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ABSTRACT. Pointwise rates of convergence for the collo-
cation method applied to periodic singular integral equations
and pseudodifferential equations are considered, using trigono-
metric polynomials of degree n as the space of trial functions.
If the exact solution is in C", then the error in the maximum
norm is shown to be O(n~" log? n). This rate of convergence
is almost optimal, since the error for the interpolant of the

exact solution is O(n~" logn) and for the best approximation
is O(n™").

Introduction. This paper deals with the trigonometric collocation
method and is a sequel to 7], which treated the trigonometric Galerkin

method. We prove error estimates of the form

l[tn = ulles < e(1/n)"~*(log n)?||ul

cr

for non-negative integers s < r, where u,, is the trigonometric polyno-
mial of degree n obtained via collocation of a periodic singular integral
equation or, more generally, of a periodic pseudodifferential equation,
whose exact solution is u. For any periodic function v € C", the er-
ror for the best approximation to u in the C*¥ norm by trigonometric
polynomials of degree n is of order (1/n)"~*. In this sense the error es-
timate above is less than optimal by a factor of (logn)?. Very recently,
B. Silbermann (oral communication) has improved upon our result by
showing that only one factor of logn is needed. This means that the
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pointwise rate of convergence for trigonometric collocation is the same
as for trigonometric interpolation.

The book by Mikhlin and Présdorf [8] contains detailed bibliographic
information on numerical methods for singular integral equations. Of
most relevance to the work presented here is the treatment of collo-
cation methods due to Progdorf and Silbermann [16], who obtained
error estimates in L, and Holder norms. The difficulty in establishing
sharp pointwise error estimates stems from the fact that singular inte-
gral operators and pseudodifferential operators fail to be bounded with
respect to the maximum norms.

In the case of a single singular integral equation we perform all the
analysis explicitly. Using Bessel potentials and the factorization of
matrices, these results extend to general systems of pseudodifferential
equations on closed smooth curves. The convergence results are valid
for elliptic equations with vanishing left indices of the principal sym-
bol go(z,—1)"Yoo(z,+1). A further generalization to equations with
additional equilibrium conditions and new unknown parameters can be
made without difficulties as in [6]. Here we omit these more techni-
cal details. The above class of equations includes boundary integral
equations of various types, such as Fredholm integral equations of the
first and second kind, Cauchy singular integral equations, hypersingu-
lar integral equations and elliptic integro-differential equations. All of
these are used to solve many different problems in applications, some
are listed in [6] and [22].

In connection with numerical integration, this method establishes a
discrete version of the spectral method for these equations and is most
efficient for smooth curves and data since the fast Fourier transform
provides a simple, numerically stable and fast tool to handle the discrete
equations for the Fourier coefficients. This idea goes back to P. Henrici
who proposed a similar way in [5].

This paper is organised as follows. The collocation method is de-
scribed briefly in §1, and then in §2 we gather together some results
on approximation by trigonometric polynomials. As in [16], the error
analysis for the collocation method relies on factorization of the equa-
tion’s coefficients, a topic dealt with in §3. (Some of the material in §2
and §3 is discussed in greater detail in the paper [7] where the Galerkin
method was treated.) For the Cauchy singular integral equations, the
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pointwise error estimates are proved in §4, by adapting the approaches
used in [7] and [16]. Along the way, we also prove error estimates in
the Holder-Zygmund norm. In §5 and §6 we show how to extend the
analysis, first to one pseudodifferential equation, and then to systems
by using Bessel potentials. The necessary matrix factorization result is
quoted.

Throughout the paper, ¢ denotes a generic constant independent of
n,u, U,, not the same at each occurrence.

1. Collocation with trigonometric polynomials. Consider a
singular integral equation or system of pseudodifferential equations

(1.1) Au = f,

where u and f are 27-periodic, complex-valued functions. We are
interested in constructing approximations to the solution w.

Denote the trigonometric monomials by
ei(t) := explilt], leZ,
and the space of trigonometric polynomials of degree n by
7, :=span{e; : |l] < n}, n € Ny.

Here, Ny := {0,1,2,...} is the set of natural numbers including
zero. When zero is excluded, we write N := {1,2,3,...}. Since
dim 7, = 2n + 1, define the equally-spaced collocation points by

(1.2) thn = 21k/(2n + 1), k| <m,
and seek u,, € 7, satisfying
(1.3) (Aun)(tkn) = f(trn), k| < n.

