods defined by replacing the integral in the integral operator by a
convergent quadrature formula and projection related methods such as
the classical Galerkin method and its variants. Asymptotic expansions
in the case of the Nystrom method associated with various composite
quadrature rules have been obtained by Baker [4] and McLean [11].
They also consider the iterated Galerkin and the iterated collocation
methods associated with projections onto a piecewise polynomial space
with respect to a uniform partition. These expansions are based on
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the Euler-MacLaurin summation formula. The case of the iterated
collocation at Gauss points has also been considered in Lin, Sloan and
Xie [10]. In [10] the range of the interpolatory projection is chosen
to be a piecewise polynomial space with respect to a non-uniform
partition. In this case, a different technique than the Euler-MacLaurin
summation formula needs to be developed. In Kulkarni and Grammont
[8] a modified projection method has been considered.

For an integral operator with a kernel of the type of Green’s function,
only two cases seem to have been studied. Baker [3, 4] considered the
case of the Nystrom operator associated with the composite trapezoidal
rule and obtained asymptotic expansions for approximate solutions at
the node points. As the node points in the composite trapezoidal
rule are the end-points of subintervals, the technique of the Euler-
MacLaurin summation formula is still applicable. In Lin and Liu [9] the
case of the iterated collocation method based on continuous piecewise
linear polynomials with collocation points as the partition points is
considered. It is shown that one step of Richardson extrapolation
provides a globally superconvergent solution. The improvement in the
order of convergence is from h? to h*, where h is the length of the
subinterval in a uniform partition of [0,1]. The results in this paper
are based on a careful and clever manipulation of the terms. However,
it is not evident how to generalize them so as to be applicable to other
cases of piecewise polynomials or to obtain an asymptotic expansion.
The case of non-linear operators for the composite trapezoidal rule has
been studied by Sidi and Pennline [12] and Ford et al. [6].

In a more general setting, the case of an integral operator 7" with
kernel of the type of Green’s function is considered in Frammartino [7].
The operator T is approximated by the iterated collocation operator
T, where 7, f is the interpolating polynomial at n zeros of the Jacobi
polynomial. If the right hand side is sufficiently smooth, then the error
in W' norm is shown to be on the order of n~("+1),

In this paper we consider the case of an integral operator T with a
kernel of the type of Green’s function:

(T2)(s) = /0 k(s, £)o(t) dt.

Let « be a smooth function. We first consider the Nystréom method
associated with the composite midpoint and the composite Simpson
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rules. Let T,, denote the approximating operator. As the kernel
k(s,t) is of the type of Green’s function, it lacks differentiability along
the diagonal, that is, when s = ¢. In order to obtain asymptotic
expansions at the node points in the composite midpoint rule, the
first variable s is fixed to be a midpoint of a subinterval of a uniform
partition, and hence the corresponding function k(s,t)z(t) fails to
be differentiable at an interior point. Thus, the Euler-MacLaurin
formula is not applicable. A similar situation arises in the composite
Simpson rule. In order to take care of this difficulty, we first prove an
extension of the Euler-MacLaurin formula for a function which fails to
be differentiable at an interior point. Asymptotic expansions at the
node points, (T,z — Tz)(r;), are then obtained both in the cases of
the composite midpoint and the composite Simpson rules. We would
like to use the Richardson extrapolation to obtain approximations of
higher order at the node points. In the case of the composite midpoint
rule, if we refine the partition by subdividing each subinterval into two
equal parts, then the new set of nodes does not contain the old nodes,
and thus extrapolation is not possible. However, it is possible to obtain
asymptotic expansions also at the partition points, which allows us to
use the Richardson extrapolation.

Since the kernel is not smooth, in the composite Simpson rule, the
order of convergence at the node points which are not partition points
gets reduced from h* to h2, where h is the length of the subinterval of
an uniform partition. In Atkinson and Shampine [2] and Cubillos [5], a
modified Simpson rule is proposed to restore the order of convergence
to h*. We obtain an asymptotic expansion in the case of the Nystrom
method with modified Simpson rule as well.

Next we obtain asymptotic expansions for (T,z — T'z)(r;) in the
iterated collocation methods based on piecewise constant polynomi-
als, continuous piecewise linear polynomials and continuous piecewise
quadratic polynomials, and show that the result of Lin and Liu [9] is a
special case of our result.

The main result of this paper is an asymptotic expansion for (T,,z —
Tx)(r;), where r; are the node points in Nystr6m methods and the
collocation/partition points in iterated collocation methods. Let u
denote the exact solution and u, an approximate solution. The
asymptotic expansions (u, —u)(r;) are then obtained essentially by the
technique described in Ford et al. [6]. The Richardson extrapolation
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allows us to construct higher order approximations to u by refinement
of partitions. We illustrate our results by numerical examples and show
that they match well with the theoretical predictions.

The above results can be extended to nonlinear operator equations
which will be discussed in another paper.

2. Preliminaries. Consider the following integral operator

1
(2.1) Tz(s) :/0 k(s,t)z(t)dt, se]0,1],

where the kernel k(-,-) € C([0,1] x [0, 1]). In addition, we assume that,
for every s € [0,1], the function k(s,t) is m + 2 times differentiable
with respect to t in [0, s) U (s, 1], where m is an even positive integer.
An example of such a kernel with m = oo is given below:

1-t) ifs<t,
k(s ) = s( ) ifs <
t(l—s) ift<s.
The operator T : C[0,1] — C[0, 1] is compact. Assume that 1 is in the
resolvent set of T so that the following equation
(2.2) u(s) = (Tu)(s) = f(s), s€[0,1],
has a unique solution.

Let T}, be a sequence of operators such that either T, converges to T’
in the norm or 7, converges to T pointwise and the set {T,, : n > 1}
is collectively compact, that is, the set {T,z : n > 1, ||z|| < 1} has a
compact closure in C[0,1]. Thus,

(T -T,)T| — 0, (T -T,)T,|| — 0, asn— co.
In both cases, for all n large enough, 1 is in the resolvent set of T;, and
(2-3) un(s) = (Tnun)(s) = f(s), s €l0,1],
has a unique solution. (See Atkinson [1].)

Let n € N and h = 1/n. Throughout this paper we consider the
following uniform partition of [0, 1]:

1 2 -1
(2.4) l<-<=<..cl
n n

<1
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Let t; = (i — 1)h,i=1,2,... ,n+ 1, be the partition points.

