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ABSTRACT. We prove analytically a connection between
the generalized Molchan-Golosov integral transform, see [4,
Theorem 5.1], and the generalized Mandelbrot-Van Ness inte-
gral transform, see [8, Theorem 1.1], of fractional Brownian
motion (fBm). The former changes fBm of arbitrary Hurst in-
dex K into fBm of index H by integrating over [0, t], whereas
the latter requires integration over (—oo,t] for ¢ > 0. This
completes an argument in [4], where the connection is men-
tioned without full proof.

1. Introduction. The fractional Brownian motion with Hurst index
H € (0,1), or H-fBm, is the continuous, centered Gaussian process
(BH)ier with BEf = 0, almost surely, and

Covp (BY,Bff) = = (|s|*" + [t|*" — |t — s|*"), s,te€R.

N =

H-fBm is H-self-similar and has stationary increments. For H = 1/2,
fractional Brownian motion is standard Brownian motion and denoted
by W. FBm is interesting from a theoretical point of view, since it
is fairly simple, but neither a Markov process, nor a semi-martingale.
Recently, the process has been studied extensively in connection to
various applications, for example in finance and telecommunications.
Important tools when working with fBm are its integral representations:
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94 C. JOST

for a fixed Hurst index K € (0, 1), on the one hand, there exists a K-
fBm (BJ);cr, such that for all ¢ € [0, 00), we have that

(1.1) Bf =C(K,H) /t(t — ) K
0

S, a.s.,

—t
><F<1—K—H,H—K,1+H—K,S >dBK
S
see [4, Theorem 5.1]. Here

Uk <C<H>C<K>—1 )

M- K+1)
_ (2HT(H + (1/2))0((3/2) — H) |/
C(H) ._< ez ) |

I' denotes the gamma function, and F is Gauss’s hypergeometric
function. B¥ is unique, up to modification, on [0,00). On the other
hand, there exists a unique, up to modification, K-fBm (EtK )teRr, such
that for all t € R, it holds that

(12) BY = C(K, H) /R (= )" 51 (s)

_(_S)H_K]-(—oo,O)(S)) d‘gsKa a.s.,

see [8, Theorem 1.1]. For K = 1/2, (1.1) corresponds to the Molchan-
Golosov representation and (1.2) is the Mandelbrot-Van Ness represen-
tation of H-fBm, see [6, 5], respectively. The integrals in (1.1) and
(1.2) are fractional Wiener integrals. A priori, representations (1.1)
and (1.2) are very different. Indeed, the integrand in (1.1) is a weighted
fractional integral over [0,¢], whereas the integrand in (1.2) is a sim-
ple fractional integral over R. Moreover, the filtrations generated by
(Bg{)te[o,oo) and (BtK)te[O,oo) coincide, but this is not the case for the

natural filtrations of (B} );er and (E{()teR-

In this work, we demonstrate how analytical facts of fractional in-
tegrals, combined with shifting properties of fBm, are used in order
to establish a natural connection between the (generalized) Molchan-
Golosov integral transform (1.1) and the (generalized) Mandelbrot-
Van Ness integral transform (1.2). More precisely, we show that the
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latter one emerges as a boundary case of a suitable time-shifted for-
mer one: Based on (1.1), we construct a sequence of H-fBms which,
for fixed ¢, converges in L?(P)-sense to (1.2). We will specify the rate
of convergence. In particular, the generalized Mandelbrot-Van Ness
representation is a consequence of the generalized Molchan-Golosov
representation.

The article is organized as follows. In Section 2, we first review the
definition and some relevant facts of Gauss’s hypergeometric function.
Second, we define fractional integrals and derivatives over R and show
the connection to fBm. Third, we recall the definition of the fractional
Wiener integral over the real line. In Section 3, we derive the connection
between the integral representations.

2. Preliminaries.

2.1. Gauss’s hypergeometric function. The Gauss hypergeometric
function of parameters a,b,c and variable z € R is defined by the
formal power series

F(a,b,c,z) :=2F1(a,b,c,z2) : Z k
(c)

"
k=0 k k
where (a)p :=1and (a)y :=a-(a+1)-----(a+k—1), k € N. We
assume that ¢ € A := R\ {...,—2,—1,0} for this to make sense. If

|z <lor|z] =1and c—b—a > 0, then the series converges absolutely.
If, furthermore, ¢ > b > 0 for z € [-1,1) and b > 0 for z = 1, then it
can be represented by the Euler integral