When it exists, the function u,, is said to be a trigonometric collocation
solution of (1.1).

Denote the complex Fourier coefficients of a function f by

£(1) = % /” e”ft)ydt, leZ,

—T
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then the Fourier series expansion of f is
(14) W~ S e,
l=—00

The collocation equations (1.3) hold if and only if the Fourier coeffi-
cients of u,, satisfy the (2n + 1) x (2n + 1) system of linear algebraic
equations

ST lAe) (ten)lan() = f(tiw), k] <n.

lii<n

We shall see later that if A is invertible, then these equations are
uniquely solvable for all n sufficiently large. For singular integral
equations (1.1), it can further be shown that the I condition number
of the coefficient matrix is uniformly bounded as n — oo, see [16].

2. Approximation Theory. Let C denote the set of continuous
functions f : R — C which are 27-periodic, that is,
flz+27) = f(z), for all z € R,
and equip C with the maximum norm
flloc = max{f@)l,  feC.
Write D = d/dz, define
C*:={feC:DifeC for0<j<s}, s € Ny,

and introduce the norm

Cs = Z “D]fnoo, s € N().
7=0

I1/1

As usual, we put C* :=N¥,C%.

Define the Holder-Zygmund seminorm

o SUpp~q %, 0<ax<l
"= 143 £
SuPp>0 -_Za—xv a=1,
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where Ay, is the forward difference operator

(Anf)(t) == f(t+h) = f(1),

and A? is the second forward difference operator
(ARF)(E) == f(t+2h) = 2f(t + h) + f(1),
cf. [23, Vol. 1, p. 42-45]. Given s > 0, write
(2.1) s=m+a where m € Ngpand 0 < a < 1,
and define the periodic Holder-Zygmund space
He = {f € C™ 1 (D) < oo},

with the norm

Il = ML fllem + (D™ £1%,

see Triebel [21]. This function space can be characterized in terms of

the error for best uniform approximation by trigonometric polynomials.
Indeed, let

Ba(f) = inf o= fll
then for all s > 0,
feH << E,(f)=0(n"?) asn— oo

see [11, p. 197, 201] or [20, p. 260, 333].

Let P, be the orthogonal projection from Lo onto 7, then P, f is
the best least-squares approximation to f and is also the n-th partial
sum of the Fourier series (1.4), i.e

(Pu)t) =Y fhe",  neNy,

l|<n
In terms of the Dirichlet kernel

- ar  sin[(2n + 1)t/2]
Dult)i= > e = — S

[|<n
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we have
(22) (Puf)(1) = 5 / " Dot~ 2)f(x) da.

For f € C and n € Ny, let L,,f be the trigonometric polynomial of
degree m, which interpolates f at the points (1.2), so that £, f € T,
and

(2'3) (‘Cnf)(tk:,n) = f(tk.n) for lkl <mn.

The Dirichlet kernel satisfies

Do(tin) = 2n+1, if k=0(mod2n + 1)
nitkn) =0, if k = 0(mod 2n + 1);
therefore
1
(24) (Laf)t) = 57 D S(ten) Dalt = thn)
[k]<n
and

(Laf) () = 5ms 7 M fltrn), W<
Ik[<n

(Of course, (L, f) (1) =0 for |I| >n+1.)
The following properties of the projections P,, and £,, will be used
later. Note that
P?l = Pn, Ei =L, and P, L, = Ly, L, Pr, = Ph.

From now on, we will always assume implicitly that n > 2, in order to
ensure that logn is non zero.

THEOREM 2.1. If0<s<r < oo and f € H", then
L AP = Dfllaes < e(1/n)"~* (log n)|| fl#
2. (= Dl < e(1/n)=*(log )| e
and, in both cases, the constant ¢ depends only on the integer part of r.
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PrROOF. For the case 0 < s < r < 1, Part 1 was first proved by
Progdorf in [14] and both parts can be found with proofs in the book
by Prosdorf and Silbermann [16]. A detailed proof of Part 1 for the
general case is given in [7]. Both parts of the theorem are also discussed
by Prestin [13] for non-integer values of s and 7. Here is the proof of
Part 2.

