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ABSTRACT. We present a direct, linear boundary integral
equation method for the inverse problem of recovering the
Robin coefficient from a single partial boundary measurement
of the solution to the Laplace equation.

1. Introduction. Let Q be a smooth bounded domain in R? with
boundary 02 = I'. Consider the Robin boundary value problem for
the Laplace equation:

AU =0 in Q,
1.1 oU
(1.1) —+pU =g on I

ov
Here p = p(x) with support I'y C T' is the Robin coefficient, and
g = g(z) is a prescribed input function, both of which are non-
negative functions on I' and have nonempty supports, usually disjoint.
Then the Robin inverse problem is as follows. Given U = wug on

I'p ¢ T with TgNT{ = @, find the Robin coefficient p on I';. This
problem originates from the quantitative study of many nondestructive
testing techniques, where certain material property modeled by p on
an inaccessible portion I'; of the boundary is to be recovered from
a measurement ug of the solution U on an accessible part 'y of the
boundary. Applications of such include evaluation of metal-to-silicon
contact quality in semiconductor transistors (e.g. [10]) and corrosion
damage detection (e.g. [5, 6]).

There have been some theoretical and numerical studies for this
inverse problem, most of which are based on the PDE model (e.g.
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[3, 5]). Because the equation is Laplacian and both the unknown
coefficient p and data measurement uy are on the boundary, it is
natural to formulate this boundary value problem (1.1) as an integral
equation on I'. This approach was adopted in [4, 9], and used to
study numerically the inverse problem. While inverse problems are
usually nonlinear and most solution methods are iterative, [9] proposed
a linear integral equation approach to the Robin inverse problem, based
on the introduction of a new variable. In this paper, we continue on
this approach and present a more direct, much simpler method for
recovering the Robin coefficient. Numerical examples will be presented
to illustrate the effectiveness of this simple yet competitive method.
Because of its simplicity, it can also be used to provide a quick, quality
initial guess for more computationally-expensive iterative algorithms.

2. Formulation by Boundary Integral Equations. We assume
that p € L>(T") and g € L*(I'). A weak solution to (1.1) is defined as
U € H(Q) satisfying

(2.1) /QVU-V¢dm+/FpU¢ds:/Fg¢ ds forall ¢ € HY(Q).

The unique existence of such weak solutions can be established by Lax-
Milgram Theorem with the help of the trace theorem and a Poincaré-
type inequality.
Let ® = ®(x,y) stand for the fundamental solution for the Laplacian
in R?: 1
) =—1
(@,y) =5 In z
By the third Green identify and jump relations for single and double-
layer potentials ([11]), we find that the trace of U € H(Q) on T,
denoted by u € H'/ (), satisfies the boundary integral equation:

22) o)+ [ (P50 4 pa(an) ) ut) ds,

= /F<I’(:E,y) g(y) dsy, zel.

In operator form, (2.2) can be written as

1
for z#y.
—

(2.3) (%IH)) u+ S(pu) = S,
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with the single and double-layer potential operators defined by
(Su)(z) = / ®(z,y) uly) dsy and
r

(Du)(z) = /F %Zy)u(y) dsy for z €T.

Note that the operators have the following mapping properties (e.g.
[1.1]): S: H~Y*(T') — HY2(T') and D: HY*(T') — HY/*(I).

Similar to the Neumann problem, the Robin problem has a necessary
condition for its solution, as stated in the following lemma.

Lemma 2.1. If u(z) € L?(T) satisfies the integral equation (2.2),

then
/F p()u(a) ds, = / 9(x) ds,.

Proof. From (2.2) we have (3Z + D)u = S(g — pu). Let D’ denote
the dual of D (see (2.8) below). For ¢ € N(31 + D’), we have

(3r25)0¢) -0

Here (-,-) denotes the usual L? inner product on I'. Since @ €
N(3Z + D'), the left side above is 0, thus we obtain

(2.4) (S(g—pu),¢) =0, ie. (9—pu,SY)=0

since ®(z,y) = ®(y, z). Note that, for such 1, the single-layer potential
v(z) = (SvY)(x) is a solution of the homogeneous interior Neumann
problem in . By uniqueness, v(z) is a constant. Hence from (2.4) we

see that (g — pu,1) = [ {g(z) — p(x)u(z)}ds, = 0. O

Now suppose u(x) € H'/?(I') solves the integral equation (2.2). With
this u, we construct a solution to (1.1) as follows. Define

(2.5) U(x):/ri’(w,y) 9(y) dsy

_/F <%fy’y) +P(y)<1>(w7y)> u(y) dsy, x€R*\T.
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Then U(zx) is harmonic in R? \  and {2 respectively, and U € H'({2)
and U € H(Q, \ Q) for large enough r (€, denotes the disk centered
at the origin with radius r) ([11, Theorem 6.11]). By taking the trace
of U on I from outside (+) and inside (—) of €2 respectively, and from
(2.2) for u, we find the traces ut and u™ as:

1
ut =8g— <§I+D>u—8(pu):0 and

u =8g— <—%I+D> u—S(pu) = u.