I 1vb—1 —w c—b—171 _ 20) "% do
F(b)F(c—b)/O (L= o) =)™ do,

see [3, page 59]. If ¢ > b > 0, then the expression on the righthand
side of (2.1) is well defined for all z € (—o0, 1). For these parameters,
we can hence extend the definition of F' to all z € (—o0, 1) via (2.1).
In order to extend F for fixed z € (—o0, 1] to more general parameters,
we consider Gauss’s relations for neighbor functions. Functions of type
F(a £ m,b,c,z), F(a,b+ m,c,z) and F(a,b,c £ m,z), m € N, are
called contiguous to F(a,b,c,z). If m = 1, then they are also called

(2.1) F(a,b,c,z) =
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neighbors. For any two neighbors Fi(z), Fa(z) of F(a,b,c, z), one has
a linear relation of type

(2.2) A(z)F(a,b,c,z) + A1(2)Fi(2) + A2(2) Fa2(2) = 0,

where A, A; and A, are first-degree polynomials with coefficients de-
pending on a,b and c. See [1, page 558] for all 15 relations. We use
the neighbor relations in order to extend F for z € (—o0, 1) to all pa-
rameters such that ¢ € A, and for z = 1 to all parameters that satisfy
¢,c—b—a € A. Among the most important properties of F' are the
Symimetry

F(a,b,c,z) = F(b,a,c,z2)

and the reduction formula
F(0,b,¢,2z) = F(a,b,c,0) = 1.

Also we have the linear transformation formula, see [1, page 559],

(2.3) F(a,b,c,z):(1—z)_“F<a,c—b,c, sz), z < 1.
In particular,
(2.4) F(a,b,b,z)=(1—2)"% z<1.
F is smooth in z, and we have (see [1, page 557])

d b
(2.5) —F(a,b,c,z):a—F(a—f—l,b—l—l,c—i—l,z)

dz c
and

d a a—1

(2.6) E(z F(a,b,c,+2)) = az" 'F(a+1,b,c, £2).

F is left-continuous in z = 1 and it holds that, see [3, page 9],

I'(e)T'(c—b—a)

(2.7) F(a,b,c,1) = Te—hc—a)
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Let a,b > —1 and w < x < y. Substituting v := (y — x)v + = in (2.1)
and using (2.3) implies that

y
(2.8) / (y — u)’(u — w)*(u — z)%du
MNa+1)IT'(b+1)

(y = 2)F (@ —w)

I'(a+2+b)
xF(—c,a—l—l,a—l—Z—i—b,y_x)
w—2x
P(a+ )b+ 1 . .
_ ( ) ( )( o )1+ +b(y_w)

I'(a+2+b)

xF(—c,b—l—l,a—l—Z—i—b,u).
y—w
If z < y < w, then we have that

(2.9) /y(y —u)’(w — u)*(u — ) du
Fla+1DI'(b+1)

_ _ 14+a-+b _ c
T(at210) (y — ) (w— )
xF(—c,a—i—l,a—i—Q—i—b,y_x)
w—z
_Tla+1)I(b+1) Ltath .
xF(—c,b—l—l,a—i—Q—f—b,u).
y—w

By linearly combining neighbor relations, we obtain relations of type
(2.2), where Fi(z) and F»(z) are contiguous to F(a,b,c,z) and A, A;
and As are polynomials of higher degree. An example for a contiguity
relation is

(2.11) —cF(a,b—1,¢,2)+ (¢ —b+ zb— za)F(a,b,c+1,z)
+b(1—2)F(a,b+1,c+1,2z)=0.

It can be checked easily by using series.
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2.2. Fractional calculus over the real line. For more information on
fractional calculus in the context of fractional Brownian motion, see [7]
or [4]. See [10] for general information on fractional calculus.

Definition 2.1. Let a > 0. The (right-sided) Riemann-Liouville
fractional integral operator of order « is defined by

@ - h w(u—s)*"tdu, s
@ENE = Fa [ St s R

Let o € (0,1). The (right-sided) Riemann-Liouville fractional deriva-
tive operator of order « is defined by

(D2 )(s) = 2 (T 1) (o)
1 —d

:mg/s fw)(u—s)"%du, s€R.

The (right-sided) Marchaud fractional derivative operator of order « is
defined by

(D f) (s) := lim (D* _f) (s), ae. s€R,

lim
where
(D2 o) () = gy [ (16 = fus )
Moreover,
DUf=D0f =]
We set

77 :=D%, aco,1).