Recall Bernstein’s inequality [23, Vol. 2, p. 11]
(2.5) IDgllsc < nllglle  forall g € T;
we claim that if 0 < o < 1, then
(2.6) [9]" <2n%[|gll  forall g €7,
Suppose first that 0 < a < 1. On the one hand, if h > n~!, then

1Ang|l~ < 2|9l
h’(v - ha

<2079l

and on the other hand, since (A g)(t) = h Dg(€) for some & € [t,t+ h],
if h < n™', then

“Ahg”oo

o S B IDgle < (7)) nllglle = 1% lgle-

Now suppose a = 1. If h > 2/n, then
A7 gl /h < 4llgllsc /B < 2nllgll.
For h < 2/n use A2g(t) = h?D?g(£)/2 for some £ € [t,t + 2h], then
A% glloo/h < K71 (R /2)[ID?glloc < (h/2)7°||gll < nlglloc-

This completes the proof of (2.6).
Let 0 < s <r < oo and f € H". The triangle inequality implies

“('Cn - I)f“H < “(Pn - I)f”?'(*‘ + ”(c'n - Pu)f“%-\',

and in view of Part 1, it suffices to estimate the H*-norm of

gn = (E'n - Pn,)f € 'Tn
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Let s = m+ « as in (2.1), then (2.5) and (2.6) imply

m

lgallree < (D07 +20%)lgnlloe < (5 +2)n° gn -
=1

The operator norms || P, ||~ and ||£,]lec of Ppn, L, : C — C generated
by the maximum norm || - || on C satisfy the inequalities

IPnlloc < clogn, L0l < clogn,
as can be verified by using the representations (2.2) and (2.4), see [2,
p. 105] and [10, p. 390], respectively. Thus, the triangle inequality
gives
gnllse < WL = D) flloc + [[(Pn = 1) flloc
< (L +[[Lallsc) En(f) + (1 + [Palls) En(f)
< c(logn)Ey(f),

and so ||gn]lns < en®(logn)E,(f). The result now follows, because
Ey(f) <en™|[fllr- O

3. Singular integral operators. In the usual way [4], the periodic
singular integral operator A is written in the form

A=aP+bQ+ K,

where P and ) are the complementary projection operators defined by

Pu(t) =Y al)e™,  Qu(t):= Y a(l)e",

>0 1<-1

and where K : H® — H® is a compact linear operator for every s > 0.
For simplicity, assume that the coefficients a and b belong to C°°, then

A:H — H®, s> 0,
is a bounded linear operator. If the coefficients satisfy

la()|> +b(t)]* #0  forallteR,
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then A is said to be elliptic (or non-degenerate).

The function ¢ — a(t) parametrizes a smooth, closed curve in the
complex plane, whose winding number (about the origin) is denoted
by

W(a) := (1/27)[arga(t)]]__,.

Also, the kernel, image, cokernel and index of A : H®* — H?® are denoted

by
ker (A) := {u € H® : Au = 0},
im(A):={f € H*: f = Au for some u € H*},
coker (A4) := H’/im (A4),

ind (A4) := dimker (A) — dim coker (A).
The index theorem for singular integral operators states that A is a
Fredholm operator if and only if A is elliptic, in which case

(3.1) ind (A) = W(b) — W(a).

Essentially, this is a classical result of F. Noether [12]. For the
case 0 < s < 1, a proof may be found in the well-known book
by Muskhelishvili [9, p. 143], and modern treatments are given by
Gohberg and Krupnik [4, p. 196] and by Mikhlin and Progdorf (8, p.
83]. In [7], we have given a fairly self-contained proof for the general
case 0 < s < oo.

Let .
Cr ={feC>: f(l)=0foralll <0}

C> :={feC>®:f(l)=0 forall [ >0},

then the pointwise multiplication operators associated with functions
ay € CF satisfy

(3 2) P(L+P = a+P, Q(I+Q = Qa+, Q(I+P = 07
' Pa_P = Pa_, QRQa_Q=a_Q, Pa_Q =0,

cf. [3, p. 126] or [7, Theorem 3.5]. Given a € C*, a representation
a(t) = ay(t)eta_(t), teR,

is said to be a factorization of a if

k€ Z, aiEC'f,’f, l/aiEC’f.
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The integer k is uniquely determined by the function a since k = W(a),
and if a(t) = a, (t)e'"'a_(t) is another factorization, then a, /ay =
a_/a_ = constant. A factorization of a € C'™ exists if and only if
a(t) # 0 for all t. These facts are all elementary, see [7, Theorems 3.4
and 3.5], but it is worth noting that the existence of factorizations of
continuous functions and of matrix-valued functions is more difficult to
establish; see [3], [4] or [8].