For v > 1, let B,(t) be the Bernoulli polynomial of degree v and
B, = B,(0) be the Bernoulli numbers. Let

By(t) = 1.
We have

(2.5) B,(1-1t) = (=1)"By(t)
and, for v > 2,

(2.6) B, (1) = B,(0).

It then follows from (2.5) and (2.6) that, for v odd, v > 3,

1
(2.7) B,=B,(0)=0, B, <§> = 0.
On the other hand, since By (t) =t — (1/2),
1 1 1
Bi=Bi(0)=—-3  Bi(1)=7}, Bl<§> =0.

We define B, as a periodic function on R with period 1:

B,(t)=B,(t), 0<t<]l, B,(t+1)=B,(t), teR.

Then since By (0) # Bi(1), By is discontinuous at the integers, whereas
for v =0 and v > 2, it follows from (2.6) that B, is continuous on R.
Also, for v =1,2,...,

(B,)'(t) =vB,_1(t), teR/Z,
where (B,)" denotes the derivative of (B,).
Euler-MacLaurin series expansion (Steffensen [14], McLean

[11]): Let f : [0,1] — R be m times differentiable on [0,1]. Let
0 <7 <1. Then

B, (1)
v!

(2.8) f(r) = / fey e+ 3 ZAD ey - pen 4] 4 Ry,
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where

(2.9) Ry = — /0 " Bu(r 1) FOm) (4 dt

m!

3. Euler-MacLaurin series expansion for non-smooth func-
tions. We first prove an extension of the Euler-MacLaurin series ex-
pansion for functions which are m times differentiable on (0, 1) except
at one point. The following proposition provides a basis for various
results which follow.

Proposition 3.1. Fiz s € (0,1). Let f:[0,1] — R be continuous
and m times differentiable on [0,s) U (s,1]. Then for 0 <1 <1,

“(1-) - fH04))

/ F(t) dt+z

(3.1)
—Z T2 5) (1) (5) — $0=D(5-)] + R,
where
! B (T —1t) (m)
(3.2) Ry = — /0 Bkt 20 pom 1) at

Proof. Let m > 2. Recall that, for m > 2, B,, is continuous on R.

Consider
B, (1 —
/ (T =) s (4) gt

/ Bm £ (t) dt

*/S —B - ) ) 4 at.
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On integration by parts, we obtain

R - [Bm(T — t)f(m_l)(t)]t_mr B /OS BT(”;,:ll(Tl;! t)f(m—l)(t) dt

m!

— t=1— 15 _
_ 737;1(!7) (£ D) — g D01
+ w [f(m*1>(s+) - f(m*”(s—)}

[P Bua(m =)
/0 e RO

= - ZnlD) [snn(1) - finn 01
4 BnlT ) [mnp) - gom(oo )
+ Rpy—1.

Continuing in this fashion, we get

v!
(3.3) g
#30 PAT D ooy D (o)) 4 Ry,
v=2 '
Consider

Ry — —/1§1(T—t)f'(t) dt.

Since B is discontinuous at integers, the function B; (7 —t) is discontin-
uous at ¢t = 7. By assumption, the derivative of f, f’, is discontinuous
att =s. Let 0 < s < 7. Then

T 1
Rlzf/o Bl(rft)f(t)dtf/T Bi(r — t)f'(t) dt

1
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:—/0T<T—t—%>f'(t)dt—/:<T—t+%>f/(t)dt
:/Oltf’(t)dt— <r—%> /Olf’(t)dt—/Tlf’(t)dt

:/Ostf’(t)dt+/sl tf'(t) dt

(7 3)ua s - ga) - g0

-/ Jdt BU(A) — FOH) + 1),
Thus, ’ 1
1) = [ @) de+ Bin)(£0-) = £04) + B,
and, using (3.3), we obtain (3.1).

If 7 < s <1, then in an exactly similar manner we can show that the
expansion (3.1) is valid. O

By an affine change of variables, we deduce the following analogous
result on an interval [a, b].

Corollary 3.2. Fiz v € (a,b). Let g: [a,b] = R be continuous and
m times differentiable on [a,v) U (v,b]. Then, for 0 <71 <1,
(3.4)
b
(b—a)gla+7(b—a))= / g(t)dt

a

0= )]

v!

_i (b;!a)”E<T_ Z:Z>

v=2

% [¢ 7 (04) = gV (0=)] + B,

where
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Proof. Let ¢ : [0,1] — [a,b] be defined as
é(t) =a+t(b—a).
Then ¢ is one-to-one, onto and affine. Let
v=¢(s) =a+s(b—a), forsome se (0,1).
Then, for t € (0,s) U (s,1) and v =2,3,... ,m+ 1,
(god) V(1) = (0 —a)¥ Vg D (6(1)).
By putting f = go¢ in (3.1) and (3.2), we obtain (3.4) and (3.5). O

Remark 3.3. If g is m times differentiable on [a, b, then using (2.8),
we obtain

(3.6) (b—a)gla+7(b—a))
= [Catar+ > Lo By [g0 D 0-) - ¢V

v!
+ R,
where R,, is given by (3.5).

The following proposition will be used for obtaining asymptotic ex-
pansions (T,,z — Tz)(r;) for various choices of approximating operators
T,.

Consider the uniform partition of [0, 1] defined by (2.4). The partition
points are given by t; = (i — 1)h, i =1,2,... ,n+ 1, with h = 1/n.

Proposition 3.4. Fiz v € (0,1). Let f : [0,1] — R be a
continuous function and m times differentiable on [0,v) U (v,1]. Then,
foro <7t <1,

(3.7) h zn: F(G—1+1)h)

j=1
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where
- pm ol
(3.8) R, = _W/o B, <r - %)f("ﬂ (t) dt.
f:[0,1] = R is m times differentiable on [0, 1].
(3.9)
n 1

R f((G—1+7)h) = @t

j=1

3 BB [0 - 140 0) + B
v=1

Proof. Case 1: Let v = (i — 1)h for some 4, 1 <i <n+ 1.

Then, using (3.6) for the intervals [(j — 1)h,jh], j = 1,2,... ,n, we
obtain

(3.10) "
hf((j_1+7-)h):/_ f(t)dt
(G-1h
£ VB [F G — £ (G - k)
v=1 ’
+ R,
where

Since B,, is a periodic function with period 1,

|

m jh
R /J nlr — %)ﬂm)(t) dt.
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Hence, taking the sum from j =1 to n, we obtain

n

(3.11) hZf((j —1+7)h)
= [ ey S [fo00) - o)

=3 LB [£¢ V(- D) = 70 (G - DA
+ R,

which proves (3.7) for v = (i — 1)h.
Case 2: Let v € ((¢ — 1)h,ih) for some i, 1 < i <mn.

