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ABSTRACT. In this paper, we make a convergence rates
analysis of the non-stationary Augmented Lagrangian Method
for the solution of linear inverse problems. The motivation for
the analysis is the fact that the Tikhonov-Morozov method is
a special instance of the Augmented Lagrangian Method. In
turn, the latter is also equivalent to iterative Bregman distance
regularization, which received much attention in the imaging
literature recently.

We base the analysis of the Augmented Lagrangian Method
on convex duality arguments. Thereby, we can reprove some
of the convergence (rates) results for the Tikhonov-Morozov
Method. In addition, by the novel analysis we can prove
properties of the dual variables of the Augmented Lagrangian
methods. Reinterpretation of the dual variables for the
Tikhonov-Morozov method gives some new convergence rate
results for the linear functionals of the regularized solutions.
As a benchmark for achievable convergence rates of the Aug-
mented Lagrangian Method in the general convex context
we use the results on evaluation of unbounded operators of
Groetsch [14], which is a special instance of the Tikhonov-
Morozov method. In addition we derive the flow, which in-
terpolates the iterates of the Augmented Lagrangian Method
and shows the relation to Showalter’s method.

1. Introduction. In this paper, we are concerned with solving
constrained optimization problems

(1) J(u) — min  subject to Ku = g,
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where J is a convex functional and K : Hy — H> is a linear bounded
operator between Hilbert space H; and Hy. Minimizers of (1) are called
J-minimizing solutions of the equation

(2) Ku=g.

Our main interests are ill-posed equations, that is, when the solution of
(2) does not depend continuously on the data g. Our analysis takes into
account data perturbations in g, which are denoted by ¢°, for which
we assume that we have the additional information that

(3) lg® — gl < 6.

The prime application of the Augmented Lagrangian Method (the
ALM) is to solve constrained optimization problems of the form (1)
and reads as follows:

Algorithm 1.1 (the ALM). Let p € Ha and choose a sequence

{Tn}nen of positive parameters. For n =1,2,..., compute
(4a)
o, < angunin (T1Ku - g P 4 I(0) - G K o”)) and
ueH 2
(4D) Py =151 +7lg’ — Kul).

Historically, the ALM dates back to Hestenes [17] and Powell [28]
(there called method of multipliers). For background references on the
ALM we refer to Fortin and Glowinski [11] and the recent book by
Ito and Kunisch [21]. In the context of imaging and total variation
regularization the ALM has been considered for instance in [20].

The Tikhonov-Morozov method is another example of a regularization
method for solving constrained minimization problems. Our subjective
opinion is that the Tikhonov-Morozov theory has not been considered
in the same general setting as the ALM. However the theoretical results,
especially convergence rates, seem to go much beyond the theory of the
ALM. We will show this by a comparison of the results of the respective
fields.
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We follow the relevant literature of Tikhonov-Morozov regularization
and work with a linear and closed operator L : D(L) C H; — H, whose
domain of definition D(L) is a dense subset of H;. For the comparison
with the ALM we use the convex functional

(5) Tw) = 3L

and then the Tikhonov-Morozov method consists in choosing uf € H;
and in iteratively calculating

(6) u® := argmin <%||Ku—g6||2+J(u—qul)>.

ueHy

It is common to differentiate between stationary and non-stationary
methods, depending on whether the parameters 7,, are chosen constant
or variable.

The present paper shows that Tikhonov-Morozov regularization and
the ALM, with convex penalization functional J from (5), are equiva-
lent. Recently, there have been several publications revealing the equiv-
alence relation between the ALM and iterative Bregman Distance reg-
ularization (see Setzer [33] and the first authors’s thesis [12]), which
consists in iterative calculation of

uj,

. (T K*p?
o~ anganin (3w = o7 2+ D5 il ),
ueH;

where Di(u,v) denotes the Bregman distance between u and v with
respect to & (cf. Section 2). Iterative Bregman Distance regularization
has been suggested in [27] and has attracted much attention since.
The idea to use the Bregman distance as a penalty functional in the
context of regularization, however, dates back earlier, as for example
it was suggested in [8] in order to tackle an image restoration problem
arising from atomic force microscopy.

The first rigorous regularization-theoretic analysis, with the back-
ground of total variation minimization, was conducted in [6]. Note,
however, that general results for the ALM apply also to Bregman Dis-
tance regularization, due to cited equivalence relations. As a further
consequence of the above discussion Tikhonov-Morozov regularization
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is equivalent to Bregman distance regularization when the penaliza-
tion functional J from (5) is used. Therefore, all results in this paper,
which we derive for the ALM, are equally valid for Bregman Distance
regularization, and in particular for the Tikhonov-Morozov method.

Moreover, we show that by using Rockafeller’s duality concept [30]
the dual iterates {p® },en of the ALM can be rewritten as minimizers
of a generalized iterated Tikhonov-Morozov regularization method, the
so called proximal point method. By generalized we mean that the
fit-to-data term is a general convex functional G(-,¢°) and not the
square of a norm. Convergence rate analysis of regularization methods
with general fit-to-data terms is far from being as complete as it is the
case for quadratic fit-to-data. The outlined relations, however, give an
indication of a convergence rate analysis of the ALM based on dual
variables. In particular, as we show, making an analysis for the dual
iterates allows for deriving convergence rates for the primal iterates.
This is the main contribution of this paper.

To summarize, we show below that the ALM is equivalent to a
generalized iterative Tikhonov-Morozov method for dual variables.

An important application of Tikhonov-Morozov regularization is the
evaluation of an unbounded operator L, which is a standard example
of an ill-posed problem. In this case we have the particular situation
of above with K = Id. A typical example of an unbounded operator
L is the Moore-Penrose inverse (see [25]) of a compact linear opera-
tor. For evaluation of unbounded operators, Morozov [24] proposed a
regularization method consisting in calculating Lu?, where

(7) u’ := argmin (lu— u®||? + | Lul?)

for some 7 > 0. This is equivalent to computing u® = (7Id+L*L)'u?’.
The major player in the field of analysis of regularization methods
for evaluation of unbounded operators is Groetsch (see his monograph
[14]): For instance he proved optimal convergence rates up to maximal
order O(6%/3). Faster convergence rates are possible for the iterative
Tikhonov-Morozov method, which uses for approximation of Lu the
evaluations of the iterates ud, which are then defined as the minimizers
of the functional

(8) u— (Jlu—®|? + 7 | Lu — Lup 4 %) -
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Here, in contrast to the standard Morozov regularization, it has been
shown that with an appropriate choice of the regularization param-
eters, {7, }nen and the stopping iteration m,, both depending on §,
convergence rates up to order ¢ are possible [14].

We believe that many convergence and stability results known for
Tikhonov-Morozov regularization are still open for the ALM, that is,
in the general convex setting. This paper makes the attempt to point
out some of the open issues which can be further considered when
generalizing variational regularization theory for unbounded operators
and for the Tikhonov-Morozov method. In this sense, the work of
Groetsch [14] serves as a benchmark on achievable results in the general
setting. A novel facet of the convergence analysis is that we add (weak)
convergence for the dual variables of the ALM. Currently, in fact,
convergence rate results for the Tikhonov-Morozov method are just
expressed with respect to the residuals and the iterates. In the context
of the Tikhonov-Morozov method, errors of the dual variables can be
expressed as functionals of the residuals, for which convergence rates
then follow from the theory of the ALM. It will become transparent that
convergence rates of residuals, iterates, and convergence properties of
the dual variables are strongly coupled.

Finally, we investigate asymptotic methods, which interpolate the
iterates of the ALM. Since the ALM and Bregman distance regular-
ization are equivalent, we call the resulting continuous regularization
method Bregman distance flow (see for instance [4] for examples of such
flows). With the functional (5) this flow method resembles the Showal-
ter method, as a method, which interpolates the Tikhonov-Morozov
method. Again, we use convex duality arguments combined with stan-
dard results from semi-group theory for proving existence of solutions
of flows.