Suppose that A = aP + bQ + K is elliptic with W(a) = W(b), then
the formula (3.1) shows that ind (A) = 0. Furthermore, W(b~'a) =
W(a) — W(b) = 0, so there exists a factorization

bla=pip.,  pieCT.
Define the operators
M := b/)+7 N := Pp— +Qplla

then, by using the identities (3.2) and the fact that P+ Q = I, it is
easy to see that

M= p:le“l7 N~ l:=Pp~' +Qp,.
Let [-,-] be the usual commutator bracket, and define
(3.3) T:=M"'K+[p-,P|+[p;",Ql,
then elementary algebra gives
(3.4) A=M(N+T).

This representation is the basis for the stability analysis of the next
section.

4. Error estimates. It is clear from (1.3) and (2.3) that the
trigonometric collocation method can be thought of as the projection
method determined by the interpolation operator £,,. In other words,
the functions u and u,, from §1 satisfy

(41) Au = fv L, Au,, = Enfa Loty = Un,.
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Suppose that A = aP +bQ + K is a periodic singular integral operator,
and consider the following assumptions.

A1 The singular integral operator A is elliptic, with W(a) = W (b)
and ker (A) = {0}.

A2 There is an € > 0 such that K : H® — H*"* is bounded for every
s> 0.

A3 There is an € > 0 such that K : C — H® is bounded.

It is clear from the index formula (3.1) that the condition A1 is
necessary and sufficient for the invertibility of the operator A : H* —
H*(s > 0). Prosdorf [15] has shown, for the case K = 0, that Al
is also necessary and sufficient for u,, — u in ‘H*® whenever f € H"
and 0 < s < r < 1. The assumptions A2 and A3 are of a technical
nature. Both will be satisfied if, for example, K is a periodic integral
operator with a weakly singular kernel function. In applications, it
often happens that K is a logarithmic convolution, or that K has a
C* kernel function.

When A1 is not satisfied, it may nevertheless be possible to obtain
approximate solutions of Au = f by the following modification due to
Mikhlin and Prosdorf [8, p. 442-443).

With k := W(a) — W(b) # 0 introduce the new operator
C:=e_,aP+bQ+ K(e_,P+ Q),

whose coefficients have equal winding numbers. Now let v, =
Z|l|<" £e; denote the approximate solution of the equation C'v = f
obtained by applying the collocation method. Then the sequence

n —1
Uy = Z&lel—h‘ + Z e
=0

l=—n

converges to a solution u of the original equation Au = f provided a
solution u exists.

The following lemma is an immediate consequence of the fact that,
for any a € C*, the commutators [a, P| and [a, Q] are periodic integral
operators with C> kernel functions.

LEMMA 4.1. Let T be the operator defined by (3.3).
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1. If A2 holds, then T : H® — H**¢ is bounded for every s > 0.

2. If A2 and A3 hold, then T : C* — H**¢ is bounded for every
s € Np.

In the proof of the next theorem, as in the book by Prégsdorf and
Silbermann [16, p. 99], the following identities play a crucial role.

LEMMA 4.2. For any a € C™ and ay € CT°,

Loal, = L,a, L,(Pa_ +Qay )L, = (Pa_ + Qa4 )L,.

PRroOOF. It is obvious from the definition of £,, that £,aLl, = L,a.
To prove the second identity, note that Gohberg and Fel’dman show in
[3, p.71] the identities

Polay P+ a_Q)P, = Pplay P+ a_Q),
Prn(Pa_ + Qay)P, = (Pa_ + Qay)P,,.