Ifae(0,1),pel,(1/a)) and f € LP(R), then Z¢f is well defined,
see [10, page 94]. Clearly, I! f exists for f € L'(R). We have the
composition formula

1°1° f =1°%Pf, feL'(R), I°feL'R), a,fe(0,1].
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Furthermore,

(212)  DI’f=1°""f feLl'(R), I°feL'(R),
0<a<p<l.

If f is piecewise differentiable with supp (f’) C (—oo,y) for somey € R

and so that D* f exists, then D f = D f.

Let t € R\ {0}, and set 1jg4) := —1p ) for ¢ < 0. For all H € (0,1),
we have that

(If_(l/m 1[0,t)> (S)

N F(ﬁ”r;(lﬂ)) <(t =)D oy (s) - (_8)H7(1/2)1(—oo,0)(8)) '

So for K =1/2, (1.2) can be written as

(2.13) BI = C(H)/

(IH(I/Q)l[O’tQ (s) de, a.s., t€R.
R

2.3. Fractional Wiener integrals over the real line. We combine (2.13)
with the standard Wiener integral in order to obtain a meaning for the
expression [ f(s)dBE for suitable deterministic integrands f. For
details on this topic, see [9]. For H > 1/2, the space of integrands is
given by

A(H) = {f € L'(R) ‘ / (If[_(m)f) (s)2ds < oo}.
R
For H < 1/2, we have that
AH) = {f :R—R ‘ 3 ¢; € L*(R) such that f =I(,1/2)7H<pf}.

For f € A(H), the (time domain) fractional Wiener integral with
respect to B is defined by

11(f) ;:/Rf(s)dBf = C(H)/R<Ifl_(1/2)f) (s) dWs.
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3. The connection between the integral transforms. Consider
transform (1.1). BX has stationary increments so, for every s > 0, the
process

t J—
Bf* .= C(K, H)/ (t —u)H_KF<uTt> dBE .. t€0,00),
0

where
(3.1) F(z)=FQ1-K-HH-K1+H-K,z),

is an H-fBm. The increments of B are stationary, hence the time-
shifted process

Z{"" = Bl = B, t€[-s,0),

is an H-fBm. By substituting v := u — s, we obtain that

z* = (K, H)(/ (t— U)H—Kﬁ<“—_t) dBX

s v+s

—/:(—v)H—Kﬁ(ULH) dBf), 0.

As s — oo, we formally obtain that

t

2= 2 = O [ (0= 071 0)

— (—0)" 1L o0y (v) dBY

v

for t € R. Note that by definition, the processes BH:* ZH:s and ZH
depend on K. We can state and prove the following:

Theorem 3.1. For every K > 1/2 and t € R, there exist constants
Cy =Ci(K,H,t) and s1 = s1(t) > 0, such that

B[zl — ZH]? < 018272, 5> sy

Moreover, for every K < 1/2 and t € R, there exist constants
Cy = CQ(K, H,f,), Cs = Cg(K, H,f,) and s = Sg(t) > 0 with

E[ZtH“‘; _ ZtH}Q < 02821{72 + 0352K*2, s> 9.
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Proof. Clearly, we can assume that H # K and t # 0. Moreover, we
assume that ¢ > 0. The result is derived similarly for ¢ < 0. Recall
that F' is defined in (3.1), and denote

Afi(v):

84 (0) = (0= 0" (1

I
—~
—
~
|
<
~~

i
=
|
—
<
~-~ —
T
~
—_
|
8
|
N
—~
<
~—

and
Ak (v) = ki (v) = kg(v)
_k(=afv—t
— (t o U)H K F(v m s) — 1)1(570(@)
_xl=af v
- () - i@
For continuous G, set *G := max.¢|_1,) |G(2)| and G* := max_¢[o,1]

|G(2)|. For K = 1/2, we have, by independence of increments of
BX =W, that

o2 (R ) plat -z

:/ Aff(v)? dv+/ AKS (v)? do.
R R

Note that

n 2 n
(3.3) ( ai> < nZa?, n € N.
i=1

i=1
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So for K # 1/2, we obtain by using (3.3) with n = 2, that

1 ' Hys -, H12
2C(K, H)? Bz al

(3.4 <[ arwass] | [ swiease]
=C<K>2</R(IK“/2>M;) (v)2 dv

+ /R (52 Ak (U)de).