2. Basic definitions. The aim of this section is to summarize
the basic definitions and assumptions needed to perform a convergence
analysis of the ALM. We use the following basic assumptions and
notions from convex analysis:

Assumption 2.1. (i) Hy, Hs, and H denote non-empty Hilbert
spaces. The norms on Hy, Hy and H, respectively, are not further
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specified, and will be always denoted by ||-||, since the meaning is clear
from the context.

(i) Let J : Hy — R be a conver functional from Hy into the extended
reals R = R U {oc}. The domain of J is defined by

D(J) ={u € Hy : J(u) # oo}.

J is called proper if D(J) # & and J(u) > —oo for all u € Hj.
Throughout this paper J denotes a convex, proper and lower semi-
continuous (L.s.c.) functional.

(i) K : Hy — H» is a linear and bounded operator.

In the course of this paper we will frequently make use of tools from
convex analysis. For a standard reference we refer to Ekeland and
Temam [9].

e The subdifferential (or generalized derivative) 0J(u) of J at w is
the set of all elements p € H; satisfying

J(v) = J(u) — (p,v—u) > 0.

When the subgradient consists of a single element, here and in the
following, we identify the subgradient with the element. The domain
D(0J) of the subgradient consists of all v € H; for which 0J(u) # @.
Finally, we define the graph of 0J as

Gr (0J) :={(u,p) € Hy X Hy : p € 8J(u)}.

According to [9, Chapter 1, Corollary 5.1], the set Gr (dJ) is se-
quentially closed with respect to strong-weak topology on Hi x Hj.
That is, if the sequence {(un,v,)}nen of elements in Gr (9.J) satisfies
that w, converges weakly to u and v, converges strongly to v, then

(u,v) € Gr(aJ).
e The functional J* : H; — R denotes the Legendre-Fenchel trans-
form (or the dual functional) of J, which is defined by

(9) J*(v) == usequ; ((v,u) — J(u)).

From its definition it becomes clear that J* is the pointwise supremum
of affine functions and, thus, according to [9, Chapter I, Proposition
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3.1], convex, l.s.c. and proper. Moreover, one has [9, Chapter I,
Corollary 5.2]

(10) p € 0J(u) <= u € dJ"(p).

e Typically, convergence of the ALM is proven with respect to the
Bregman distance. For u € D(0.J) the Bregman distance of J between
u and v with respect to £ € 9J(u) is defined by

D5(v,u) = J(v) = J(u) — (€0 — u).

Next, we introduce different classes of solutions for equation (2)
discussed in this paper.

Definition 2.2. (i) An element u € H;j satisfying (2) is called a
solution of (2).

(ii) Let w € D(J) be a solution of g = Ku. Then g is called attainable.

(iii) An element v € D(J) is called a J-minimizing solution of (2) if
u solves (1).

Let ¢ € Hy be attainable. An element p € Hj is called a source
element if there exists a J-minimizing solution u of (2) such that

(11) K*p € 0J(u).

Then, we say hat u satisfies the source condition (11).

In general, Assumption 2.1 is not enough to guarantee existence of
J-minimizing solutions or the well-posedness of the ALM. For that, one
needs a coercivity condition, like the following:

Assumption 2.3. For each c € R, the sub-level sets of the functional
u — || Kul]® + J(u)

are sequentially pre-compact with respect to the weak topology on H;.
That is, for every ¢ € R, every sequence {u,}nen contained in the
sub-level set
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Ac)={ue Hy : |Ku|*+ J(u) < c}

has a weak convergent subsequence in Hi.

In the remainder of this section we discuss the notions introduced
above for the particular example, when J is chosen as in (5), i.e., when
the ALM reduces to the Tikhonov-Morozov method.

As is common in the theory of the Tikhonov-Morozov method [24]
and the evaluation of unbounded operators [14], let L : D(L) C
Hy; — H be a linear and closed operator defined on the dense subset
D(L) C Hy # @. Closed means that the graph of L,

Gr (L) = {(u,v) € Hy x H : L(u) = v}

is sequentially closed in H; x H. Since D(L) is assumed to be dense,
there exists an adjoint operator [38, Chapter VII.2]

L*:D(L*) c H — H,
with domain
D(L*):={v € H : u+— (Lu,v) is continuous}
satisfying
(Lu,v) = (u, L*v) for alluw € D(L), v € D(L*).

In this context, the precise meaning of J : H; — R as in (5) is as
follows:

(12) J(u) = { L|Lu|? ifue D(L)

+00 else.
In the following lemma we give a characterization of the subgradient,
the Bregman distance, and the domain D(9J) of J as defined in (12).
We note that these results are well-known (cf. [22, 23, 32]) but usually
not specified explicitly. Thus, for the sake of completeness, we also
provide the proofs.
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Lemma 2.4. The functional J is proper, convex, and l.s.c. More-
over, D(0J) = D(L*L) and the subgradient is given by

L*Lu ifue D(L*L)
%] else.

8J(u) = {

Proof. Since L is densely defined on a non-empty Hilbert space, J
is proper. Moreover, convexity follows from the linearity of L and the
convexity of ||-[|?/2.

We prove lower semi-continuity: Assume that {u$},en is a conver-
gent sequence with limit u in H;. If {Lu®},cn converges in H to
an element v, then from the closedness of L it follows that Lu = wv.
Therefore, ||Lu|| = lim,, oo ||Lud | = liminf,, o || Zu ||.

If Lul does not converge, then we differ between the case that there
exists a subsequence of {ui(n)}neN such that liminf,_, J(ui(n)) =

+00 or {ul},en is bounded. In the first case it is obvious that
J(v) < liminf,,_, J(ug(n)) = 400 and nothing remains to be shown.

In the second case, we can select a sub-sequence {Lui(n)}nEN which
is weakly convergent to some v € Hs. Since Gr (L) C Hy x H is closed
and convex it is weakly closed (cf. [38, Theorem IIL.3.8]) and thus
Up(n) — w implies Lu = v. Weak lower semi-continuity of the norm
eventually gives

1 N
) = 1l < tmint 5 g |

It remains to show that D(0J) = D(L*L) and 0J(u) = L*Lu for
u € D(L*L). By verification it follows that L*Lu € 8J(u), whenever
u € D(L*L). Next, we prove that the operator Gr (L*L) is maximal
monotone. That is, Gr (L*L) is not properly contained in any monotone
set in H; x Hy. The elementary inequality

(L*Luy — L* Lug,uy — ug) = || Luy — Lug||* > 0

for all w; € D(L*L) (¢ = 1,2), shows that Gr(L*L) is a monotone
subset of Hy x Hy. Since D(L) is dense by assumption, L*L is densely
defined and self-adjoint and therefore closed in Hy x H; ([38, Corollary
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VII 2.13]). This, however, is already sufficient for Gr (L*L) to be
maximal monotone (see, e.g., [19, Chapter 3, Theorem 1.45]). The
subgradient of a convex and l.s.c. functional is maximal monotone since
0J is (maximal) monotone and due to the fact that

L*Lu C 8J(u);

this shows {L*Lu} = 0J(u) for all w € D(L*L). o

The next remark concerns the Bregman distance of J as in (12) as
well as the interpretations of the notions of Definition 2.2:

Remark 2.5. Let J be as in (12).
(i) For v € D(L) and w € D(L*L), we have

- 1
Dy (v,u) = S| L(u = v)]*

(ii) An element g € Hy is attainable, if K=({g}) N D(L) # @.

)
(iii) A J-minimizing solution w satisfies the source condition (11) if
u (L*L) and if there exists p € Hy such that

K*p = L*Lu.