Then, using (3.4), we obtain

ih

hf((i =1 +7)h) = / F£(t) dt

(i—1)h

£ 30 M B [0 o) - 14D - 1)
-3 BB, (r- 2) [ - 1070
+ R

If j # 4, then (3.10) holds. Hence,

R (G140
Jj=1 ) .
= [ sar+ Y T B [0 - D)
-3 BB (- 1) [0 - 10 0m)] + o

which proves (3.7) for v € (( — 1)h, ih).
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If f is m times differentiable on [0, 1], then (3.10) holds for all j and,
by summing up from j = 1 to n, we obtain (3.9). i

Remark 3.5. The case v = (i — 1)h in the above proposition has been
considered by Baker [4]. We include it for the sake of completeness.

Let f : [0,1] — R be a continuous function. For a fixed v € (0,1),
assume that f is m + 2 times differentiable in [0, v) U (v, 1].

Consider the following remainder term given by (3.8):

’::: [/0 §m<r—%>f(m)(t)dt+/vl Em(r—%>f(m)(t)dt}

Since, for » > 1 and t € R/Z,

B,(t) = vB,_1(t),

we obtain the following result by integration by parts:

N (e
Ppeale- 2ol

hm+1 B (m+1)
s [ B £) s a
Hence,

(3.12) R, =0 (R™1).

Thus, if f is m 4+ 1 times differentiable in [0,v) U (v,1], then the
remainder terms in (3.7) and (3.9) are of the order of A1,

Ifr=0o0or7=1/2,andv=1¢; = (i —1)horv=s; = (i—(1/2))h,
then, since m is even, from (2.7)

Bi1(t) =0 and B,41 <7- — %) =0.
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Then further integration by parts gives

t=0

()] )

hm+2 1 o t ( +2)

As a consequence,
(3.13) R, =0 (R™*?).

4. Numerical quadrature. In this section, we consider the
composite midpoint and the composite Simpson rules. The case of
the composite trapezoidal rule has already been discussed in Baker [3,
4].

Let f : [0,1] — R be a continuous function. Consider the uniform
partition of [0, 1] defined by (2.4). We have ¢t; = (i —1)/n = (i — 1)h,
t=1,2,...,n+ 1, as the partition points. Define

t; +t; o1 .
PO e A S R ) S T I R
2 2

Composite midpoint rule: Let

n

Ma(f) = héf((ﬂ' 3)1) =Y 1)

j=1

Theorem 4.1. Fiz v € (0,1), and let f be continuous and m + 2
times differentiable on [0,v) U (v,1]. Ifv=1t;,1=2,3,... ,n, then
(4.1)

M) = [ wars 3508, (3) [0 - 1000)

v even
m

- Z %B,,(%) [f(”—l)(tﬁ) - f(”—U(t,»—)] +0 (hm+2).

v even
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Ifv=s;,1=1,2,...,n, then
(4.2) 1 i
Ma(f) = /0 feydt+ > %B(%) 770 ) - 7 0)]
v=2 .
m h,, . o m
- X B (7670 (si) = £ (5i-)] + 0 (™ +2).

v even

If f is m + 2 times differentiable on [0, 1], then

M) = [ soyan
(4.3) n i %Bu<%> [f(”—l)(l) _f(u—l)(o)}

+ 0 (R™1?).

Proof. Putting 7 = 1/2 in (3.7) and using the fact that, for v odd,
B,(1/2) =0, we obtain

(4.4)

1 m ooy
Mn(f):/o f(t)dt + ; FBl'(%) [f(”*l)(l)—f(”*l)(O)}
B e

v=2 :

where
L S B R

(4.5) Ry = _W/o Bon (5 - E)f (t) dt.

Ifv=t=(G—1)h,i=1,2,--- ,n+ 1, then for v odd,

EV@%) :E,,(%(il)) :By<%> =0.

Similarly, if v =s; = (i — (1/2))h, i =1,2,... ,n, then for v odd,

E(i - E) _ B, (~(i—1)) = B, (0) = 0.
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Hence from (3.13) it follows that
Ry =0 (R™?).

The required expansions (4.1) and (4.2) follow by putting, respectively,
v=t; and v =s; in (4.4).

In a similar fashion, by putting 7 = 1/2 in (3.9), we obtain (4.3). O

Composite Simpson rule: Let

hzf +4f((36— (1/2))h) + f (7).

Theorem 4.2. Fiz v € (0,1), and let f be continuous and m + 2
times differentiable on [0,v) U (v,1]. Ifv=1t;,1=2,3,... ,n, then
(4. 6)

m

/ () dt + Z h”( 0) + 4B, él/2)+B (1 )>

v even

% (F70 ) = 10 ()

K’ [ B,(0) + 4B, (1/2) + B, (1
_Z_< (0) + é/)+ ())

x (£ ) - 10 )
+ 0 (h™12).
Ifv=s;,i=1,2,...,n, then
(4.7)

/ F(0) di + i h"( 0) + 4B, él/Q)—i—B L(1 ))

v even

< (£ @) - £ ()

- ,(1/2) +4B,(0) + B, (1/2)
-2 (M )

v even
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x (47 (si) = 17 (si))
+ 0 (h™?).

If f is m + 2 times differentiable on [0, 1], then
(4.8)

m

/f Vit + Z h( 0) + 4B, 21/2)+B(1)>

v even

% (Fh () - 1)
+0 (h™?).

Proof. Note that

Hence, using (3.7) and (3.8) we obtain

(4. 9)
h* ( B,(0) +4B,(1/2) + B, (1)
/ f(t dt—l—z " < G >
< (£ (1) = 1 700)
h” ( By(=v/h) +4B,((1/2) - (v/h)) + B, (1 — (v/h))
B VZZ v! ( 6
< (£ ) = £ )
+ Ry,
where
~ h™ (Y Bo(—t/h) + 4B, ((1/2) — (t/h))
R, = ——
(4.10) m! /0 6
4+ Bl = (/) 4 m( 6(t/h))fm)(t) dt.

For v odd, from (2.5) we have

B,(1) = —-B,(0) and B,,(%) =0,
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and hence
B,(0)+4B,(1/2) + B,(1)

6

Also, since the Simpson rule is exact for cubic polynomials,

By(0) +4B5(1/2) + Ba(1) _ /01 By(t) dt = /01 <t2 —t+ é) dt = 0.

=0.