A. For all K € (0,1), we show that there exists a constant ¢; (K, H,t),
such that

(3.5) / (TP AR) () do < er (B H )72, 5> 1.
R

For all K € (0,1), we have that

(1 s —s—v)H-(1/2) —5—v
(= (/Q)Afi>(“):(r<f<+)<1/2>> (G< )

_ GO(_S_; ”)) 1 sos)(0),

1 1
Go(z) :== zKHF<K—H,K— 5,K+ 5,z>.

where

For K = 1/2, this is trivial. For K > 1/2, this follows from (2.9).
For K < 1/2, it follows from the fact that (Iff(l/Q)Afts)(v) =

(—d/dv)(T* TP Af5)(v) by using (2.9), (2.6) and (2.11). By using
(2.6), we have that

dG
dz
(3.6) = (K — H)ZX7771q,(2).

1 1
(z) = (K—H)ZKH1F<K—H+1,K— 3 K+ 5,2)
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By the mean value theorem, there exists 6, € ((—s—v)/(t —v),
(—s —v)/(—v)) C (0,1), such that

(70 ag )

:( T(K + 1/2))) (s =)™ 1(%)2
x 2= UG%(HU,Q M (—o0,—s) (V)

< (rwrom >)2G*2t2 (1 (t?)Q(H_K))

><( U)QK 1( ’U2(H K-1) | 1(700,75)(7])-

Hence, from (2.10) and (2.3), we obtain that
/ (TEYPAL) () do
R

< (wer ) orems (1))

1 o —2K
X lim ﬁ(—x — S)QKSQ(H_K_D <?>

Tr——00

><F<2H—1,2K,2K+1,x+s>
xr

K—H \> .t
=—— " ) G2 __F(Q2H-12K,2K +1,1
(P(K+(1/2))> L oK ( 2K, 2K +1,1)

2H—K)
X max (17 (t—i—s) )SQH_Q.
S

By using (2.7), we obtain (3.5) with

_( K-H \’G{4rQK)r(2-:2H),
ci(K, H,t) = (I‘(K+(1/2))) (2K — 2H + 2)

B. Fix d > 0. For K > 1/2, we show that there exists a constant
co(K, H,t,d), such that

(3.7) / (2507 Ak ) () dv < ea(K. H, 1, d)s* =2,
R

s>2t+4d+ 1.
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For K < 1/2, we show that there exist constants c3(K, H,t,d) and
cy(K, H,t,d) with

/R (Iff(l/mAk:f) (v)*dv < c3(K, H,t,d)s*" 2

tey(K, H t,d)s* 572 s > 2t + 4d + 1.

(3.8)

Let s > 2d. We have that

Akj(v) = ki (V)= (v) = kg(v)1[—a,0)(v) + Ak (v)1(—s/2),—a) (V)
+ Agi (V) 1(—s,(—s/2)) (V) = AR (V)1 (s (—s/2)) (V)

First, let K = 1/2. Note that (—s, (—=s/2))N[(=s/2),—d)N[—d,t) = 2.
By using (3.3) with n = 2, we have that

(3.9) %/RAkg(v)Z dv </t kf (v)? dv+/0d k§(v)? dv

—d _
—s/2 —s/2

—d
+ / AkS (v)? dv + / Ags(v)? dv + / AR (v)? dv.

—s/2 —s
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Second, let K > 1/2. Then

D(K — (1/2)(@5 Y2 Akp) (v)

/ Ef (u)(u — v)5— B/ gy - I(—oo,—ay(v)
+ / Ej (u)(u — U)K_(3/2)du g (v)
"o
= [ R =0 D1 a0)
/ kg (u VE=B 2y, . l—a,0)(v)

+ Akf( )(’U, — ’U)K_(3/2)du . 1(7007(,5/2))(1))
—s/2
—d
+ Akf(u)(u - ’U)K_(B/Q)du . 1[(,5/2),,@ (’U)

v

—s/2
+ / Agi (u)(u — 0)K =B du 1oy (v)

—S

—s/2
+ / Ag; (u)(u — v)K*(?’/Q)du . 1[_37(_3/2))(1))

—s/2
- [ Ak 0P 1y (o)

—S8

—s/2
N / AR (u)(u = 0) B du - 1 (g2 ()

= Al(U) + B1 (U) + AQ(U) + BQ(U) + A3 (’U) + Bg(v)

—|— A4(1}) —|— B4(U) —|— A5(’U) —|— B5 (’U)

Hence, by using (3.3) with n = 5, we obtain that

(3.10) LK - (1/2)7 /R (If*“/%kf) (v)2 dv

5

gi:/RAi(v)de+§:/RBi(v)2dv

105



106 C. JOST

Third, let K < 1/2. Let x < v < y and f be differentiable with
[’ € LYz,y]. From (2.12), it follows that