From Lemma 2.1, [ {g9(y) — p(y)u(y)} ds, = 0, hence, U(x) by (2.5)
can be also expressed as (for some zy € Q)

U@)=Ak@@mw—¢@wamaw—p@mwnd%

—/Mu(y) dsy, =€ R*\Q,
T 8I/y

from which we see that U(z) is bounded in R%\ Q. Hence U(z) is
harmonic and bounded in R? \ Q with u* = 0 on I'. Then by the
uniqueness of the exterior Dirichlet problem, we conclude that U(z) =0
in R%\ Q, thus OU/0v"™ = 0 on I'. Therefore, from the jump relations
of the normal derivatives of single and double-layer potentials, we find
from (2.5) that

oU

ov—
and therefore OU /Ov~ = g — pu~. That is, U(z) given in (2.5) on Q is
indeed the H'(Q) solution to (1.1). Therefore, we have established the
following equivalence result.

=g—pu on T,

Theorem 2.2. The boundary value problem (1.1) and the integral
equation (2.2) are equivalent.

The integral equation (2.2) is formulated directly for the trace of the
solution U to (1.1). We can also find the solution U to (1.1) as a
single-layer potential

(2.6) wmzﬁémwwwwwxem
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when the density function ¢ on I' solves the integral equation

@) gela)+ [ T o) ds,

+p(z) / ®(z,y) ply) ds, = g(z), €T

In operator form, (2.7) becomes

1 /

L +D )et+p-Sp=g,
where the dual operator D’ of D is given by

(28) @) = [ 5ot s,y wer.

We note that in [2] this formulation (2.6, 2.7) is used for the study
of completion of Cauchy data for the Laplacian. In the following, we
will use (2.2) for the analysis and direct solution of the inverse problem
of finding p, while we will use (2.6, 2.7) to generate synthetic data wug
with the addition of random noise for the numerical examples.

3. A Direct Linear Method for the Inverse Problem. In this
section we present a direct solution method for the inverse problem of
recovering the coefficient function p(z) on I'y from a single boundary
measurement ug of u on I'y.

Similar to [9], we introduce a new variable:

(3.1) v(z) = p(z)u(z).

The support of v is contained in I';. Then equation (2.3) becomes
linear in both u and v:

(3.2) (%I + D> wt Sy = Sg,

where (S1v)(z) = [, ®(z,y)v(y)ds, for z € T. Denote the restriction
operator from I' to I'g by Ro : L%(I') — L?(I'g). That is, (Rou)(z) =
u(z) for z € T'y. Then the measurement of u on I’y can be expressed as

(33) Rou = Up-
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We cast the inverse problem as a direct problem of finding p from
(3.1)-(3.3). Since u on the other part of the boundary is unknown, we
will view (3.2)—(3.3) as a system to find both v on I" and v on I';. We
write them as a system of operator equations:

oo [T gJ[2] e

Here O denotes the zero operator from L?(I';) to L?(Ty). Once u on T’
and v on I'y are found from (3.4), we can use the simple relation (3.1)
to find the Robin coefficient p on I';.

The system (3.4) is a linear system for w = (u,v)T, but is ill-posed.
We will apply the classical Tikhonov regularization method to address
the ill-posedness. First we establish the injectivity of the operator A
and the denseness of its range.

Theorem 3.1. The operator A: L*(T') x L*(T'y) — L*(T) x L*(Ty)
is injective. Furthermore, if the operator S is injective, then A has
dense range.

Proof. If Aw =0 for some w = (u,v)T € L3(T') x L*(T;), then
1
§u+'Du+S1v =0 and 7Rou=0.