6

Ifv=t; = (i—1)h,i=2,3,...,n, then since B, is periodic function
with period 1,

By(=v/h) +4B,((1/2) = (v/h)) + B, (1 = (v/h))
6

B,(0) +4B,(1/2) + B,(1)
6

which vanishes for » = 2 and for v odd, v > 3.

Also, from (3.13), it follows that
R, = O (R™*?).

Using the above results, we deduce (4.6) from (4.9).
Ifv=s;,i=1,2,...,n, then

By(=v/h) +4B,((1/2) = (v/h)) + B,(1 = (v/h))
6

_ By(1/2) +4B,(0) + B,(1/2)
6

which vanishes for v odd, v > 3. The expansion (4.7) then follows from
(4.9).
The expansion (4.8) is deduced from (3.9) in a similar fashion. o

5. Nystrom operator. Let

N 1
j;wj x(rj)%/o z(t) dt
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be a convergent composite quadrature rule with respect to the uniform
partition (2.4) of [0,1]. Here N depends on n. For example, in the
composite Midpoint rule N = n, and in the composite Simpson rule,
N =2n + 1. The Nystrém approximation of T is defined as

(5.1) T.x(s) = Z wjik(s,r;)x(r;).

Then, since the kernel is continuous and the quadrature rule is conver-
gent for all continuous functions, it follows that 7}, converges to T point-
wise and the set {T}, : n > 1} is collectively compact. (See Atkinson [1,
Section 4.1.1].) In order to obtain an asymptotic series expansions for
(T — Tx)(r;), we use Theorems 4.1 and 4.2 with f(t) = k(s,t) z(t),
where s € [0,1] is fixed. Note that the function f fails to be differen-
tiable at s.

Composite midpoint rule: Let
(T)(5) = Ma(k(s, Ja () = hg_;k( (5-5)1)=((5-3)n)

Theorem 5.1. Let z € C™*12[0,1]. Then fori=2,3,...,n
m/2
(T,z)(t;) = )+ Z Agp)(t:)h2P
(5.2)

+ Z Caop) (ti)h* + O (R™F?) |

whereas, fori=1ori=n+1,
m/2

(53)  (Ta)t) = (To)(t) + > (Az) (t)h? + 0 (2),
p=1

where
t=1

> k(t;,t)x t))] tzo,
g) tl,t)a:(t))} t:ti+.

t=t; —

()it = 2202 (2

ot
(o)t =~ 22202 | (
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Also, fori=1,2,... ,n,
m/2
(Tn)(s:) = (Ta)(s:) + ) (Azp)(si) A"
(5.4) e =t
+ (o) (s:)h +0 (W),
p=1

where

_ . __sz(O) 2 2p—1 N N t=s;+
@oa)(o) = -T2 (5) (lswniate)]

Proof. The expansions (5.2), (5.3) and (5.4) follow respectively from
(4.1), (4.3) and (4.2). O

Composite Simpson rule: Let

(Tnz)(s) = Sn(k(s,)x())
_ N R (G - Dha(( - D)
o 6
4k (s, (j — (1/2))h) = ((G — (1/2))h) + k (s, jh) 2 (jh)

+ 5 .

Theorem 5.2. Let z € C™12[0,1]. Then fori=2,3,...,n,
(5.5)

m/2 m/2
(L) (1) = (T2)(t)+ > (Aag)(t)h%+ 3 (Capr) ()N +O ()

whereas, fori=1ori=n+1,

m/2

(5.6) (Toz)(t:) = (Tz)(t:) + D (Azp)(t:)h* + O (A7),

p=2
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where
A 1 By, (0) + 4B2p (1/2) + Bop(1)
(A2)(0) = 15,
P t=1
>< [(a) K 02(0)]
1 B3,(0) 4+ 4B2,(1/2) + Bap(1)
(o)t =~ o ( it 2 v
a t=t;+
K@ ”Ln_
Also, fori=1,2,... ,n,
m/2
(Tow)(si) = (Tz)(s:) + Y _ (Agpw)(s:)h*P
p=2
(5.7) /2
+ Z Cop)(5:)h*P + O (h™*?)
where

- 1 [ Byp(1/2) + 4By, (0) + Bap(1/2)
( : )

x [<%>2p_l(k(si,t):c(t))]t=5i+.

t=s;—

Proof. The expansions (5.5), (5.6) and (5.7) follow respectively from
(4.6), (4.8) and (4.7). o

Modified Simpson rule: As can be seen from (5.5), (5.6) and (5.7)
that, in the case of the composite Simpson rule, we get

(Tz)(t:) — (Taz)(t:)] = O(hY),

and

[(T)(s:) = (Tuz)(si)| = O(h?).
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In order to restore the order of convergence of h*, we consider the
following modified Simpson method. (See Atkinson-Shampine [2],
Cubillos [5]. )

Fori=1,2,... ,n,let & be a quadratic polynomial such that

i z+1}
T(t:) =a(ts),  #(s)) =w(si),  T(tip1) = x(tiva)-

Then z : [0,1] — R is a continuous piecewise quadratic polynomial
with respect to the uniform partition (2.4).

We introduce the following notation:

stf.ath="5% (1@ +ar(“5) +10))
Thus,
ZS{f, 1)h, jh}.
We define
(5.8)

(T2n®)(s) = > (S{k(s, ) F(-), tiy s} + S{k(s, ) F(), 51, tip1})
%i[ ,ti) +4k:< ;s>5(t;3>
+k<s,si)f<si)]
%i{ T(si +4k( i +2t"“>5<5" +2ti+1>

+ k(s,tit1) E(tiﬂ)]-

Note that the above formula is completely determined by the values of
x at t; and at s;.

We would like to use the results of Theorem 5.2 for obtaining asymp-
totic expansions for (75,7)(t;) and (7%,Z)(s;). However, since 7 is
only continuous on [0, 1], we cannot use Theorem 5.2 directly. Hence,
we define y € C™12[0, 1] as follows.
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For i = 1,2,...,n, let y |;, s,) be a polynomial of degree < 2m + 6
such that

y(”) (t;) = z®) (t;), y(”)(si) = m(”)(si), v=0,1,2,..., m+2,

ti+5i ~ ti+5i
— | = — ).
N\ 2 2

Similarly, for i = 1,2,...,n, let y |, +,,,] be a polynomial of degree
< 2m + 6 such that

y(l/)(sl) = x(u)(si)v y(U) (ti+1) = m(l’) (ti+1)7 v = 07 17 27 .. 7m+27

Sit+tiv1\  ~fSittit1
(5 =25,

Then y € C™%2(0,1] and

and

(5.9) (T2ny)(s) = (T2n)(s), s€]0,1].
Also, for p=1,2,... ,m/2,

(A2pz)(ti) = (A2py)(ti), (C2p)(ti) = (C2py) (i),

(5.10) i=1,2,... .n+1,
and
1) An)e) = (Aa)(s),  (Cor)(s) = (Co)(s0),

i=1,2,...,n,

where Ap, and Cy, are defined in Theorem 5.2. Note that, since
z € C™2)0,1],
2 = yllo < CR™F2,

and hence
(5.12) 1Tz — Tylloo < [[Ellcolle — ylloo < CA™H2.