Hence,

Lo(Pa_ + Qai)Ly = Lo(Pa_ + Qay)Puly,
= L, Pp(Pa_ + Qay )P, Ly,
= Po(Pa_ + Qay)PuLs,
= (Pa_ + Qay)P,uL,
= (Pa_ + Qay)Ly. 0

THEOREM 4.3. Suppose 0 < s <1 < 0o. If AL and A2 are satisfied,
then for all n sufficiently large, there exists a unique collocation solution
Uy, and

llwn = w3 < e(1/n)""* (log n)l[ulser-

ProOF. Equations (3.4) and (4.1) imply

(4.2) M(N +T)u=f,

(4.3) L,M(N +T)u, = L.,
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and Lemma 4.2 implies
(4.4) L,M*'L, =L, M*',  L,N*'L,=N*,,

therefore we may proceed as in [16, Chapter 4.3] and [7, Theorem
4.3]. Indeed, (4.4) shows that £, M~1L, is the inverse of the finite-
dimensional operator £, ML, : 7,, — 7, hence by multiplying (4.3)
on the left by £,M~!, one obtains

Ly(N+T)u, =L, M 1f.
Furthermore, £, Nu,, = L, NL,u,, = NL,u,, so

(N+ L, T)u, = L,M71f,
and in view of (4.2), it follows that

(4.5) (N + L, T)(uy, —u) = (L, — I)Nu.

Part 1 of Lemma 4.1 and Part 2 of Theorem 2.1 together imply that
the operator norm || £, T—T||7«— - tends to zero as n — oo. Moreover,
the operator N+T : H¥ — H* is invertible because ind (N +7') = 0 and
ker (N + T') = ker (A) = {0}, so we conclude that for all n sufficiently
large, the perturbed operator N + £, T has an inverse satisfying the
uniform bound

”(N + EHT)_IHH"'—»H-" <ec

The result is now an immediate consequence of (4.5) and Part 2 of
Theorem 2.1, bearing in mind that N : H" — H" is bounded. O

It is not possible to replace ‘H* by C* in the proof above, since
(N + T)~! fails to be bounded on C* (unless a = b). The way around
this difficulty is to multiply (4.5) on the left by N~!, and obtain a new
equation for the error, namely,

(4.6) (I+N7"'L,T)(u, —u) = N"Y(L, — I)Nu.

Here, the operator on the left is a perturbation of I + N~!T, which
does possess a bounded inverse on C*.
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THEOREM 4.4. If s € Ny and s < r < oo, then for all n sufficiently
large
lun = ulles < e(1/n)" = (log n)?|lull .

PRrROOF. The inclusion H**t¢ C C* is compact, so by Part 2 of Lemma
4.1, the linear operator N~!T : C'* — C* is compact. It is easy to see
that ker (I + N71T) = 0. Hence, I + N™'T : C* — C® is invertible.
Using Lemma 4.1 again, together with Part 2 of Theorem 2.1, we find
that |[N=1L, T — N~'T|cs_cs tends to zero as n — oo since

H(N’dch - NﬁlT)v“C" < el(Ln = I)T0||3qster2
< en” 2 log n|| T pgs+e

—€/2

<cn log nljv||cs-

Consequently, for all n sufficiently large, the inverse of I + N='L, T
exists and satisfies the uniform bound

”([ + N_lACnT)_lllcs,_,Cs S C.
Hence, by (4.6), the error in the C'* norm satisfies
“un - u“C“‘ S CHN_I(EH - I)N”C*‘y

and it only remains to estimate the right hand side.

By considering the periodic Hilbert transform as in [7, Lemmas 4.6,
4.7], it is not difficult to show that N~! satisfies the estimate

(4.7) ||N‘1v[|c.- < (:E“1||v||7.ts+s,

where the constant ¢ is independent of ¢ € (0,1]. Using Part 2 of
Theorem 2.1,
INTHLw = DNulles < ce™ I(Ln = DNty
< e~ (1/m) ) log ) [ Nule
< ¢(1/n)" 7" (n" /) (log n) |ull»,

and if we choose € = 1/logn, then n®/e = elogn. O
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In conclusion, note that if r € N, then ||u||»~ < c|lu|lcr, and the error
estimate given in the Introduction follows at once from the theorem
above. Furthermore, we point out that if a = b (in other words, if
A = al + K is not really a singular integral operator) then it is easy to
see that the pointwise error estimate for the trigonometric collocation
solution involves only one factor of log n, rather than two such factors.