(5T f1, ) ()
— (DYAELIDL 1, o)
= (D(,I/Q)inl(z,y) - f(y)l(a:,y))(v)

_ (D(_l/Q)_Kfl(x,y))(’U) . f(y) )) (y o ’U)

_JY K—(1/2)
D(K +(1/2 '

Since lim,, ~ kf (v) = lim,, o k§(v) = 0, we obtain that

F(K—%) (D2 Ak;) (v)

1 .
—T K—i) DY ) (v)

D(}/2)*KAgt1( o(—s/2)) )

N——— N N N~ —

(
(D2 Ak )
(
(

+
—

/‘\/%\/‘\/‘\
|

N = N = N = N =

DY K AR, 5/2)))
t
:/ kS () (u — v)K=6/2) du - 1(—oo,—a)(v)
1 K+(1/2) =4
47T K—§ I T — ki L—ap) ) (0) - g (v)

0
_/ kg (u)(u — )K= du -1 gy (v)
—d

1 —d
- F(K — 5) <I§+(1/2) T kol - dO)) () - 1—a,0)(v)

—d
e Ak (u)(u—v)* 32 du - 1 g (g2 (0)
—8

1 —d
+ F(K - 5) (If“(lﬂ — A1 s/2),d)) (v) - 11(—s/2),—ay(v)
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—s/2
+ / Ag; (u)(u — ’U)K_(3/2) du - 1(—oo,—s)(v)

—S

1 K+(1/2)—d ,
+ F<K - 5) (I %Agt L—s(=sy2)) | () - 1i—g (—s/2)) (V)

—s/2
= [ AR = o du 1y (0)

—S

1 K+(1/2) —d
- F<K - 5) (I +(/ )%Ahfl(—s,(—s/m)> (v) - T[—s,(—s/2)) (V)

Ak (—d _
K—i((l/Z))(_d = o) WD ey gy (v)
AR (—s/2) [ —s K—(1/2)

K- <7 B > Metaan®)

=: A1 (v) + C1(v) + Az(v) + C2(v) + As(v) + C3(v) + Ax(v)
+ Cy(v) + As(v) + C5(v) + D(v) + E(v).

Hence, (3.3) with n = 6 yields
2 5
(3.11) M/ (2502 ak}) ()2 do < Z/ Ai(0)2 do
R = J/r

6
+§;/Rci(’0)2 dv—i—/RD(v)2 d’u—f—/RE(v)2 dv.

Next we estimate the integrals on the righthand sides of (3.9), (3.10)
and (3.11). In what follows, B denotes the beta function.

1.  Estimation of fid ki (v)?dv, [ Ai(v)*dv, [5 Bi(v)*dv and
JrCi(v)?dv. Let u € (—d,t). By the mean value theorem, there
exists s, € ((u—1t)/(u+s),0) C ((—d —t)/(—d + s),0), such that

t—u\|dF
kj(uw)| =t —uw)" 5 —— | |— s
kil = (¢ = )"~ (£ 6
a
< (t — w)HK+1 (5 — gy~ max dFG)|
z€((—d—t)/(—d+s),0) | dz
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We assume that s > 2d + ¢. Then, it follows from (2.5) that

1= K — H||H — K|*G»
1+ H—K]| ’

| (w)] < (t = w5 F (s - d)

where
Go(2) =F2-K-HH-K+1,24+ H-K,z).
For K = 1/2, we obtain that

t *G2(t 4 d)2H+2
/ k‘f(u)2 du < —GQ( +2 ) 5§72
—d

Denote

Gs(2) :—F<;-K,H—K+2,H—K+3,z>.

For K # 1/2, we obtain by using (2.8) that

) 2'GIG32(t + d)*H+2
<
/RAl(v) dv < (1+H—K)2(1—K)S

Also, for K > 1/2, we have that

2GZB(H - K +2,K — (1/2))°
2 < 2 ’ 2H4-2 72.
/RBl(v) dv < AT H LK) (t+d) S

Furthermore, it holds that

d t—u\|dF
L )| < |K - H|(t— )T K170 P,
dekit)] < 1K = e -0t (20 )

dF (u—t s+t

i) H-K |4 st

i -w ‘dz (u—l—s) (u+ s)2

11— K—H|H—-K['Gy\ (|K—H| s+t
< +
- 1+ H - K| s—d (s —d)?

x (t —u)f K,
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Hence, for K < 1/2; we obtain by using (3.3) with n = 2 that

/ Ci(v)* dv < 68 GhBMH K+ 1K+ (1/22))2 (t+ d)2H+2572,
R (1+H-K)2(K —(1/2))

2. Estimation of f?d k§(v)? dv, [ A2(v)?dv, [g B2(v)*dv and
fR Co(v)?dv. We obtain estimates by replacing ¢ by 0 in the results
of 1.