From the first equation, we see that w is the boundary value of
the harmonic function in Q (also denoted by wu for simplicity) with
Neumann boundary condition du/0v = —0, where ¥ denotes the zero
extension of v on I'; to the entire I'. In particular, Qu/0v = 0 on T'y
since I') NT'y = &. But the second equation above also gives u = 0 on
I'y. Hence, by Holmgren’s uniqueness theorem, u = 0, and consequently
v = 0. Therefore w = 0 and A is injective.

To show that A has dense range, we prove that A’ is injective as
follows. Note that
yas 3I+D Ry
S o

where Ry, : L*(Ty) — L?(T) is the zero extension operator from I'y to
I, S : L*(T') — L*(I';) is S restricted to I'y, and O’ : L?(T'y) — L*(T'y)
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is the zero operator. If A’z = 0 for some z = (&,7)T € L*(T) x L?(Ty),
then

1
§§+D'£+R6n =0 and Sj£=0.

From the first equation, the single-layer potential u = S€ on 2 is the
solution to the Nuemann boundary value problem with du/0v = —Ryn.
In particular, u/dv = 0 on I';. The second equation above also gives
u =0 on I';. Hence, by Holmgren’s theorem again, we find that v =0
and thus £ = 0 since S is injective; consequently n = 0. Therefore
z=(&,m)T =0 and A’ is injective. Thus A has dense range. O

Remark 3.2. The injectivity of S depends on the domain 2. One
sufficient condition is based on the “transfinite diameter” of Q [12],
while another requires that there be zy € Q such that |z — zg| # 1 for
all z € Q [7, Theorem 3.16]. The unit disk is an example where S has
a nontrivial nullspace containing all constant functions.

Now we apply the classical Tikhonov method to find a stable approx-
imate solution w, to Aw = f, i.e. w, solves the regularized system

(3.5) —oHw + A Aw = A'f,

where we choose the regularization operator H as Hw = (Df,u, DZv)T
(Dg is the second derivative operator with periodic boundary condi-
tion, while DZ is the second derivative operator with zero boundary
conditions). The positive constant « is the regularization parameter.
This regularized solution can also be viewed as the minimizer of the
Tikhonov functional (quadratic) that consists of a data fidelity term
and a regularization term [7, 8].

From (2.1) it can be easily shown that the solution U € H'(Q) is
non-negative on ) (by setting ¢ = min{U, 0} and using the coercivity
of the associated bilinear form), and, if the solution is more regular,
classical maximum principles can be applied to yield positivity of u
on any compact subset of I'y [3]. Hence, in such situations, it may
be valid to solve p from the relation (3.1) by simple division: p(z) =
v(z)/u(x). However, when solving w, from (3.5), the component u,
is not guaranteed to be positive, hence we must exercise care when
computing p from this relation. Based on a Tikhonov regularization
consideration for the possibly ill-posed problem of solving p from
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p(r)u(z) = v(z), we find an approximate solution p, g(z) for the Robin
coefficient p(z) as

va (2)ugd (@

Bt i)y "€

(3.6) Pa,p(2) =

for some small 3 > 0, where v = max{v,0} denotes the non-negative
part of a function v. In nearly all of our numerical examples, uq /()
is indeed positive and we are able to set 3 to 0. There are other
regularization methods for this problem, a common one being to express
p in terms of appropriate basis functions such as B-splines ([2, 4]).

We remark that this direct method is much simpler than the least
squares method presented in [9]. The least squares formulation there
was applied only to equation (3.3) for v after solving u in terms of v
from (3.2) with extra care to deal with the fact that 2Z + D has a
one-dimensional nullspace. Moreover, although it was v that was to
be solved, regularization in the form of u was needed. Thus it was
necessary there to compute the inverse operator/matrix to represent u
in terms of v. On the contrary, here our method (3.5) is for a larger
system for (u,v) in a much more direct fashion, and the regularization
is applied to the system to address the combined ill-posedness in the
equations.

4. Numerical Examples. On the boundary I', we use a regular
1-periodic parametrization with counterclockwise orientation

z(t) = (z1(t), z2(t)), 0<t<1,

where z1(t), z2(t) € C2[0,1] and |2/(t)] > 0 for 0 < ¢t < 1. For
z = (x1,23), we denote 21 = (z2,—x1). We also set u(t) = u(z(t))
for simplicity. Then the integral operators in (2.2) and (2.7) can be
expressed explicitly in terms of their kernels as

1
|z (t) — 2(s)f

(Su)(t) = /0 Ky(t,s) u(s) ds with Ku(t,s) = |”“"'2(7f)|1n



SOLUTION OF THE ROBIN INVERSE PROBLEM 553

(Du)(t) = /0 K.(t,s) u(s) ds with K.(t,s)