5. Periodic pseudodifferential equations. We consider equa-
tions with operators

(5.1) Bv = (aP 4 bQ + K)A v = f

where the operator A? denotes the Bessel potential operator of order
3 € R, given by

(5.2) Nep = |l 4 60ler

and corresponding continuous extensions. Here &y; denotes the Kro-
necker symbol. For g = 0, B is just a singular integral operator.

In view of Agranovich’s Theorem [1], [17], any one-dimensional
pseudodifferential operator of order 3 acting on periodic functions (or
functions defined on a closed curve) can be written in the form (5.1).
If By is the principal part of B with

Bou(z) = Y oo(x, k)a(k)e’*",
keZ

then the principal symbol og(z, k) of B is 2w-periodic in x and satisfies

.| NS L L
oo(a.k) = { Kool kKD, k20

and
(53) a’('T) = 0-0(1:7 +1)* b(L‘) = 00(1‘3 _1)
Therefore we can write

By = (aP + bQ)A”.
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The following mapping property of A”® allows the extension of the
former results to (5.1), see [18, p.149]. In particular, for s >0, s—3 >
0, the mapping A” : H* — H*~# is an isomorphism. Hence, as in [7]
the definition of the spaces H® can be extended to arbitrary s € R
by defining H® to be the set of all periodic distributions f satisfying
A=Bf € H**+# for some (and hence all) 3 with s + 3 > 0, and then
equipping H*® with the norm

(5.4) [ ll3ee = 1A Fllpgesn

Different choices of 3 lead to equivalent norms. Note that the operator
AP commutes with P,,, with P and with Q.

Just as for the case of a singular integral operator (5 = 0), we say
that B is elliptic if the functions (5.3) satisfy

a(x)#0 and b(z)#0 for all z € R,

but note that K : H®* — H* is now assumed to be compact for all
s € R. Obviously, when B is elliptic, the mapping

B:H* — H8, s € R,
is an isomorphism if and only if W(a) = W (b) and ker (B) = {0}.
Let us write A = aP + bQ + K, then the equation
(5.5) Bv=AANv=f

is equivalent to
Au=f with v = APv.

The trigonometric collocation method for (5.5) reads as to find v,, € 7,
satisfying

(5.6) L,Bv, = L,f
and is equivalent to finding

(5.7) u, = AN, €T,
satisfying

(58) AC'n,Aun, = ‘Cnf’
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i.e., (1.2). In the usual way, (5.6) and (5.8) lead to systems of equations
for the Fourier coefficients of v,, and u,,, respectively. The two systems

are related by a simple rescaling of the unknowns, as can be seen from
(5.7).

Let us formulate assumptions for B corresponding to the earlier
assumptions for A.

B1 The pseudodifferential operator B, given in the form (5.1), is
elliptic with W(a) = W(b) and ker (B) = {0}.

B2 There is an € > 0 such that K is a pseudodifferential operator of
order —¢.

Assumption B2 implies that K satisfies A2 and A3 from §4, because
K must be a periodic integral operator whose kernel behaves along the
diagonal z =t like [z — t|*71 if 0 < & < 1, and like log |z — t] if ¢ = 1;
see [19, p.40].

THEOREM 5.1. Suppose 3 <s <1< oo If B satisfies B1 and
B2, then for all n sufficiently large, there exists a unique collocation
solution v, of (5.6), and

lvn — vl < e(1/n)"~*(log n)|jv||x:-

When s € Ny,

o = vlle < e(1/n)"(log )2 [v]¢--

PRroOOF. By using Theorem 4.3 and the relations (5.4) through (5.8)
we find
v = vll2e = “A_/j(u'n = )|l
= |Jun — uf|pgs-s
< ¢ (1/n)"=N=C= log nlull s
=c(1/n)" = log n||A”v|| 36
=c(1/n)" = log nv|/+,
which is the first estimate.