3. Well-posedness and the equivalence of ALM and Bregman
distance regularization. In this section we review results on well-
definedness and monotonicity properties of the ALM (cf. Algorithm
1.1). Proving well-definedness of the ALM reduces to proving that
there exists a minimizer in (4a). We will do this, by proving that for
arbitrary ¢, f € Hy the functional

w 0F SIEu— fIP + J(w) ~ (g, Ku— f)
= ZlKu— (F+ 7' + J(w) gl

has a minimizer.
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Lemma 3.1. Let Assumptions 2.1 and 2.3 hold. Moreover, let
g € H, be attainable and g° € Hy. Then, there exists a J-minimizing
solution of (2) and Algorithm 1.1 is well defined. Moreover,

(14) K*p® € dJ(u®) foralln=1,2,....

Proof. Let C C Hy be a closed and convex set such D(J) N C # &,
and let g, f € Ho and 7 > 0. We prove that the functional I has a
minimizer in C. Then, application with C = Hy, f = g% and ¢ = p°_,
gives well-posedness of the ALM and with f = g and C = K *({g})
gives existence of a J-minimizing solution.

Let {ug}ren be a minimizing sequence in C. Then it follows that
T —
sup 5 (|Kui — (f +7 19l + J (ur)) < oo,

and consequently that ug € A(c) for all £ € N and a suitably chosen
¢ € R. Then, by Assumption 2.3, we can select a weakly convergent
subsequence indexed by p(n) and with weak limit @. Since C' is closed
and convex it is weakly closed and therefore 4 € C. Moreover, weak
lower semi-continuity of J implies weak lower semi-continuity of I and
thus

I(u) < liminf I(u,)) = nf I(u).

Hence, % minimizes I over C.

For proving the second assertion, from (4a) we see that the optimality
condition for u’ is

K*'p? | — nK*(Ku® — g%) € dJ(ul).
By application of K* to both sides of (4b) it follows that
K*p), = K*'py_y — T (Kuy, — ¢°).
Combination of both inclusions shows that

K*p® €dJ(ul) foralmeN. o
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Remark 3.2. As we have already used in the proof above, the
minimizer of (4a) is not affected by adding constant functionals with
respect to u to the objective functional. In such a way we can formulate
an equivalent minimization problem to (4a) by adding the term

- (J(Uiq) + () _1.9° + Ku‘fhﬁ) .

The modified optimization problem then results in Bregman distance
regularization

(15)

ot < anguin (1w = 1P+ T(0) = T )~ (K1)
u€EH,

* 8
= argmin <T—n||Ku -1+ Dj{ Pt (u, Ui1)>
u€EH; 2

Thus the ALM is equivalent to Bregman distance regularization and
the results for the respective other method apply.

We close this section with the basic observation that the residuals
|Ku® — g°|| in the ALM are non-increasing. We also note that a
uniform bound for the residuals can be given, provided that the initial
multiplier pg in the ALM satisfies appropriate restrictions.

Corollary 3.3. For pg € Hy the iterates of the ALM satisfy
(16) 1Kup, — ¢l < [|Kup_y — ¢°l, n=2,3,....
If, in addition, pg satisfies
(17) K*pg € 8J(up),
then the inequality (16) also holds for n = 1.

Proof. From Lemma 3.1 we know that K*p? | € 0J(u®_,) for all

n—1

n = 2,3,... . The definition of the subgradient hence gives for all u € U

J(u) = J(ud_y) + (K*pS_1,ul_y — u) >0.
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Then, by choosing u = u we find that

TIK, I < TNKu), P+ ()~ () y)
+ (K ph 1, ul g —ug)
= SIKW, - gl + T () = @)1 K, - g°)
— J(up_y) + (p_ys Kufy_y — ¢°).

From the definition of the ALM it follows that

(18)

-
S 1wy = g°I* + I (up) = (s, Kty — 9°)
T,
< %HKUZA - 95H2 + J(ui_l) - <pfb—1aKUZ—1 - 96>-
Using this estimate together with (18) shows that
T T
A R TN

The proof of the second assertion uses the additional assumption on
p$ which makes the above proof applicable also in the case n = 1. ]

We remark that from the definition of the ALM it follows that

1P — P8 _4||

n

= ||Kup, — ¢°),
and therefore the scaled difference of dual variables is decreasing.

4. Duality: ALM and the proximal point method. We
review a duality concept due to Rockafellar [30], which characterizes
the sequence {p® }nen in the ALM by the prozimal point method. This
will be the key to the convergence analysis of the ALM on the one hand
(cf. Sections 5 and 6) and to the analysis of related evolution equations
(cf. Section 7) on the other hand.

To show this relation, we introduce the descent functional G : Hy X
H,; — R, defined by

(19) G(p,g) == (J" o K*)(p) — (P, 9)-
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The descent functional (19) exhibits the following properties:

Lemma 4.1. For g € Hy, let

F(h,g) == {inf{J(v):veHl, Kv=g+h} ifg+h is attainable
9 00 else.
Then

G(p,g) = F*(-,9)(p),

where F*(-,g) denotes the Fenchel dual of F with respect to the first
variable. In particular, if g is attainable, G(-, g) is bounded from below.

Proof. Let g € Hy and define A; C Hy to be the collection of all
h € Hs, such that g+ h is attainable. Since J is assumed to be proper,
we have that A; # @ and from the definition of the Legendre-Fenchel
transform in (9) and the definition of F' it follows

F(-9)(p) = sup ((p,h) = F(h,g))

€H>

= sup ({(p,h) —inf{J(v):v e Hy, Kv=g+h}).
heA,

The last term can be rewritten to

hsu}la ((p,h) —inf{J(v) : v € Hy, Kv= g+ h})

g9

=sup sup ((p,h)—J(v)).
heAy Kv=g+h

Now, taking into account that the second supremum is taken over all
v that satisfy h = Kv — g it follows that
(200 sup sup ({p,h) — J(v))
heAy, Kv=g+h
= sup sup ((K'p,v) —J(v)) - (p,g)-
h€Ay Kv=g+h

Therefore, eventually, we find by using again the definition of the
Legendre-Fenchel transform

F7(,9)(p) = sup ({K7p,v) = J(v)) = (p,9)

=J"(K"p) — (p,9)
=G(p,9).
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If g is attainable, there exists a vy € D(J) such that Kvy = g, and
then it follows from (20) by estimating the supremum of the functional
with the evaluation at h = 0 that

G(p,g) > —inf{J(v) : v € Hy, Kv =g} > —J(vp).

Since vy € D(J), G(-,g) is bounded from below. O

In the following, we derive an equivalent characterization for the dual
variables {p®},en of the ALM, which is independent of the primal
variables of {u’},en. This observation dates back to the work of
Rockafellar in [30].

Proposition 4.2. Let ¢° € Hy. Then, forn=1,2,...,

. 1
e CL R )}

ueH;

Proof. From (14) we find that K*p} € 0J(u) for all n = 2,3,...,
and thus it follows from (10) that

ul € dJ* (K*pfl) .
Then, from the definition of a subdifferential, it follows that for all

£ € H;
(ud, & = K*pb) + J*(K*p)) < J*(€).

For p € H; and £ = K*p we then get
(Kup,p—py) = (up, K*'p — K*py,) < J*(K"p) = J*(K*p),

which is equivalent to that Kul € 9(J*o K*)(pS). Taking into account
the definition of p¢ in the ALM, it follows that

() —pd) €0 (T o K*)(p)) — ¢° = 0G(-,¢°)(P)),

which is equivalent to that (21) holds. o



232 KLAUS FRICK AND OTMAR SCHERZER

We emphasize that, in the regularization community, the determi-
nation of p’ is a general iterative Tikhonov-Morozov method, with a
general fit-to-data functional G(p, g5). In general, convergence rate re-
sults of iterative Tikhonov-Morozov methods with general fit-to-data
term have not been subject to extensive research, in contrast to the
non-iterative case, to which we refer to [7, 18, 31, 36] for a few refer-
ences concerned with this subject.