We obtain the following asymptotic expansion for the modified Simpson
rule.
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Theorem 5.3. Let x € C™"2(0,1]. Then, fori=2,3,...,n,
m/2 h 2p
(Taud)(6) = (T2)(0) + Y- (Ana)6) 5 )
(5.13)

whereas, fori=1orti=n+1,

m/2 N
(5.14) (TZni)(ti):(Tx)(ti)+Z(A2pw)(ti)(§> +0 (hm+?) |

p=2
Fort=1,2,...,n,

m/2

(T2,7)(s5) = (T'x)(s;) + Z(Azp:v)(si) <g>
(5.15) " =

DICRIE <g>2p Lo (hmH),

where Az, and Cop are as defined in Theorem 5.2.

Proof. Since y € C™%2(0, 1], from equation (5.5) of Theorem 5.2, we
obtain

m/2 2p
(Tant)) = (X9)(6) + 3 ()5 )
m/2

(5.16) + g(cgpy)(ti) <g>2p +0 (hm+2> .

m/2 2p
(Ta)(s) = (T0)(s) + D (Ao 3 )
m/2 2p
(5.17) + ) (Copy)(si) (g) +0 (h™*?).

p=2
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Using (5.9), (5.10), (5.11) and (5.12), we deduce (5.13) and (5.15).
In a similar fashion, (5.14) follows from (5.6). o

It follows from (5.13) and (5.15) that
(Tz)(t:) — (Ten)(t:)] = O(RY),  [(T)(s:) — (T2aT)(50)| = O(h?).

Thus, we have restored the order of convergence h* and, in addition,
have obtained an asymptotic expansion at the node points in the
modified Simpson method.

6. Iterated collocation method. Choose r > 1. Let X, be the
space of all piecewise polynomials of order r (i.e., of degree < r — 1)

with breakpoints at ts,...,%,. Let 7,...,7. be r distinct points in
[0,1]. Define

tij:(i—].—f—Tj)h, j=1...,r,i=1,...,n.
The interpolation operator 7, : C[0,1] — X, is defined by
(an)(tij)::c(tij), jzl,... , T iZl,... , .

Since m, — I pointwise, the iterated collocation operator 7T'm, con-
verges to T pointwise and {T'm, } is a collectively compact family. (See
[1].) Let [r1,r2,...,r,| denote the divided difference operator associ-
ated with the points rq,...,rq. Define

wr(r)=(r—7) (T — 7).

The proof of the following theorem is very much similar to that of
Theorem 4.1 in McLean [11].

Theorem 6.1. Let z € C™2[0,1] and s € (0,1). Then
(6.1)
m—+1 m+1
(Tmaz)(s) = (Tz)(s) + Y (Apz)(s)h” + Y (Cp)(s)h? + O(h™F?),

p=r+2
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where
(6.2)
(Apz)(s) = bpp(TP) (s)
(2 )]
(6.3)
p—2 p—j—1 t=s+
Cone) =Y en|(5)  (ete0)]
— ' By—;(7)
6.4 by; _/0 ](T_) - j) wy(7) dr,
Cpj = /0 ®; (T)Bpj(g—__j(;/h)) »(7)dr,
and
(65)  @;(r) = /0 1 (U(].__Tz,;!r s ’(T;’_T]g!_a)rl dor.
If s=0 or s =1, then
m+1

(66)  (Tmaz)(s) = (T)(s) + 3 (Apa) (s)K + O(h™ ),

Proof. For t € [(i — 1)h, ih], we have
(I — 7Tn)£l,'(t) = [tila PN ,tir,t]w (t — til) te (t — tir)a

and, by the Peano representation for the divided difference, we get

ih . . _ ) \r—1
i, ... tir t]z = / liay- s biry (0 — 2)3 2" (2) dz.
(i-1)h (r—1)!
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Putt=(i—1+7)hand z = (i — 1 4+ o)h to obtain
[t“,... ,tiT,(i—l—i-T)h]LE

:/0 (71, ... ,Z';,i']l()'!—o)r 2O — 1+ 0)h] do.

Taylor’s theorem implies

m+1 () 1 h ‘ '
2~ 1to)h] = 3 = K(Zj —7«; DM (5 —ryi=rhi—r 1 o(am—r+2)
i=r '
Thus,
m+1

[tits -+ s ti, (i=147)he = Y @;(r)aW [(i—1+7)R]W "+O(R™7H2).
j=r

Note that
(t - til) e (t - tir) = hrwr(T).
Hence,
m+1 ) ]
(I-m)z((i—14+7)h) = Z h7<I>]-(T)a:(7)[(i— 147)h] wT(T)+O(hm+2).
It follows that
(6.7)
n_ ik
T(I — mp)x(s) = ; /(“)h k(s,t)(I — mp)x(t) dt

:Z/O hk(s, (i — 1+ 7)h) (I — ma)e](i — 1+ 7)h] dr
= Zhj/o ®;(7)

{hz k(s,(i —14+7)h)zD[(E -1+ T)h]} wy(T)dr

+ O(h™*?)
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If s € (0,1), then using (3.12) and the summation formula (3.7), with
m replaced by m + 1, we get

n

(6.8) hY k(s,(i—1+7)h)aW[(i —1+7)h]

i=1

- / (s, )29 (1)

(ORI
_ mi: W K%)p_l (k(s,t)iv(j)(t)> ]:jjhp
+ Op(;zm+2*j).