‘or proving the pointwise estimate we introduce the operators

N = NA’, T =TA?
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and find the equation
(I+N7'L,T)(v, —v)=N"YL, — )Nv

as in the proof of Theorem 4.3. Assumption B2 together with the
definition (3.3) of T implies that T : H* — H*~P+< is continuous with
e > 0. Hence, N"'T = A"PN-1T : C* — C* is a compact operator
since H**? is compactly imbedded into C'* for any 6 > 0. As in the
proof of Theorem 4.4 we have

[(N='L, T = N™' Tvlles < en™*/*lognljuljc-

and, for n sufficiently large, the inverse of I + N=1£, T exists and is
uniformly bounded,

W+ N7L,T) Y emes <ec
Consequently,
o < | N"YL, — )N e

(5.9) < [NTATA(L, = DNl
+e[(NTIATP = ATPNTY (L, = DNl

lvn — vl

For the first term on the right hand side we use (4.7) and Part 2 of
Theorem 2.1 obtaining

INTTA=P(L, = D)Nv|jos < ee HATP(L, — T)Nvl|pgese
< ce7In* "+ log || Nv|
—lns——r+e

HT—B

<ece log nf|v][3¢.

For the second term on the right side of (5.9) we use the fact that the
commutator [N ™!, A="] is a pseudodifferential operator of order —3—¢
with some 6 > 0 since N=!,A=# and A=? N~ have the same principal
symbol (see [19, p.46, Theorem 4.4]) and we obtain

I(N"'A=P = ANV (L, — )Nv|c-
S CH[N_laA*ﬂ](En - I)N’U“H.\-+b

< c|(Ln = I)Nvllpge-s
< en® " lognlv|| .
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Both inequalities together yield

-1, s—r+e
n s>
lvn = vllcs <ce™'n log n||v]|#r

and the choice ¢ = 1/logn gives the desired estimate. O

6. Systems of pseudodifferential equations. As in [7] following
the arguments by Prosdorf and Silbermann [16, Chap. 4, §3, §9 and
1.2], the analysis of the previous paragraphs can be extended to
systems of singular integral equations and, further, to elliptic systems
of pseudodifferential equations on I'. As indicated in [22, §4], and using
the results of [1], [17], every system of pseudodifferential equations on
I' can be written in the form

(6.1) Bv = (o¢(z,+1)P + oo(z,—1)Q + K)APv = f,

where o( is the principal symbol of B, a matrix valued function
associated with the 27-periodic parametrization, and where g =
(B1,-++,01) € RE is a suitable vector of orders. A” is defined by
the diagonal matrix of operators

AH = (6‘7',‘.Aﬂj),

Jik=1,--- L,b;i the Kronecker symbol, K satisfies assumptions A2
and A3. Equations of the type (6.1) include a large class of integro-
differential equations [6] and boundary integral equations of various
types resulting from the reduction to the boundary I' of elliptic two-
dimensional boundary value problems [22]. Now, with

3
Up = A[ Un,

the trigonometric collocation method for (6.1) reads as to find v, € T,k
satisfying

(62) an(tk:,n) = f(tk.ﬂ)’ |k| S n.
Then (6.2) is equivalent to

(63) LnAu, = Lyf
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with the operator
(6.4) A =oo(z,+1)P + oo(z,-1)Q + K

which defines a classical system of singular integral equations. For
the application of the analysis of §4 to (6.3), assumption A1l or B1,
respectively, is to be replaced by corresponding properties for the
system (6.4). Following Prosdorf and Silbermann (16, p.137], we
assume:

B1’ det og(z, £1) 5 0 for all z and the left indices of og(x, —1)"1og(x, +1)
are all equal to zero, ker (B) = {0},

and B2. Assumption B1’ guarantees the existence of the matriz
factorization

ooz, —1)Yoo(z, +1) = pyp_

with py € (C)L*E, having all the desired properties needed in §3
and §4. In [6] one finds some stronger but simpler conditions for og
implying B1’.

THEOREM 6.1. Suppose 0 < s < r < co. If B satisfies B1’ and B2,

then for all n sufficiently large, there ezists a unique collocation solution
v, of (6.2), and

len = vllygaee < e (1/n)*(logn)[vllyarr and

(6.5)

”Un — U||C§+s S Cl(l/n)‘r_s(logn)2“'U”,H;z+r.

Here we denote Hﬁ” = Hle H7+3 which is equipped with the norm

L
”9”1112“ = Z ||9j“Hﬁj+s,
Jj=1

Correspondingly, we define C‘LHS and identify its components with non
integer B; + s with H%i+.

As was indicated above, the proof follows as before if the function
factorizations are replaced by the matrix factorizations; we omit these
details.
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The results in Theorem 6.1 can also be extended to systems which
generalize (6.1) by incorporating additional compatibility conditions
and unknown scalars as in [6].