The assertion of the above theorem, though long well known, is the
key tool for the present analysis. The alternative characterization of
the sequence of dual variables {p},en of the ALM as a proximal
point algorithm allows us to apply the respective theory, and also at a
later stage the analysis of flows interpolating the iterates of the dual
variables of the ALM (cf. Section 7). Even more, a convergence analysis
of the sequence of dual variables {pr}neN opens up the tools to study
regularizing properties of the ALM, which is the subject of Sections 5
and 6 below.

5. Convergence analysis. In this section we perform a convergence
analysis of the ALM. The basis of this analysis is an error estimate
developed by Giiler in [16], which is reviewed in Proposition 5.1.
Eventually, using this fundamental estimate, we are able to derive
convergence rates results for the ALM. This will be done in Section 6
below. Moreover, these estimates are optimal for the particular case
of the Tikhonov-Morozov regularization (6). Here, we state Giiler’s
result:

Proposition 5.1 [16, Lemma 2.2]. Let ¢° € H,, and set

(22) ty, 1= Zrk.
k=1

Then, for alln € N and all p € Ho

_ 0112 02 th&ipé ”2
23) & 6 & el é < ||p pOH 7||p pn” ~ 'nilfn n—1 )
(23) G(pn,9°) —G(p,9°) < 5. o, 52

n

As a first consequence of Proposition 5.1 we derive an upper bound
for the residuals in the ALM, i.e., for the term ||[Kud — ¢°||.
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Corollary 5.2. Let g € Hy be attainable and ¢° € Hy such that
lg—9°ll < 8. Then,

P2 < G(pb,9) — infperm, Gp:9) | &

1 4
(24)  FlKub - . =

Proof. Setting p = p$ in (23) yields

tn

tn I —ral?
272 )

IpS — p3_4111> < G(0), 9°) — G(¥S, 9°) 5
n

(25)
From the definition of G it follows that
(26) G}, 9°) — G(pl,9°) = G(ph, 9) — G(¥). 9) + (P — 1, 9 — 9°)-

Combining (26) and Young’s inequality,

t
(p,q) < + 5"H(1||2, p,q € Ho

with (25) implies that

tn

¢

) ) ) ) )

5oz lIPn = Phall* < G5, 9) = G(pfhy 9) + 5 llg = 9"
n

2

We observe that —G(pS,g) < inf,cm, G(p,g) < oo, where the second
inequality follows from Lemma 4.1. This shows

tn 5 k) F) . tn 5

oy lPn = Phall® < Glph, 9) — inf Glp,g) + g - g°II"
Finally, it follows from (4b) that ||[Kul — ¢°|| = 7,7 t(|p% — pS_,|| and
the assertion follows. O

Now we formulate the main theorem of this section, which states that
the ALM constitutes a regularization method for the ill-posed equation
(2). For given noisy data g° we choose sequences {u3 },en and {p }nen
generated by the ALM (cf. Algorithm 1.1) and set

(27) Rn(g‘s) = ufl and ’R;‘L(g‘s) = pfl.
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Theorem 5.3. Let g € Hy be attainable, and let {gi}renw C Ha be
such that o := ||gr — 9]| = 0 as k — oo. Further, let T : (0,00) x Hy —
N be such that

(28) k;li)ngo 6]%tr(6k7gk) = 0 and kli;ngo tr(ékvgk) = 00.

Then, there exists a number ¢ € R such that {Rrs, g.)(9%)} € A(c)
for all k € N. In addition, each weak cluster point is a J-minimizing
solution of (2) and

(29)

lim J(RF(5kagk)(gk)) = J(U’T) and k:ll)I{olo ng (U’T7RF(6kagk)(gk)) = 07

k—oo
where & = K*Ris, ..1(9k) € 0J(Rr(s,,gi)(9k)). Moreover, the
residuum satisfies the rate

—1/2

(30) IERr (5, g0 (95) — gll = Otr 425,

Proof. Let g° € Ho, and set § = ||g — ¢°||. In the first step of the
proof we derive an estimate for the sequence {J(u’)}nen-

From (14) we know that K*p? € 8J(ul) for every n € N, and thus
from the definition of the subgradient it follows that

(31)  J(up) < J(uh) + (K pp, up — ul) = T(wh) + (p, Kup, — ).

Using Giiler’s Proposition 5.1 and (26), it follows that for all n € N
and p € Hy

lp—2%0% _ llp—pilI*  tallpd — ol
< _
2t - 2t,, 272
+G(p,g°) — G(1°, gn)
=gl tallsh PP

2t, 272
+G(p,9) -G, 9)+(p—ph.g—g°).

Then, by using Young’s inequality,

1
(p-1pSg—9g°) < yrd /2 PaI% + tn 62,
n
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it follows that

Ip — P2 ||p—p3||2+t 52 tn

4t,, 2, "t o2
+ G(pa g) o G(pi,g)
Skipping the non-positive term in the previous inequality and using

Lemma 4.1, which states that —G(p,g) < —infyem, G(g,9) < oo,
shows that

[

2 52
(32) Al ||p ol

4t, 2t,

tnd2 ,g) — inf ,9).
+ 06" + G(p, 9) qlenH2G(q g9)

Now, let € > 0 and choose an element p. € Hy such that G(p.,g) <
inf,e g, G(g,9)+¢. Then we conclude from (32) with the setting p = p.
that

) . - pnn \/nps wl? .

Set v := G(po, 9) —infse g, G(P, g). Then, by using Corollary 5.2, which
states that

2
C R T ) P R PR LN

we obtain with (31) and Cauchy’s inequality the desired estimate
(35)

[2
Jul) < J(uT)—i—@pSH + \/2||p5 —pd|% + 41262 + 4tns>( t—7 - 52+5>.

Now, let I : (0,00) x Hy — N be such that (28) is satisfied. For the
sake of simplicity, we abbreviate

n(k) =0k, 9k);  uk :=Ruk)(gr) and  pr =Ry (9r)-

Then, by taking into account that dx — 0 and ¢,,) — 0o as k — o0 it
follows from (28) and (35) that

limsup J(ug) < J(u') + 24/27¢.

k—o0
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Since € > 0 was arbitrary, the last inequality gives that

(36) limsup J(ug) < J(u').

k—o0

Furthermore, we find from (34) and (28) that

2 _
(mnmw—ﬂgwqum+@th$+g+@:m%$%

which shows (30). In particular, it follows from (36) and (37) that there
exists a constant ¢ € R such that

sup (|| Kug|® + J(ug)) =: ¢ < 00

or in other words, uy € A(c) for all £ € N.

Consequently, according to Assumption 2.3, the sequence {uj}ren
has a weakly convergent subsequence, say, with weak limit u. Using
the weak lower semi-continuity of the norm ||-|| and the functional J,
(37) and (36) show that

|IK@—g| =0 and J(@) < J(ul).

That is, @ is a J-minimizing solution of (2) and therefore J(@) = J(uf).
In particular, for each subsequence of {J(uy)}ren there exists a further
subsequence that converges to J(u'). Therefore, the first equality in
(29) already holds for the whole sequence.

Finally, we find from (14) that & = K*p, € 0J(ux) and thus it
follows from (35) that for all € > 0

0 < liminf DS (uf, uy)

k—o0

< limsup D%* (uf, uy,)
k— o0
= limsup (J(u') — J(ur) — (K*pr,u’ — ug))

k—o0

= lim sup(pg, Kug — g) < 24/27e.

k—o0

Since € > 0 is arbitrary, the second equality in (29) follows. O
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Theorem 5.3 shows that the ALM combined with the parameter
choice (28) constitutes a regularization method for the ill-posed equation
(2), that is, for a sequence of data g converging to g, the ALM
approaches a J-minimizing solution.