1 2'(s)" - (x(t) — z(s))

o e —a@P 7
1) -2"(t) t—s
W @OPF ’
(D'w)(t) = /0 K(t,s) u(s) ds with K/(t,s) = K.(s,t) |:;((j;||

for 0 < t,s < 1. The kernel K is weakly singular while K. and K. are
continuous. The two boundary integral equations (2.2) and (2.7) then
become

(4.1) %u(t)—F/O{Kc(t, s)—l—p(s)Ks(t,s)}u(s)ds:/O K(t,s) g(s)ds

and

42 e+ [ KLU PR (1) o) ds = ()

respectively, for 0 < ¢ < 1. When using formulation (4.2), we obtain u
from ¢ by

1
(4.3) u(t) = /0 K(t,s) o(s) ds.

We employ the Nystrom’s method with trigonometric interpolation.
The singularity in K(t,s) can be rearranged as

In|z(t) — z(s)| = In (2| sin(nw(t — 5))|) + Ko(t, 5)

with continuous kernel

|z (t) — z(s)]
In
KO(t,S): 2‘Sin(ﬂ' t*S))|’ t;és
1 12 @] .
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so that integrals involving this singularity can be dealt with by ex-
act integration. For detailed description and anlysis of this numerical
method, we refer to [8, Chapter 12]. We note that this is one of many
existing well-established numerical methods for integral equations of
second kind (e.g. [1, 8]); it serves our purpose for the initial investi-
gation of solution method for the inverse problem, and if it becomes
necessary in future study or for specific problems in application, we can
easily adopt other numerical methods suitable for more specific need.

For the sake of simplicity, in our examples below, we take (2 as the
elliptic region bounded by z%/a?+ 2% /b* = 1 with (a,b) = (1,0.2). The
ellipse has the standard parametrization

z = z(t) = (acos(2nt), bsin(2wt)), 0<¢ <1
We set the function g(t) as
g(t)=1 for t €[0.4,0.6] and g(t) =0 elsewhere.
The two segments I'y and I'y are chosen as

'y ={z(t): t€[0.1,04]} and Ty={z(¢): t €[0.6,0.9]}

Discretization mesh size is set to h = 1/200 for solving the system
(3.4). To generate the synthetic data ug on I'p, we use the other
formulation (2.6)—(2.7) with mesh size h/2, and add to it uniformly
distributed random noise of noise level § (relative to the L%-norm of
data ug). The recovered Robin coefficient p from (3.5)—(3.6) depends
on the specific realization of the added random noise in the data. In
order to provide a better illustration as to how different noise levels
in the measurement affect the overall quality of the recovered p, we
present results of several recovered Robin coefficient p together in each
plot in Figure 4.1 from several sets of synthetic data within the same
noise level but with different realizations of the random noise. The
regularization parameter « is chosen by experiments. As can be seen,
for smaller noise level, the method is capable of recovering the Robin
coefficient very well. In Figure 4.2 we present several recovered p for
different profiles of true p, again from several sets of data with same
noise level in each graph.

We further remark on results of our direct method in comparison
with the results from methods presented in [9] by similar integral
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equation formulations. The results by our direct method here are
slightly better in general than the direct least-squares method by [9];
the main difference in implementation between the two methods is
the size of linear systems involved: The system (3.5) is twice the
size of the equation for a single w or v as in [9]. The iterative
quadratic programming method by [9] is more robust and produces
better results in general. However, it is worth noting that our direct
method here is far more economical computationally, yet it is capable
of producing results of comparable quality, noticeably in cases with
simpler profiles (e.g. Figure 4.1 here versus [9, Figure 4]). Because of
its simple and economical nature, our direct method here in general
can provide a quick quality initial guess for iterative methods that are
computationally more intensive, such as the quadratic programming
method or methods from the PDE approach.

b=0.2, 5=10%, a=1.0e-6 b=0.2, 5=1%, 0=1.0e~7
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b=0.2, §=0.1%, 0=1.0e-8

1
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0.6
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0
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FIGURE 4.1. Results of 10 recovered p (solid) from 10 measurements with same
noise level in each plot, for the same true profile p (dashed).
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b=0.2, 5=1%, 0=1.0e-7 b=0.2, 8=1%, 0:=5.0e-8
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FIGURE 4.2. Results of 10 recovered p (solid) from 10 measurements with same
noise level § = 1%, for different true profile p (dashed).
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