3. Estimation of f__gd/Q Ak;(v)? dv, [g As(v)?dv, [g Bs(v)?dv,
Jr Cs(v)? dv, [g D(v)?dv and [g E(v)? dv. Denote
Ga(z) = 2K (F(=2) - 1).

For u € ((—s/2), —d), we have that

Ak (u) = (u+ )7 K (G4 (Z;Z) —a, (u_fs)>

From (2.6) and (2.4), it follows that

T4 (2) = (B = F)H R (1 4 2T ),

Hence, by the mean value theorem, there exist s, € ((—u/u+ s),
(t—u/u+s)) C(0,(t+ (s/2)/s/2)) and s, € (0,05,,), such that

Ak;(u) = (u+s)77K <UL+S> (H — K)07 K71 (1 +6,,)" 5 - 1)
= (u+s)"" <%+S> (H - K)o 5Y(H + K —1)

X O (14 15,0) T2,
Thus,

(3.12) |AK(uv)| < |H - K||H

—u >H—K—1t_u

+K — 1|(u+s)HK1t<— .
u-+s u-+ s
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In particular, we have that

—1
t
(3.13) |Akf(u)|<|H—K||H+K—1|<§> t%(—u)H*K.

So, for K = 1/2, we obtain that

d 2 2
t t+d
ﬁks 2d < 2H72.
)2 () “8H< d )S

Also, from (3.12), it follows for u € ((—s/2), —d) that

2
(3.14)  |Aki(u)| < |H - K||H+K — 1|t%(—u)H—K—l.
Denote

3
G5(2) :=F<§—K,H—K,H—K—|—1,z).

Let K # 1/2. For H > K and s > max(2t,4d), we obtain by using
(3.14) and (2.8) that

/RAg(v)2 dv < (H — K)2t2<%>2

—s/2 —d 2
X / (/ (—d — u)T= K1 (y — )K= 3/2) du) dv
—oo —s/2

t2<t-+<s/2>>2(?@<<s/2>—-d>2H—2 23268 5 oo

<
- 5/2 ° 22K “1-K

Similarly, for H < K, we have by using (3.13) and (2.8) that

2G£242 t+d\>
2 < 6 2H—2
AAW”M’<H—K+WU—KK d>s ’

where 3
Ge(z) :—F<§—K,H—K+1,H—K+2,z>.
Let

Gr(z) =F(2(K — H+1),1,2K + 1, 2).
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For K > 1/2 and s > 2t, we have by using (3.14) and then (2.9) twice
that

/RBz(v)2 dv < 12 (%)2

x /i </vd(—U)HK1(u—U)K<3/2> du)de
= <t +S(/52/2)>2 (K —6?12/2»2 % (5 - d) :

2(H-K-1 % %
(YT T < 8GPGE o0
2 TT(K - (1/2)2K ’

where G is defined as in (3.6).
Let K < 1/2. It holds that

d*Gy

T (o) = (H ~ K~ )~ K)2R2 (14 2 )

+(H - K)(H+ K — 1) 571 (14 o) T2,

For u € ((—s/2),—d), there exists 6, ,, € ((—u/u+s), (t —u/u+s)) C
(0, (t+ (s/2)/s/2)), such that

_K— t—u —U
e o ()|
dGi(t—u
dz \u-+s
t d2G4( )
u+s| d2z V%

—d
AR
ki

+ (u+ )52

+ (u+ s)T K2

< (H - K)2|H+K_ 1|t+s(/#<g)_ t(_U,)Hfol

+|H - K||H+ K - 1|7t +5(/82/2) (g) t(t —u) K1

£t ()2
V- K- 1)|H - K||H + K —1)275/2) (/82/ )
S

x st(%) _1(—u)H*K*2
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_H-K
+|H - K||H+K - 1|5H+K1(§)

x t(—u)H =K1,

Let
F<1+K H K+ — K+3,>
—F<2K+1— ,1,2K+3,z>,
3
Gio(z F(2+K HK+2K+2 )
and

Gui(z):=F(2(K +2—-H),1,2K + 3, 2).
First, for £ € {0,t}, we have by using (2.9) twice that