In general, when for instance J is not strictly convex, there might
exist multiple solutions of (1). We note that the convergence result in
(29) is valid for every choice of a J-minimizing solution.

Furthermore, the significance of the Bregman distance increases with
stronger convexity properties of J. For example, if J is a total convex
function, then convergence in the Bregman distance implies strong
convergence (we refer to the work of Resmerita in [29]).

We recall that the Tikhonov-Morozov method (6) is a particular
example of the ALM when the convex functional J from (5) is used. In
this case Theorem 5.3 combined with Remark 2.5 implies the following
corollary:

Corollary 5.4. Let L : D(L) C H; — H be a linear and closed
operator with dense domain D(L), and let J be as in (5). Moreover,
assume that the assumptions of Theorem 5.3 are met and for k € N
abbreviate ug = Rr(s,,q,)(9r). Then,

. b o m-1/2
klirr;o||Luk Lu'|=0 and |Kuy g||—(9(tr(5k’gk))

for all J-minimizing solutions u' of (2).

Remark 5.5. In particular Corollary 5.4 applies to the evaluation of
unbounded operators. The corresponding convergence results can be
found, e.g., in Groetsch’s book [14, Theorem 3.4].

Finally, we note that the key feature of the proof of Theorem 5.3 is the
fact that the descent functional G(-,g) is bounded from below, when
g is attainable. This is exploited in order to gain an upper bound for
{J(ug)}ren which opens the possibility to apply standard compactness
arguments. However, the infimum of G(-, g) is not attained unless the
source condition (11) is satisfied, as a consequence of which we made
use of the approximate minimizers p, satisfying

G(pe,9) < inf G(p,g)+e, forall pe Hs.
pEH>
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If the data is not attainable, the so obtained estimate (35) in the proof
of Theorem 5.3 results in an arbitrarily slow speed of convergence in
(29).

6. Convergence rates. In this section we prove a convergence
rate result for the iterates of the ALM under the source condition (11).
The result reduces to a standard convergence rates result for Tikhonov-
Morozov regularization, when J is chosen according to (5).

The following (classical) result reviews that existence of a J-minimizing
solution that satisfies the source condition (11) is equivalent to the
Karush-Kuhn-Tucker conditions.

Proposition 6.1 (Karush-Kuhn-Tucker). Let g € Hy be attainable,
ut € Hy and pt € Hy. Then the following two statements are equivalent

(i) ul is @ J-minimizing solution of (2), p! minimizes G(-,g) and

J(ul) + J*(K*p') = (p', g).

The Karush-Kuhn-Tucker conditions hold:
Kul=g and K*p' € dJ(ul).

Proof. [9, Chapter 3, Proposition 4.1]. O

In the following theorem we provide qualitative error estimates for
the Bregman distance of iterates, for residuals and dual variables of
the ALM.

Theorem 6.2. Let g € Hy be attainable, and let g° € Ho satisfy (3).
Assume further that u' is a J-minimizing solution of (2) that satisfies
the source condition (11) with source element pt € Hy. Then,

(38)
T _p902 * f t_.02 2,2

HKUZ _g||2§ llp t2Po|| +52 and D{f P (UZ,UT)< 2|lp" —po " +44 tn'

= tn
Moreover, there exists a constant v = 'y(pg,pT) such that

(39) Il < v + tnd.
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Proof. From Proposition 6.1 it follows that G(p', g) < G(p, g) for all
p € Hy. Setting p = p' in Proposition 5.1 then gives

(40)
t_ 012 t||6_6||2 T 002
p Pn nl|Pn = Pn— p b
LIS AN RSP LS e ey
T 002
p b

+ (' —1p%,9-9¢°

T 002
p p
< % + (" —pg 9"
n
Below, we apply two times the Young’s inequality, which implies that
for every ¢ > 0,
(41)
" —pal® |, tallen —pnall® It = w1 | " el ¢6%
2t, 272 - 2t, 2¢ 2

Setting ¢ = t,, in (41) and taking into account (4b) yields

Ipn = poall _ lIp" = w0117
T2 - t2

(42) [ +6%.

The choice ¢ = 2t,, in (41), on the other hand, gives

(43) Ip" = poll® < 2[lp" — pp||* + 4t,8%.

From (4b) it follows that J(u,) — J(u') < (K*p?,u, —u') and conse-
quently, it follows that

DX (wy,ul) = J(uy) — J(u) — (K*pt 0, — ul)

< (p), =", Kun — g).
Applying again Young’s inequality and combining the estimates (42)
and (43) we find that, for n > 0,

N 6 _ 1112 K _ 2

t Pl —p | Ku, — g

DEP (4 ) < | n277 2l . |
1p3 — pt|?

IN

5 + 0l Kuy, — ¢°||* + né*
n

1 7 th
<l - s (5 + 1) +222( )

A
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The right hand side is minimized for n = t,,, which finally shows the
assertion. o

Theorem 6.2 can be used to prove convergence rates for the ALM.

Theorem 6.3. Assume that g € Hy is attainable and assume that
{9k }ken s a sequence in Hy such that ||gr, — g|| =: 6k — 0 as k — oo.
Moreover, assume that T': (0,00) x Hy — N is such that

i s, g,) = 00

Then, the following two conditions are equivalent:

(i) There exists a J-minimizing solution u’ € Hy of (2) that satisfies
the source condition (11) with a source element p' € Hy and there exists
a C € R such that

(44) 5ktF(5k,gk) <C.

(ii) For k — oo we have
(45)
1K R (5,0 (95) — 9 = Oltris, ) and | Ris, 4, (g6)]l = O(1).

Additionally, if (i) or (ii) holds, it follows that
* F _
(46) D" (Rrsuan) (98), ul) = Oltris, o09)
and each weak cluster point of {Rys, ,.\(9k)}ken is @ minimizer of

G(-,g).

Proof. Throughout the proof we assume that {ul },,en and {p }nen
are two sequences generated by the ALM with respect to generic data
g° € Hy and we set 6 = ||g° — g||. Moreover, we use the abbreviations

U = RF((sk,gk)(gk) and pj = R;(5k7gk)(gk)-

Assume that item (i) holds. Then (45) and (46) follow from Theo-
rem 6.2. In particular, the sequence {pg}ren is bounded. We prove
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that each of its weak cluster points is a minimizer of G(-;g). To this
end, observe that the optimality condition for (21) gives

7o H(Pho1 — Pn) € 0G(,9°)(pn) = 0G(-, 9)(pn) — (9° — 9)-
Together with the update rule (4b) in the ALM this gives
(47) Ku;, — g € 0G(,9)(p)-

Now choose a weakly convergent subsequence {p,)}ren with limit
p. Then we find from the weak-strong closedness of dG(-,g) (cf. [9,
Chapter I, Corollary 5.1]) and (47) (we replace u’ by Up(k) and pS by
pp(k)) that

This shows that p is a minimizer of G(-, g).