Substituting the above formula in (6.7) and rearranging terms, we
obtain

(6.9)
m—+1 m—+1

(Traz)(s) = (T2)(s) + 3 (Apa)($)h? + 3 (Cpe)(s)hP + O(h™+2).
p=r p=r+2

If s =0 or s = 1, then using the summation formula (3.9), we get

hzn: k(s, (i —1+7)h)zD[(i — 1 4 7)A]

- / k(. 0)29) (8) dt

+ 'S~ Buln) [( 0 >p1k(s,t)x(j)(t)] T

= p! ot
+ O(h™+279),

Substituting the above formula in (6.7), we obtain the expansion
(6.6). O

Remark 6.2. Note that b,; which is defined by (6.4) does not depend
upon s.
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Suppose that the points 71, 72, ... , 7. are placed symmetrically in the
interval [0, 1], that is, 7,_p41 = 1 — 7, for all p. Then (see [11])
(6.10) '
Oi(1—71)=(-1)""®,(7), wr(l=71)=(-1)"w,(1), 7€]0,1].
Recall from (2.5) that
By—j(1—7) = (=1)! 7/ B,—().
It follows that

byi = —/0 éj(r)Bp_—](.T!) w, (1) dr = (=1)Pby;,

(p—4)
and hence for p odd,
(6.11) by; = 0.

As a consequence, we deduce the following expansion from (6.1).
(6.12)

m m+1

(Tmaz)(s) = (T2)(s)+ Y (Apz) ()R + D (Cpz)(s)h? + O(R™*?),

=T p=r+2
p even

where (A,x)(s) and (Cpx)(s) are defined respectively by (6.2) and (6.3).

We now consider some cases where the points 7, 72, ... , 7. are placed
symmetrically in the interval [0, 1].

Special cases: 1. Let X, be the space of piecewise constant
functions with » = 1 and 7 = 1/2. The interpolation operator
T 1 C[0,1] — X, is defined as

(7Tn$)(8i) = Qf(Si), i= ]-7 2; B LD

where s; = (i — (1/2))h.

Corollary 6.3. Let x € C™2[0,1]. Then, fori=2,...,n,

m/2

(Trn@)(ts) = (Tz)(t:) + Y (Agp)(t:)h*P
(6.13) e =

+ Y (Cop) ()1 + 0 (W +2),

p=2
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whereas, fori=1ort=n+1,

m/2
(6.14)  (Tmpz)(t:) = (Ta)(t:) + D (Azp) (t:)h* + O (A™*?) |
p=1
where ¢, j = —by ; and Aap and Coy, are respectively given by (6.2) and
(6.3).
Fori=1,2,...,n,
m/2

(Tmaz)(si) = (Tz)(si) + ) (Azp) (5:)h*

(6.15) 12
+ D (Capa)(s:)h* + O (A™42)
p=2
where

e B2 (1Y
= [ o P =)o
Proof. Let s =t; = (i — 1)h. Then

Cpj = —bpj = /0 5,0) ﬁi"fﬁﬁf (T - %> o

and, using (6.11) and (6.12), we obtain (6.13). Expansion (6.14) follows

from (6.6).
Let
=s;, = L h 1,2
§s=8, = |1 5 , t=1,4, n

Then )

— S —

By <T - E) = Bp—; <7' 5)
Note that

= T_l _ Bj(T+(l/2)) if 7 €10,(1/2)],
B’( 2) {Bm(l/z)) if 7 < [(1/2), 1)
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Since

Bj(]- - T) = (_1)ij(T)a TE [07 1]7
it can be verified that
_ 1 - 1
(6.16) B; <(1 —-7)— 5) = (-1)’B; <7‘ - 5), T €10,1].
Since r = 1, from (6.10),

®;(1-7)=(-1)"'®;(r) and wi(l—7)=—wi(7).

Thus,
Cpj = /01 D, (T)_B—p_j(;:_jg!l/z)) <T - %) dr
:(1yiél¢j@gf§:%;rf%ﬁal(r%)dT::(DPqU

Hence, for p odd, c¢p; = 0. The expansion (6.15) then follows from
(6.12). O

2. Let X,, be the space of piecewise linear continuous functions with
r =2and 7y =0, 72 = 1. The interpolation operator =, : C[0,1] — X,,
is defined as

Corollary 6.4. Let x € C™*2[0,1]. Then, fori=2,...,n,

m/2
(Tmpz)(t:) = (Tz)(t:) + Y (Asp)(t:)h*P

6.17 P

(6.17) 2
+ D (Cop) () + O (B42)
p=2
whereas, fori=1ori=n+1,
m/2

(6.18)  (Tmaz)(ts) = (Tx)(t:) + D (Azp@) (t:)h* + O (h™F?)

p=1
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where cp; = —by; and Agp and Cap are respectively given by (6.2) and
(6.3).

Proof. Let

Then

As a consequence,

i = by = [ BT ) - Dar

Since 73 = 1 — 11, by (6.11), for p odd,
by; = 0.

Thus, expansions (6.17) and (6.18) follow respectively from (6.12) and
(6.6). O

3. Let X,, be the space of piecewise quadratic continuous functions
withr =3 and 3 = 0, 72 = 1/2 and 73 = 1. The interpolation operator
7 : C[0,1] — X, is defined as

(mn)(s;) = z(s;), (mpx)(t;) = x(t;), i=1,2,...,n,

and
(an’f') (tn+1) = m(tn+1)-

Corollary 6.5. Let z € C™*2[0,1]. Fori=2,...,n,

m/2

(Trn@)(ts) = (Tz)(t:) + Y (Agp)(t:) AP
(6.19) e =2

+ Y (Copr) ()1 + 0 (W +2),

p=3
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whereas, fori =1 and i =n+1,

m/2
(6.20) (Trpz)(t;) = (Tx)(t;) + Z(AQ,,x)(ti)h%’ +0 (R™1?),
where
i = —b,; = 1 'T—Bpfj(TT 7'—1 T — T
=ty = [ HOTES (7= 5) - D

and Asp, and Coy are respectively given by (6.2) and (6.3).

Fori=1,2,...,n,

m/2
(Tmaz)(si) = (Tz)(s:) + Y _ (Agp)(s:)h?"
(6.21) e =2
+ D (Capr)(s:)h* + O (A™42)
where

As the proof is similar to the earlier proofs, we skip it.

7. Operator equations. Consider the second kind Fredholm

integral equation

(7.1) u(s) = (Tw)(s) = f(s), s€][0,1],

where T is an integral operator with a kernel of the type of Green’s
function defined by (2.1). We assume that (7.1) has a unique solution
and that the exact solution is in C™*2[0,1]. The above equation is

approximated by

(7.2) un(s) = (Toun)(s) = f(5), s €[0,1],
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where T;, is one of the approximating operator defined in Sections 5
or 6. Note that T}, is a collectively compact family of operators which
converge to T' pointwise and hence, for n large enough, (7.2) has a
unique solution (see [1]).