—d —d . 2
/ (/ (f —u) KL (y —p)K-(1/2) du) dv
—s/2 v
) ay 2 ay s 2H
“\K+(1/2)) 2Kk+2\2)
Second, in the same way, we obtain that
—d —d 2
/ (/ (—u)I=E=2(y — p)K~(1/2) du) dv
—s/2 v
X 2 2H—2
< 10 11 S
“\K+(1/2)) 2K +2\2 '
By using (3.3) with n = 4, we obtain for s > 2t, that
2 —2
/ C3(’U)2 dv < 4 > (t + (8/2)> t2 <f)
R (K —(1/2)) 5/2 2
G} Gy (s
K+(1/2)) 2K+2\2

TS ?1/2 (Hs/z/Q)tQ()

V2]
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G2 Gy s\
" u<+<h@»22K*+2(2)

4 o aftt(5/2)\°
Tw oY (%552

$\ 2 . 2 §\ 2H-2
2,2( 8 10 1 (s
x st (2) (K+(1/2)) 2K+2(2)
4 —2K—-2H
4 Q2AHYK-1)2 (f)
(K —(1/2))° 2

(B )
K+(1/2)) 2K +2\2
(68GE2Gy + 512G72Gry) (2 2H 2
T (K = (1/2)* (K + (1/2))°
By using (3.13), we have that

t+d
IMﬂ%HQH—MW+K—Mﬂﬂ%%f$*K

Hence,

242 (H—K) t4+d\?
2 < 2 2K72.
A””“—Km—wmici)”

From (3.14), it follows that

t+(s/2)

|Akf(—s/2)| < |H - K||H+ K — 1|ts/72

(8/2)H7K71.
Hence for s > 2t, it holds that

2 8 282H72
B0 < et

4. Estimation of f_—:/z Agi(v)?dv, [g As(v)*dv, [ Ba(v)? dv and
Jr Ca(v)? dv. By using (2.3), we have that

Gia(z) =" KFQ2H,H - K, H- K +1,2)

1—2\5H z
) ()
z z—1
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From (2.6) and (2.4), it follows that

dG12
dz

(2) = (H — K)2"T=K-1(1 — 2)=2H,

Let u € (—s,(—s/2)). There exists 05, € ((—u/s),(t —u/s+1t)) C

((1/2),1), such that

Agy(u) = (u+9)"" <G12<t+> Gu(%u»

= (u+s)H- (Zi;‘ ) (H — K)o 51 (1 —6,,)"*".

In particular,

[H - K|t (1\"7F K
Ag; <————|( = .
| gt(u)|— (S+t)172HS 2 (’U,+8)

Hence, for K = 1/2 and s > ¢, we have that

78/2A 2 L 20m2
Y < — e
/ g; (u) du_l Hts

—s -

Denote 3
Gi3(z) := F(5 - K 1,3-K —H,z).

For K #1/2 and s > t, (2.8) yields that

2G*2t2
A 2 < 13 2H—2.
/R 4(v)7dv < 1-K)2-K_H)32

Similarly, for K > 1/2 and s > t, we obtain that
2 *2
/ B4(v)2 dv < #QtQSQH_Q,
R (K —(1/2)" K

1
G14(2) ::F(H—I—K—l,l,K—i——,z).

where

2
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Furthermore, we have that
d2G12
d2z

(2)=(H-K)(H-K-1)z""521-2)2#
—|—2HZH7K71(1 _ Z)72H71) )

So for u € (—s,(—s/2)), it holds that
t—u —U
o (57) ()
+ (u+ )X

dG12 t—u -1 _ dG12 —_U —_1
dz s+t s+t dz s s
Ht(1/2) K1 _H-K
(s +t)1—2Hg (uts)

dG t—u dG —U
H—K 12 _ 12 —u
+(uts) ‘ dz <s—|—t> dz <s>

dGi2 [ —u t
-k |dG12 (—u
+(uts) ‘ dz (s) (s+1)s

d
TG ()| < |H = K|(u+5) 5

< (H-K)

1
s+t

< (o)1
o MU SC 2 s
KO s
(o0
- (i

|H — K|t(1/2)" -1 _H-K
(s +t)st—2H (uts)
N |H — K||H — K — 1]t(1/2)H-K-2
s(s+t)2—2H

(u+ s)l_H_K.