Now let (ii) hold. We first note, that setting p = p’ in Proposition 5.1
yields

(48) |Ku = g°ll =7, Pl — pd 41l < . Ipd — pdl-
and therefore

tnd = tullg — ¢°Il < ta(lKup — g°ll + [ Kup — g]))

(49)
= [lp7, — poll + tull Kup, — g]|-

Replacing g° by g, 6 by 0 and n by T'(6x, gx) as well as u’ by u, and
p% by pi, in (49) shows together with (45) that

Oktr(si o) < 1Pk = BOll + tr(s, g | Kur — gl = O(1).
That is, there exists a C' € R such that (44) holds.
Next, we find from (14) that K*p; € 0J(uy) and thus for all u € Hy

(50)  J(u) < J(u) + (K"pp,u — ug) < J(w) + [|px ||| Kup, — Kull.
The estimates (48) and (50) imply that u, € A(c) for an appropriate

constant ¢ € R and all £ € N. Thus (with the same argumentation
as in the proof of Theorem 5.3) we can select a subsequence that



242 KLAUS FRICK AND OTMAR SCHERZER

weakly converges to a J-minimizing solution u! of (2). Denoting the
subsequence again by {uy}ren one finds

(51) lim J(ug) = J(u').

k— o0

Finally, it follows from (48) that Kuy—g — 0 strongly in H» as k — oo.
Relation (47) and the arguments thereafter show that each weak cluster
point pf of {py}ren is a minimizer of G(-, g). This implies that

G(pr, gr) — G(p', 9) > Pk, 9 — g)-

Moreover, by setting p = pf in Proposition 5.1 and neglecting non-
positive terms in the right hand side of Giiler’s inequality we find

T _ 2
lp" — pr| .

to
T (', 9 — gk)-

G(prgx) — G(p',9) <
The previous two inequalities show that
52
,(}E{)zoJ*(K*pk)—@k,gw = lim G(pr, )= G(p' g)=J"(K*p")—(p',9).
Since K*py, € 0J(uy) it follows that J(ux) + J*(K*pr) = (ug, K*p)
and thus

J(ur) + J*(K*pr) — Pk, 9k) = (Kup — gk, Di)-

Passing to the limit & — oo, this equality together with (45), (51) and
(52) gives
J(ul) + J*(K*p") = (o', ) = (K"p, ).

This, however, is equivalent to K*pf € 0.J(u'), that is, u' satisfies the
source condition with source element pf. o

Theorem 6.3 states that for each parameter choice rule I' satisfying
(44), the residuals converge with a rate of ¢, ' and the sequence of dual
iterates in the ALM is bounded, or in other words, converge slower
by a rate t;l than the residuals. In fact, it turns out that these two
assertions are equivalent.
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We close this section by applying the result in Theorem 6.2 to the
Tikhonov-Morozov method (6), that is, we choose the regularization
functional J as in (5). Then Theorem 6.2 reads (cf. Remark 2.5):

Corollary 6.4. Let g € Hy be attainable, and let g° € Hy be such
that ||g — ¢°|| = 6. Assume further that u' is a J-minimizing solution of
(2) that satisfies the source condition (11) with source element p’ € Hy.
Then,

82
5 5 ||p p ||
(53) e N

n

+ 62

and

2[|pt — p||* + 4672
tn )

1Ly, — Luf||? <

Moreover, there exists a constant v = 'y(pg,pT) such that

(54) IL* Lup || < v + | K[t

It is well known that the classical iterated Tikhonov-Morozov reg-
ularization can converge with order §'~°, ¢ > 0 under appropriate
assumptions on the solution (see [14]). Such results are not available
for the general ALM, and consequently Groetsch’s benchmarks have
not been reached so far.

The convergence rates in Theorem 6.2 were already proven (under the
same assumptions) by Burger et al. in [6]; however, for the stationary
case 7, = 7. Our results in addition provide an equivalence relation
between the standard assumptions (parameter choice rule and source
condition) and the boundedness of the sequence of dual iterates.

In our opinion, the speed of convergence of the dual sequence in
the ALM could be the key in order to reach the benchmark results
of Groetsch in the special case of Tikhonov-Morozov regularization.
Conditions on the solutions of (2) that guarantee faster convergence of
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the dual sequence of the ALM will therefore be the subject of further
studies.

7. Evolution equations. In this section we study the following
system of evolution equations

(55a) P(t) =g° — Ku(t),
(55b) K*p(t) € 0J(u(t)),
(55¢) p(0) = p),

and its relation to the ALM (cf. Definition 1.1). With K = Id, equation
(55) has been proposed in [5] and finds applications for image denoising.

For the special case K = Id existence of a solution of (55) has been
proved in [4] (see also [13]). In general, for bounded linear operators
K, existence of a solution of (55), as well as the relation to the ALM
has been studied in the first author’s thesis [12]. Here, we present a
summary of the most important results.

In the following we study the connection of equation (55) and the
ALM, which for the sake of simplicity is assumed with constant stepsize
7 > 0. The corresponding results for the non-stationary case were
proven in [12].

Let g,p$ € Hy, and denote by (ul,p?) the n-th iterate of the ALM.
For t € [(n — 1)7,nT), we define

(56) ur(t) = ul

n

(57) pr(t) =771t~ (n = 1)7) Py + ((n7 = t)pp ) -

In other words, u,(t) and p,(t) are the piecewise constant and piecewise
affine interpolations of the sequences {ul},en and {p’}.cn of the
ALM.

The function p.(¢) is differentiable almost everywhere and satisfies
p-(0) = pd and we find by (4b) that for all t € ((n — 1)1, n7)

(58)  PL(&) =7 '(ph — 1) =90 — Kun = ¢° — Ku.(1).
Moreover, we find from Lemma 3.1 that

(59) K*pr(n1) = K*p) € 8J(up) = 8 (ur(t)).
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The considerations in (58) and (59) show that u, and p, almost satisfy
(55). We show that u, and p, converge to solutions of (55) as 7 — 0.

Due to the characterization of the sequence {pi}neN by the proximal
point algorithm (cf. Proposition 4.2), we are able to apply classical
results of semi-group theory in order to show convergence of the
piecewise affine functions p, to a strong solution of

(60a) p'(t) = —0°G(p(t), ")
(60b) p(0) = pf

Here, 0°G(p, g) denotes the unique element of dG(p,g) with minimal
norm (presumably 0G(p,g) # @). A strong solution of (60) is an
absolutely continuous function p : [0,00) — Hj such that (60a) is
satisfied almost everywhere and that p(t) — p as t — 07.

Proposition 7.1. Let g°,p) € Ha, and assume that pj) satisfies (17),
i.e., there exists a u) € Hy such that K*pj) € 8J(uj). Then

(i) There exists a unique strong solution p : [0,00) — Ha of (60).

(ii) The piecewise affine interpolations p, converge uniformly to p
and

T

ﬁllaoG(pS,g‘s)ll-

(61) lp+(£) = p(1)]| <

(iii) The function p is Lipschitz-continuous with Lipschitz-constant
cr = [|[Kuy — ¢°|.

Proof. Since K*p) € 0J(u) it follows that Kul € 9(J* o K*)(p)
and thus according to the definition of G in (19),

Ku) — g° € 9(J* o K*)(p}) — ¢° = 0G(p}, 9°).

In other words, pj € D(0G(-,¢°)) and hence (i) follows from [3,
Theorem 3.1]. Item (ii) follows from [26, Theorem 3.20].

It remains to prove the third item. As noted above, the functions
p-(t) are differentiable for almost all ¢ > 0 and p/. satisfies (58). From
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Corollary 3.3 it follows that p/, (t) is non-increasing and since p satisfies
(17) we find that (cf. Corollary 3.3)

P (1) < | Kug — ¢°|l = e

Thus, p,(t) is Lipschitz-continuous with constant ¢z, and it follows from
(2) that for s,t >0 and all 7 > 0

Ip(s) = p(O)II < [lp7(s) = p(s)I| + [lp7(8) — p()]] + llp~(s) — P (D)]]
< V2r||8°G(w5, 9°)Il + crlls — t].