In Sections 5 and 6, we obtained asymptotic series expansions for
various choices of T;, of the following form:

(7.3)
m/2
(Tnz)(ri) = (Tz)(r:) + Y (Rap) (i)
m/2
+ Y (Sapa)(ri)h®P + O(h™F?), i=1,2,...,N.
p=a+l

The points r; are the node points in the Nystrom method and are the
collocation points in the iterated collocation methods. In the Nystréom
method associated with the midpoint rule and the iterated collocation
method based on piecewise constant functions, the above expansion is
valid, in addition, at the partition points t; = (i — 1)/n = (i — 1)h,
i1 =1,...,n+ 1. This expansion at the partition points is needed for
extrapolation.

Using the technique from Ford et al. [6], we can write asymptotic
series expansions for u,(r;) — u(r;) as described below.

Theorem 7.1. Let T be an integral operator, defined on C|0,1],
with a kernel of the type of Green’s function defined in Section 2. We
assume that, for m even and for each fized s € [0,1], the kernel k(s,t)
of T is m + 2 times differentiable with respect to the second variable t
in (0,8) U (s,1). Let the exact solution u of (7.1) be in C™12[0,1]. Let

t; +1t;
=AW 1o
2
Then the following expansions are valid.

1. Nystrom method: Composite midpoint rule, composite
Simpson rule, iterated collocation method: Piecewise con-
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stant functions.

m/2

(7.4) ) + Z Mp(ti)h*P + O(h™*2),
m/2

(7.5) )+ Z 8, (5:)R% + O(h™F2).

2. Nystrom method: Composite modified Simpson rule,
iterated collocation method: Piecewise quadratic functions.

m/2

(7.6) )+ Z p(t:)h? + O(h™+2),
m/2

(7.7) )+ Z S5p(5:)R% + O(h™T2).

3. Iterated collocation method: Piecewise linear functions.

m/2
(7.8) )+ Z np(t:)h? + O(h™+2).

Note that the functions n, € C™2722[0,1] and §, € C™T2-27[0, 1]
and are independent of h.

For each t; = (i — 1)/n, i = 1,... ,n+ 1, and for u,(t;) satisfying
(7.4) or (7.8), define

Un,o(ti) = un(ti)

and

220 11 () — un - 1(t)
220 — 1 ’

(7.9)  wn,(t;) = 1=1,2,...,m/2 1.

Then we have the following result.
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Corollary 7.2. Suppose that the conditions of Theorem 7.1 hold.
Then

m/2
una(ti) = u(ts) + Y erp(ti) kP +O(R™H?),
p=Il+1
i=1,2,...,n+1,

(7.10)

where the functions e, are independent of h.

In a similar fashion, for each t; = (i —1)/n,i=1,... ,n+ 1, and for
uy, (t;) satisfying (7.6), define

un’o (ti) = un(ti)

and

ity = 21 () w1 (8)
(7.11) it 2242 _ | ’

1=1,2,...,m/2—1.

Then we have the following result.

Corollary 7.3. Suppose that the conditions of Theorem 7.1 hold.
Then

m/2
Una(ti) = u(ts) + Y erp(ti)h* + O(R™F2),
p=I1+2
i=1,2,...,n+1,

(7.12)

where the functions e, are independent of h.

In the next section, we validate the above results by numerical
examples.

Remark 7.4. We now show that the result of Lin and Liu [9] is a
special case of our results. Let X,, be the space of piecewise linear
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continuous functions with r = 2 and 73 = 0, 75 = 1. The interpolation
operator m, : C[0,1] = X,, is defined as

(mnx)(t;) =(t;), i=1,2,...,n+1.

Let z € C*[0, 1]. Then from (6.12) we obtain the following asymptotic
expansion which is valid for each s € [0, 1].

(7.13)  (Tmnz)(s) = (Tx)(s) + (Azz)(s)h* + O(h*), s € [0,1],

where

(A7)(s) = byaTz® (5) = —( /0 " By(r)r(r— 1) dT> T2 (s).

Let u be the exact solution of (7.1), and let u, be the approximate
solution satisfying

un(s) — Tmpun(s) = f(s), s€[0,1].
Using the resolvent identity, we obtain
(7.14) un(s) = u(s) + h?n(s) + O(h?), s€0,1],
where the function 7 is independent of h. Let us, denote the approxi-

mate solution associated with the uniform partition of [0, 1] consisting
of 2n subintervals. Then

(7.15) Ugn (s) = u(s) + hzzn(s) +0(hY), selo,1].
Define

(7.16) Un1(s) = M, s €[0,1].
Then, for s € [0, 1],

(7.17) U1 (s) — u(s) = O(h%),

which is the result proved by Lin and Liu [9].
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8. Numerical results. We consider the following integral equation
from Atkinson and Shampine [2].

(81)  uls)— /01 k(s, £)u(t) dt — (1 - %) sin(rs), 0<s<l

with
1—-t) ifs<t
k(s,t) = 8( ) 1 s=h
t(l—s) ift<s.
The exact solution is sin(7s).

The above integral equation is approximated by
Up — Trup = f )

for various choices of approximating operators 15,.

We use the following notation. Let s =1/2 or s =1/4 and

EY = |u(s) —un(s)l, B3 = |u(s) = una(s)],
By = lu(s) —una2(s)], EI = |u(s) —uns(s)],

where u, 1, | = 1,2,3, are defined by (7.9) or by (7.11). The orders of
convergence are computed by using the following formula:

oy = BBER) gy
-1 10g(2) ’ ) Sy Dy Ee

8.1. Nystrom method. The expected orders of convergence are as
follows.

Composite midpoint rule, Composite Simpson rule: ag = 2, a3 = 4,
ags = 6, ag = 8. (See Theorem 7.1 and Corollary 7.2.)

Composite modified Simpson rule: oy = 4, a3 = 6, az = 8. (See
Theorem 7.1 and Corollary 7.3.)