Denote

3
Gis(z) == F(K—I—H,l,K—I— 5,2)
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and
3
Gw(z) = F<K+H—1,1,K+ 5,2)

Then, for K < 1/2 and s > t, we obtain by using (2.8) and (3.3) with
n = 3 that

Je d”<< 11/2>>2

(
( (1/2)H K-1 2 (1/2)H7K71 t(1/2)HK1)2
(

s+t)1-2Hg s(s+t)1—2H (s +t)s1—2H

G s/2 2—2H 2
C K+ /27 Sremal (K - <1/2>)
y (|H —K -1t <1/2>H‘K‘2>2 G (/'
s(s +1)22H (K +(1/2))* 2K +2
(63G +4G ) t282H_2
T (K- 1/27 (K +(1/2))

5. Estlmatlon of [, °/2 Ah; (v)? dv, [g As(v)?dv, [g Bs(v)?dv and
Jr C5(v)? dv. For u € ( s, (— 5/2)) we have that

AR (u)] < [H — Klt(s/2)" 5.

For K = 1/2, it follows that

—s/2
/ ARG (u)? du < 252772,

—S

Let
Gi7(z) := F<g - K, 1,2,2).

For K # 1/2, we obtain by using (2.8) that

) *2
[E{A5(v)2 dv < 1G—1[7(t2s2H*2.
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Moreover, for K > 1/2, we have that

/ Bs(v)*dv < 2—t2252H_2.
R K (K = (1/2))

For u € (—s,(—s/2)), we have that
a4
du
For K < 1/2, it follows that
I'(K - (1/2))7
/ C5(U)2 dv S 8 ( ( / ))2 t252H72.
R I'(K+(3/2))

By combining (3.9) and (3.10), respectively, with these estimates, we
obtain (3.7) where

s H—-—K-2
A@W<QH=MW—K—H<i> .

1 (t+d)? 2
- H —9.5Q2 2H+2 9 )42

and

02(K7 Hv t, d)
_ ( 20-"G2G3? + 20'*G§F(H—K+1)2>(t+d)2H+2
+

T(K—(1/2))’(1+H-K)?>(1-K) T(H+(3/2))?

max(lﬁoc;ﬁ,(10G;;2(t+d)2)/((H—K+1)2d2))+1OG{$+(10G1‘§)/((2—K—H)2)
(1-K)P(K—(1/2))?

+

1062 440G:2G5+10 ) ,2 1
KT(K+(1/2))? 7 K> 92"

In the same way, by combing (3.11) with the estimates, we obtain (3.8)
with

Cc3 (K7 H7 ta d)
B 24.*G2Gx2 816-*G2I'(H—K+1)? 2H+2
(F(K(I/Q))Q(leBK)Q(lK) + (1+HK2)2F(H+(3/2))2) (t+d)

max(192G3>,(12G5> (t+d)%) /(H— K +1)*d*))+(12G}3)/((2— H—- K)*)+12G;3
T(K—(1/2))*(1-K)

+

48 24 408G3%G5+3072G G, +378G {2 +24G {2 +48 12
KT (K+(1/2))? I(K+(3/2))°



118 C. JOST

and
R RVt +d)? ,

calf, Hyt,d) = = (K + (1/2))° K

Eventually, by combining (3.2) and (3.4) with the results in A and B,
we obtain the following: For K = 1/2, we have that

2
(UL e gy

1 1
< (cl<§,H,t> +02(5,H,t,d))82H2, s> 2t+4d+ 1.

For K > 1/2, we have that

I'(H - K +1)?
2C(H)?
< (er(K, H,t) + co(K, H,t,d))s* 72 s> 2t +4d + 1.

Bz~ 21"

For K < 1/2, it holds that

[(H - K +1)? Hs o, H2
QC(H)2 ’ E[Zt —Z }
< (er(K, H,t) + cs(K, H,t,d))s*7 >

+ey(K H t,d)s* 72 s>2t+4d+1. 1

The (generalized) Mandelbrot-Van Ness representation is a direct
consequence of Theorem 3.1, and hence of the (generalized) Molchan-
Golosov representation:

Corollary 3.2. For every K € (0,1), the process (ZtH)teR s an
H-fBm.

Proof. Tt follows from Theorem 3.1 that lims_, E[ZtH’S 7 -0
for all ¢ € R. Hence, for all ¢,t’ € R, we have that E[ZtH . Ztﬂ =
limg oo B[Z7 - 20 = (1)2) (1127 + |27 — [t —¢'P7). o
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