Since the equation holds for all 7 > 0, the assertion follows by taking
T — 0+. O

Assertion (2) in Proposition 7.1 states that the piecewise affine
interpolations p,(t) of the sequence {p},en converge uniformly on
[0, 00), that is,

lim sup ||p(¢) — p(t)|| = 0.
T—=0F >0

In the thesis [12, Corollary 3.3.6] we proved the slightly stronger result:

Proposition 7.2. Let g‘s,pg € Hs, and assume that pg satisfies (17).
Moreover, let p be the unique solution of (7.1). Then, for all T > 0,

lim ; Ip-(8) = PO + [l () — 2" (D)]|* dt = 0.

T—0t

We note that Proposition 7.2 states that the sequence of func-
tions {t — ||p-(t) —p(t)}r>0 converges to zero in WH2(0,7T). This
already implies uniform convergence by the continuous embedding
WH2(0,7) < C(0,T) (|1, Theorem 5.4] with n = 1, m =1 and p = 2).

By using Proposition 7.2 we can prove the main theorem of this
section, which provides estimates for the errors of the interpolates to
the true solution.

Theorem 7.3. Let g° € Hy, and assume that p) € Hy satisfies (17).
Moreover, let p be the unique solution of (7.1). Then
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(i) There exists a u : [0,00) — Hy such that u and p satisfy (55) for
almost all t > 0.

(ii) For all t > 0 we have

(62) DY PO (ur (), u(t)) < 7(2 + V2)||Ku — ¢°||%.

Proof. Let t > 0, and choose n € N such that ¢ € ((n—1)7,n7]. With
this choice it follows from Corollary 3.3 and the subsequent remark that

8 1) & 8
[Kur(t) = g°ll = [ Kun — g°|| < [[Kug — g°|l.

This shows that || Ku,(¢)|| is uniformly bounded, let us say ||[Ku,(t)]| <
¢y for all 7 > 0. Moreover, we find from (59) and the definition of a
subgradient that for all u € H;

I(ur(t)) < J(u) + (K"pr(n7), ur (t) — )
= <pT(nT) *p(nT), Ku'r(t) o Ku>
+ (p(n7), Ku,(t) — Ku).

We choose v € D(J). Then it follows from (61) that

r
J(ur (1) < J(u)+(IIK(uT(t))II+||Ku||)(||p(m)ll+ﬁ|5°G(p3,g‘5)ll>-
Since p(t) is Lipschitz-continuous with constant ¢y as in Proposi-
tion 7.1, we find that

(63) Ip(t) = p(n7)|| < cp(nT —t) < T
and consequently, for 7 sufficiently small, there exists a constant c; € R
such that

T

I(ur(t)) < J(u) + (e1 + || Kuf) <ch + e + NG

||a°G(p3,g‘5>||)
< co < 00.

In other words, let ¢t > 0 be arbitrary but fixed, then u.(t) € Aey +
¢2) and therefore from Assumption 2.3 it follows that there exists a
sequence 7, — 07 and an element u(t) € Hy such that u,, (t) — u(t).
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Now, we show that u and p solve (55). First we note that from
(61) and (63) it follows that p,;(nT) — p(t) as 7 — 07 (and n — oo
accordingly). Setting 7 = 7 it follows from the strong-weak closedness
of 8J (cf. [9, Chapter I, Corollary 5.1]) and (59) that

K*p(t) = klingo K*p,, (n1) € aJ(vz;hg Ur, () = 0J (u(t)).

Secondly, we note that Proposition (7.2) implies that for all T > 0 the
sequence p’ of derivatives converges to p’ with respect to the strong
topology of L%(0,T, Hy), that is,
T
lim [ lp7, (t) - ' ()|t = 0.

k—oo Jg

It follows from [10, Chapter 1.3, Theorem 5] that we can select a
subsequence indexed by p(k) such that p;p(k) (t) — p'(t) strongly for
almost all ¢ € [0,T]. It finally follows from (58) that

(64) p'(t) = leH;op;p(k) (t) = w-lim (g — Ku,,,, (t)) = ¢° — Ku(t).

In order to prove (ii) we assume that u(t) and p(¢) solve (55). Since
P~ ()] = ||Ku,(t) — g°|| is non-increasing and uniformly bounded by
| Kud — g°]|, it follows from (64) that the same holds for |p'(t)| =
|Ku(t) — ¢°||. Moreover, it follows from (61) that K*p,(nT) €
O0J (ur(t)). The latter and the definition of the subgradient imply that

J(uT(t)) - J(u(t)) < <K*pr(n7—)vur(t) - u(t)>

In summary, we find that

DO (£), u(t)) = T (ur (1)) = ((£)) — (B p(8), (1) = )
< (pr(n7) = p(t), K (ur(t) — u(t)))
< |lpr(n7) = p(O)l| (1K ur(t) — ¢°)|
+ [ Ku(t) — ¢°l)
< 2|l (n7) — p(@)ll| Kug — g°|I-
Moreover, it follows from (61) and the Lipschitz-continuity of p, (with
constant ¢z, = ||[Kud — g||) that
lp+(n7) = p(B)| < llpr(n7) — P ()] + [lp- (£) — p(t)
<T(CL+1/\/_H5° (5 9)D-
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As shown in the proof of Proposition 7.1, Ku$ —g € 0G(p}, g) and thus
10°G(pS, g)|| < || Kud — g|| and the assertion follows. o

In contrast to (60), equation (55) in general admits multiple solutions.
However, solutions are unique modulo ker (K) and are uniformly con-
tinuous with respect to the Bregman distance. These are the assertions
of the following two theorems:

Theorem 7.4. Let p§ satisfy (17), i.e., there exists a ul such that
K*pd € 0J(u))) and assume that p and u satisfy (55). Then, for all
0 <s,t,

K*p(t
D (u(s), u(t)) < 2| Kuj — °[Pls — 1.

Proof. According to (55b) we find K*p(s) € 0J(u(s)) and there-
fore it follows that J(u(s)) — J(u(t)) < (K*p(s),u(s) — u(t)). Thus,
Proposition 7.1 (3) and the monotonicity of || Ku(t) — g°| give

DY PO (u(s), ult)) < J(u(s)) — T(u(t) — (K*p(t), u(s) — u(t))
= (p(s) — p(t), Ku(s) — ¢°)
— (p(s) = p(t), Ku(t) - ¢°)
< llp(s) — p(®) 11K uls) — °|
+ I Ku(t) - ¢ll)
<2Kuf — ¢’|Pls . O

Theorem 7.5. Let p be the unique solution of (7.1) and assume
that uy,uz : [0,00) = oo are such that p(t) and u;(t) satisfy (55) for
t=1,2. Then, for allt >0

(65) Kuy(t) = Kua(t) and J(ui(t)) = J(ua(t)).

Proof. The equality Kui(t) = Kusg(t) follows directly from (55a).
Now, let t > 0. Then we find that

DX PO (uy (8), ua(
DY PO (uy(t), ua

o~ o~
~— ~—
~— ~—
< N
—~
S
V) =
—~
~ ~
~— ~—
~— ~—
| |
< <
—~
S g
- [V
—~
o~ o~
~— ~—
~— ~—
| |
==
* *
—~
~ ~
~— ~—
S 8
¥ [
—~
~ ~
~— ~—
| |
S g
- [V
—~
o~ o~
~— ~—
=
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Adding these equalities gives
D (un (1), ua(t)) + D (ua(t), ua (1)) = 0.
Since the Bregman distance is non-negative, it follows that

0 =D P uy (t), uz(t)) = J (ur (£)) — J (ua(t)) — (p(t), Kur () — Kua(t)).

As noted above, we have Kuj(t) = Kux(t) and therefore J(uy(t)) =
J(uz(t)). O

Remark 7.6.(1) If the restriction of J on each of the sets u + ker (K)
is strictly convex, then it follows from Theorem 7.5 that (55) admits a
unique solution (u,p). In this case, it follows from the construction of
u in the proof of Proposition 7.3 that u,(t) — u(t) for 7 — 0F.