It is seen in Tables 1-6 that the computed orders match well with the
expected orders.
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TABLE 1. Composite midpoint rule: s = 1/2.

n El" ag E;’ o1 Eg oo EZ” as
8 |5.13x10"¢4
16 | 1.27x 1074 | 2.02 | 2.12 x 10~6
32 [3.15%x1075[2.00 | 1.31 x10~7 | 4.01 | 1.11 x 10~?
64 | 7.88 x 1076 | 2.00 | 8.19 x 10~9 | 4.00 | 1.72 x 10~'1 | 6.01 | 1.28 x 10~ 13
128 | 1.97 x 1079 | 2.00 | 5.12 x 10=10 | 4.00 | 2.68 x 10~13 | 6.00 | 8.88 x 1016 | 8.05
TABLE 2. Composite Simpson rule: s = 1/2.
n ET g E3 a1 Eg” a2 By as
8 |1.53x10°%
16 | 4.63 x 107% | 1.72 | 1.08 x 10~2
32 | 1.21 x 1075 | 1.94 | 6.50 x 10~7 | 4.05 | 2.60 x 10~8
64 | 3.05x 1075 | 1.99 | 4.03 x 108 | 4.01 | 3.94 x 1010 | 6.04 | 1.21 x 10~ 11
128 | 7.64 x 10~7 | 1.99 | 2.51 x 10~9 | 4.00 | 6.11 x 102 | 6.01 | 4.60 x 10~ 1% | 8.05
TABLE 3. Composite modified Simpson rule: s = 1/2.
n ET ag E3 ay EZ a2
8 | 1.53 x10~°
16 | 4.63 x 1076 | 4.11 | 5.59 x 10~8
32 | 1.21 x 10~7 | 4.03 | 8.49 x 10~10 | 6.04 | 2.50 x 10~ 10
64 | 3.05x 1079 | 4.01 | 1.32 x 10~ | 6.01 | 9.46 x 10~* | 8.04
128 | 7.64 x 10710 | 4.00 | 2.06 x 10~ 13 | 6.00 0 —
TABLE 4. Composite midpoint rule: s = 1/4.
n E7 ag EY ay EY a2 E} as
8 |3.63x10°3
16 | 8.95 x 10=% | 2.02 | 1.50 x 10~
32 [2.23x1075 | 2.00| 9.29 x 10-8 | 4.01 | 7.85 x 1010
64 | 5.57 x 1076 | 2.00 | 5.79 x 10~9 | 4.00 | 1.22 x 10~'1 | 6.01 | 9.14 x 10~ 14
128 | 1.39 x 1076 | 2.00 | 3.62 x 10~10 | 4.00 | 1.90 x 10~13 | 6.00 | 1.11 x 10~16 | 8.04
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TABLE 5. Composite Simpson rule: s = 1/4.

7

n Ef“ ap E;‘ a1 Eg‘ ag EZ as
8 | 1.08x10*
16 | 3.27x107% | 1.72 | 7.63x 10~
32 | 8.54x107°% | 1.94 | 4.60x10~7 | 4.05 | 1.84x10~7
64 | 2.16x1076 | 1.99 | 2.85x10~8 | 4.01 | 2.78x10710 | 6.04 | 8.58 x 1012
128 | 5.40x10~7 | 2.00 | 1.78x 1079 | 4.00 | 4.32x 10712 | 6.01 | 3.33x 10~ 14 | 8.01
TABLE 6. Composite modified Simpson rule: s = 1/4.
ET ag E3 a1 EZ s
8 | 3.24x107°
16 | 1.99 x 1076 | 4.03 | 3.95 x 10~8
32 | 1.24 x 107 | 4.01 | 6.00 x 10710 | 6.04 | 1.77 x 1010
64 | 7.72x 1079 | 4.00 | 9.31 x 1072 | 6.01 | 6.68 x 10~'* | 8.04
128 | 4.82 x 10710 | 4.00 | 1.45 x 10~ 13 | 6.00 | 1.11 x 10—16 | 9.23
TABLE 7. Piecewise constant collocation at midpoints: s = 1/2.
n ET g By a1 EgL s By as
8 |7.32x107%
16 | 1.82x10~% | 2.01 | 1.80x 10~
32 | 4.53x1075 | 2.00 | 1.11x10~7 | 4.01 | 8.75x10~10
64 | 1.13x1076 | 2.00 | 6.97x10~° | 4.00 | 1.36x10~11 | 6.01 | 9.37x 1014
128 | 2.83x 107 | 2.00 | 4.35x10~10 | 4.00 | 2.12x10~13 | 6.00 | 4.44x10~16 | 8.04
TABLE 8. Piecewise linear collocation at endpoints: s = 1/2.
n E1" ap E2" a1 Eg‘ as EZ as
8 |3.61x10~%
16 | 9.05x1075 | 2.00 | 2.07x10~7
32 |2.26x107° | 2.00 | 1.30x10~8 | 4.00 | 8.08x 10712
64 | 5.66x1076 | 2.00 | 8.10x10~10 | 4,00 | 1.26x 1013 | 6.02 | 2.22x 10~ 16
128 | 1.41x107% | 2.00 | 5.06x 1011 | 4.00 | 2.00x10~15 | 6.00 0 —




78 REKHA P. KULKARNI AND AKSHAY S. RANE

TABLE 9. Piecewise constant collocation at midpoints: s = 1/4.

E1" ap E2" a1 Eg‘ ag EZ as

8 |5.17x107%
16 | 1.28x107% | 2.01 | 1.27x10°6
32 | 3.20x107% | 2.00 | 7.89x10~8 | 4.01 | 6.19x10~10
64 | 8.01x107% | 2.00 | 4.92x10~° | 4.00 | 9.61x10~12 | 6.01 | 6.61x 1014
128 | 2.00x 106 | 2.00 | 3.08x1010 | 4,00 | 1.49x1013 | 6.01 | 7.77x 10716 | —

TABLE 10. Piecewise linear collocation at endpoints: s = 1/4.

E7 ap EY ay EY ag E} as

8 |2.56x107%
16 | 6.40x10~% | 2.00 | 1.47x10~7
32 | 1.60x1075 [ 2.00 | 9.17x10~9 | 4.00 | 5.71x10~12
64 | 4.00x10-6 | 2.00 | 5.73x1010 | 4,00 | 8.86x 1014 | 6.01 | 6.66x 1016
128 | 1.00x 106 | 2.00 | 3.58x 1011 | 4.00 | 1.78x 1015 | 5.64 | 3.33x10~16 | —

8.2. Iterated collocation method. We consider the following two
cases.

1. Let X,, be the space of piecewise constant functions with respect to
a uniform partition of [0, 1] with n subintervals, and let 7, : C[0, 1] —
X,, be defined as

(ﬂ-nx)(si) = ‘T(Si)a i = ]-7 2) SO [

2. Let X,, be the space of piecewise linear continuous functions with
respect to a uniform partition of [0,1] with n subintervals, and let
T : C[0,1] — X,, be defined as

(mnx)(t;) =(t;), i=1,2,...,n+1.

Let T, = Tm,.

The expected orders of convergence in both cases are ay = 2, ay = 4,
as = 6, ag = 8 (Theorem 7.1, Corollary 7.2), and Tables 7-10 show
that the computed orders match well with the expected orders.
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