REFERENCES

1. M.S. Agranovich, Spectral properties of elliptic pseudo-differential operators
on a closed curve, Functional Analysis Appl. 13 (1979), 279-281.

2. P.L. Butzer and R.J. Nessel, “Fourier analysis and approximation theory,”
Volume 1, Birkhauser Verlag, Basel, Stuttgart, 1971.

3. I. Gohberg and I. Fel’dman, “Convolution equations and projection methods
for their solution,” AMS Translations of Mathematical Monographs 41, Amer.
Math. Soc., Providence, RI, 1974.

4. and N. Krupnik, “Einfiihrung in die Theorie der eindimensionalen
singularen Integraloperatoren,” Birkhauser, Basel, Boston, Stuttgart, 1979.

5. P. Henrici, Fast Fourier methods in computational complex analysis, SIAM
Rev. 21 (1979), 481-527.

6. U. Lamp, K.T. Schleicher and W.L. Wendland, The fast Fourier transform
and the numerical solution of one-dimensional boundary integral equations, Numer.
Math. 47 (1985), 15-38.

7. W. McLean and W.L. Wendland, Trigonometric approzimation of solutions
of periodic pseudodifferential equations, Integral Equations Operator Theory, to
appear.

8. S.G. Mikhlin and S. Profidorf, “Singular integral operators,” Springer-Verlag,
1986.

9. N.I. Muskhelishvili, “Singular Integral Equations. Boundary Problems of
Functions Theory and their Application to Mathematical Physics,” Noordhoff,
Groningen, 1953.

10. I.P. Natanson, “Konstruktive Funktionentheorie,” Akademie - Verlag, Berlin
1955.

11. S.M. Nikol’skii, “Approximation of Functions of Several Variables and Imbed-
ding Theorems,” Springer-Verlag, Berlin, Heidelberg, New York, 1975.

12. F. Noether, Uber eine Klasse singulirer Integralgleichungen, Math. Ann. 82
(1921), 42-63.

13. J. Prestin, Trigonometric interpolation in Holder spaces, J. Approximation
Theory 53 (1988), 145-154.

14. S. ProBdorf, Zur Konvergenz der Fourierreihen Hélder-stetiger Funktionen,
Math. Nachr. 69 (1975), 7-14.

15. , On approzimation methods for the solution of one-dimensional
singular integral equations, Appl. Anal. 7 (1978), 259-270.

16. and B. Silbermann, “ Projektionsverfahren und die ndherungsweise
Losung singuldrer Gleichungen,” Teubner-Verlag, Leipzig, 1977.

17. J. Saranen and W.L. Wendland, The Fourier series representation of pseudo-



146 MCLEAN, PROSDORF AND WENDLAND

differential operators on closed curves, Complex Variables 8 (1987), 55-64.

18. E.M. Stein, “Singular Integrals and Differentiability Properties of Functions”,
Princeton University Press, Princeton, 1970.

19. M. Taylor, “Pseudodifferential Operators,” Princeton University Press,
Princeton, 1981.

20. A.F. Timan, “Theory of Approximation of Functions of a Real Variable,”
Pergamon Press, Oxford, London, New York, Paris, 1963.

21. H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators”,
North-Holland, Amsterdam, New York, Oxford, 1978.

22. W.L. Wendland, Strongly elliptic boundary integral equations, in “The State
of the Art in Numerical Analysis” (A. Iserles and M.J.D. Powell, eds.) Clarendon
Press, Oxford, 1987.

23. A. Zygmund, “Trigonometric Series,” Volumes 1 and 2, Cambridge University
Press, Cambridge, 1968.

SCHOOL OF MATHEMATICS, UNIVERSITY OF NEW SOUTH WALES, SYDNEY
2033, AUSTRALIA.

KARL-WEIERSTRASS-INSTITUT FUR MATHEMATIK DER AKADEMIE DER WIs-
SENSCHAFTEN DER DDR, MOHRENSTR. 39, DDR-1086 BERLIN, GERMAN
DEMOCRATIC REPUBLIC.

MATHEMATISCHES INSTITUT A DER UNIVERSITAT STUTTGART, PFAFFEN-
WALDRING 57, D-7000 STUTTGART 80, FEDERAL REPUBLIC OF GERMANY.