(ii) If J is strictly convex on Hjy, it follows that 0J* contains at most
one element. This can be seen as follows: If py € Hy and uy € 8J*(po),
then

J*(po) = (w0, po) — J(uo) = Sup (u, po) — J(u).

Since J is strictly convex, u — (u,po) — J(u) is strictly concave and
hence u is the unique maximum. With a slight abuse of notation, let
us denote 0J*(pg) = VJ*(po) (note, however, that J* does not need
to be differentiable).

Consequently it follows from (10) that K*p € 8J(u) & u =
VJ*(K*p), and equation (55) can be rewritten as

P(t)=¢" = V(I o K*)(p(t)) and p(0)=p

and u(t) = VJ*(K*p(t)). In other words, u(¢) is uniquely determined
by p(t)-

(iii) The case where J is a convex regularization functional with linear
growth and K = Id is a typical situation in image denoising problems
and a particular instance where (i) is satisfied but not (ii). The special

example, where J is chosen to be the total variation semi-norm on
H; = L? was studied, e.g., in [4, 12].
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Remark 7.7. For a solution u of (55) the element u(t) at a finite time
t > 0 can be considered as a regularized solution of (2). For the special
case where J(u) = ||ul|?/2, equation (55) can be written as

W+ K*Ku=K*¢® and u(0)=u)
which is known as Showalter’s method (cf. [34, 35]). Equation (55)

therefore can be considered as a generalization of this method.

For the sake of lucidity, we restrict our analysis on the existence
of solutions of (55) and their basic properties (uniqueness, continuity
etc.) and do not discuss their regularizing properties. We note, that
the convergence (rates) results in Sections 5 and 6 can be transferred
to the time-continuous case where the time parameter ¢ plays the role
of t,. The results were proven by Burger et al. in [6, Theorem 5.2].

7.1. The Tikhonov-Morozov method. In the special setting of
Tikhonov-Morozov regularization, i.e., when J is as in (5), we have
0J(u) = L* Lu. Therefore, equation (55) reads as
(66)  (L*Lu(t)) + K*Ku(t) = K*¢° and L*Lu(0) = u
for an initial element pg € H,. For the special case of K = Id, equation

(66) has been studied by Groetsch and Scherzer in [15]. Applying
Theorems 7.3 to 7.5 gives the following stability estimates

Corollary 7.8. Let pj € ran(L*L). Then (66) has at least one
solution u : [0,00) — Hy and for all s,t > 0 we have

1L (ur(t) —u(@)* < 7(2+ V2)|| Kuo — ¢°||?
and
IL(u(s) = u(®)[* < 2[|Kuo — g[[*[s —¢.

If additionally ker (L) Nker (K) = {0}, then u is unique.

We close this section by an example that was studied by Groetsch
and Scherzer in [15]. There, the authors considered the problem of the
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stable evaluation of the derivative of a smooth function given a noisy
(non-differentiable) approximation.

Example 7.9. Let Q C RY be an open and bounded domain with
smooth boundary 9 and H,; = Hy = L%(Q) as well as H = L2(Q, RY),
and set L = V with H}(Q) = D(L) C L?(f2). Then L is linear, closed
and densely defined (with respect to the L2-topology). Moreover we
find from [2, page 63] that

D(L*L) = D(8J) = {u € H*(Q) : Vu-v =0, HY"*-a.e. on 9Q}

and 0J(u) = —Au (v denotes the outer unit normal vector on 99).
further, we set K = Id and p} = 0 € ran (L*L). Then, the evolution
equation (66) turns out to be the third order equation

d
(67) EAu(t,x) =u(t,z) — ¢°(x) forall z € Q,

with homogeneous Neumann boundary condition

(68) Vu(z) -v(z) =0 for HY tae. s €00,
and initial conditions

(69) Au(0,z) = 0.

We show that the unique solution u of the third order equation (67)
is Holder-continuous (in time) with exponent o = 1/2 and that the
piecewise constant interpolations u, of {ul},cn approximate u with
order 71/2,

To this end, we note that by Green’s formula
(70)

/ u(t,z) — ¢°(x) de = / iAu(t, z)de = Ll Vu(t,z) - vdz = 0.

Hence, it follows that

/ u(s,z) —u(t,z)dz =0 for all s,¢ > 0.
Q
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Consequently, there exists an embedding constant C' = C(2) such that
(cf. [89, Theorem 4.2.1])

[[u(s) = u(@)llLz < ClIV(uls) —u(®))lL2@@rm)-

This together with Corollary 7.8 then shows that

lu(s) = u(®)llz < V20(g°IE2v/]s — ¢]-

In particular, the continuity of u and (70) imply

/Qu(O,x)dx:/Q lim u(t,z)dz = lim u(t,x)dx:/ﬂg‘;(x) dz.

t—0t t—=0t Jo

Since Au(0,z) = 0 and Vu(0,z) - v(z) = 0 on 09, u(0,z) is constant
and the constant is given by

)\N;(Q)/Qgé(x)dw = 7.

Next, we apply the error estimate in Theorem 7.3 (2) to the present
example. Here, we find from (4b) that

u(0,z) =

g5 — U, = T_IA(ufkl — Up).

Again, by Green’s formula one finds as in (70)

f:é%@m.

Consequently, we find

/QuT(t, z)—u(t,z)de = /QuT(t, z)—g’ () dx—l—/ ¢°(z)—u(t,x)dz =0

Q

for all ¢ > 0. Therefore, using the embedding constant C' from above
and Corollary 7.8 it follows that

lur () — u(®)lIE> < ClIV (ur(t) = u(®))llE2 @.r)

<702+ V3) /Q () — 7 de.
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8. Conclusion. This paper is concerned with the application of
the Augmented Lagrangian method (ALM) to the solution of linear
inverse problems. This means, we interpret the iterates of the ALM
as regularized solutions of the ill-posed linear equation

Ku=g

where a noisy right hand side ¢° serves as an input data. We perform
convergence studies for ALM with general regularization functionals J,
and prove convergence of the iterates to a J-minimizing solution u' of
the linear equation as the noise level decreases.

The motivation for this approach is due to the fact that the Tikhonov-
Morozov method, which gained much attraction in the field of stable
evaluation of unbounded linear operators L, is a special instance of the
ALM for the choice

1
J(w) = S| Lul

Thus, benchmark results concerning convergence (rates) results are
available, many of which were shown by Chuck Groetsch. We refer
to the excellent monograph [14] for a rich collection of these results.

Additionally, we remark that the ALM is equivalent to Bregman
distance regularization, which attained much attention in the image
processing community recently.

Unlike most of the approaches so far, we base our analysis on du-
ality arguments from convex analysis. In doing so, we are able to
reprove convergence and convergence rates results, already known for
Bregman distance regularization, and derive convergence rates for the
dual variables. In particular, we can prove that under the standard
source-condition

K*p' € 8J(u'), for a source-element p'

we get convergence rates (in the Bregman distance) of order O(6). How-
ever, the benchmark results from the iterated Tikhonov-Morozov guar-
antee rates up to O(627°) (under suitable source-conditions). These
benchmark results have not been obtained for the general ALM so far.

Our analysis shows that the dual variables in the ALM stay bounded,
when the source condition is satisfied and the residual error decreases
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fast enough (actually these conditions are equivalent). We believe that
conditions that guarantee faster convergence rates of the dual iterates
are related to stronger source conditions, which in turn imply faster
rates of the primal iterates.

Finally, we show that asymptotically the iterates of the ALM
converge—when interpolated correctly—to solutions of the evolution
equation

p'=g—Ku(t), K'pedJ(u) and p(0)= po.

This equation system is a generalization of Showalter’s method for
regularization.
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