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ABSTRACT. Pointwise rates of convergence for the collo­
cation method applied to periodic singular integral equations 
and pseudodifferential equations are considered, using trigono­
metric polynomials of degree n as the space of trial functions. 
If the exact solution is in C r , then the error in the maximum 
norm is shown to be 0(n~r log2 n). This rate of convergence 
is almost optimal, since the error for the interpolant of the 
exact solution is 0(n~r logn) and for the best approximation 
is 0(n~r). 

Introduction. This paper deals with the trigonometric collocation 
method and is a sequel to [7], which treated the trigonometric Galerkin 
method. We prove error estimates of the form 

\\un-u\\c> <c( l /n) r - s ( logn) 2 | |« | | c . -

for non-negative integers s < r, where un is the trigonometric polyno­
mial of degree n obtained via collocation of a periodic singular integral 
equation or, more generally, of a periodic pseudodifferential equation, 
whose exact solution is u. For any periodic function u G C r , the er­
ror for the best approximation to u in the Cs norm by trigonometric 
polynomials of degree n is of order (\/n)r~s. In this sense the error es­
timate above is less than optimal by a factor of (logn)2. Very recently, 
B. Silbermann (oral communication) has improved upon our result by 
showing that only one factor of logn is needed. This means that the 
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pointwise rate of convergence for trigonometric collocation is the same 
as for trigonometric interpolation. 

The book by Mikhlin and Prößdorf [8] contains detailed bibliographic 
information on numerical methods for singular integral equations. Of 
most relevance to the work presented here is the treatment of collo­
cation methods due to Prößdorf and Silbermann [16], who obtained 
error estimates in Lp and Holder norms. The difficulty in establishing 
sharp pointwise error estimates stems from the fact that singular inte­
gral operators and pseudodifferential operators fail to be bounded with 
respect to the maximum norms. 

In the case of a single singular integral equation we perform all the 
analysis explicitly. Using Bessel potentials and the factorization of 
matrices, these results extend to general systems of pseudodifferential 
equations on closed smooth curves. The convergence results are valid 
for elliptic equations with vanishing left indices of the principal sym­
bol CTQ(X, —l)_1(Jo(x,+1). A further generalization to equations with 
additional equilibrium conditions and new unknown parameters can be 
made without difficulties as in [6]. Here we omit these more techni­
cal details. The above class of equations includes boundary integral 
equations of various types, such as Fredholm integral equations of the 
first and second kind, Cauchy singular integral equations, hypersingu-
lar integral equations and elliptic integro-differential equations. All of 
these are used to solve many different problems in applications, some 
are listed in [6] and [22]. 

In connection with numerical integration, this method establishes a 
discrete version of the spectral method for these equations and is most 
efficient for smooth curves and data since the fast Fourier transform 
provides a simple, numerically stable and fast tool to handle the discrete 
equations for the Fourier coefficients. This idea goes back to P. Henrici 
who proposed a similar way in [5]. 

This paper is organised as follows. The collocation method is de­
scribed briefly in §1, and then in §2 we gather together some results 
on approximation by trigonometric polynomials. As in [16], the error 
analysis for the collocation method relies on factorization of the equa­
tion's coefficients, a topic dealt with in §3. (Some of the material in §2 
and §3 is discussed in greater detail in the paper [7] where the Galerkin 
method was treated.) For the Cauchy singular integral equations, the 
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pointwise error estimates are proved in §4, by adapting the approaches 
used in [7] and [16]. Along the way, we also prove error estimates in 
the Holder-Zygmund norm. In §5 and §6 we show how to extend the 
analysis, first to one pseudodifferential equation, and then to systems 
by using Bessel potentials. The necessary matrix factorization result is 
quoted. 

Throughout the paper, c denotes a generic constant independent of 
n,i/,wn, not the same at each occurrence. 

1. Collocation with trigonometric polynomials. Consider a 
singular integral equation or system of pseudodifferential equations 

(1.1) Au = f, 

where u and / are 27r-periodic, complex-valued functions. We are 
interested in constructing approximations to the solution u. 

Denote the trigonometric monomials by 

ei(t) := exp[ilt], l <G Z, 

and the space of trigonometric polynomials of degree n by 

Tn := span {ei : \l\ < n}, n G N 0 . 

Here, No := {0,1 ,2 , . . .} is the set of natural numbers including 
zero. When zero is excluded, we write N := {1 ,2 ,3 , . . . } . Since 
dim Tn = 2n + 1, define the equally-spaced collocation points by 

(1.2) t*,n:=27rfc/(2n + l) , \k\ < n, 

and seek un G Tn satisfying 

(1.3) (Aun)(tkin) - /(t fc ,n), |fc| < n. 

When it exists, the function un is said to be a trigonometric collocation 
solution of (1.1). 

Denote the complex Fourier coefficients of a function / by 

f(l):=^fe-ütf(t)dt, kZ, 
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then the Fourier series expansion of / is 

oo 

(1-4) m ~ E fW 
l = — oc 

The collocation equations (1.3) hold if and only if the Fourier coeffi­
cients of un satisfy the (2n + 1) x (2n + 1) system of linear algebraic 
equations 

Y^ [(Aei)(tk,n)]un(l) = /(**,„), |fe| < n. 

We shall see later tha t if A is invertible, then these equations are 
uniquely solvable for all n sufficiently large. For singular integral 
equations (1.1), it can further be shown tha t the l<i condition number 
of the coefficient matrix is uniformly bounded as n —+ oo, see [16]. 

2. A p p r o x i m a t i o n Theory . Let C denote the set of continuous 
functions / : R —• C which are 27r-periodic, tha t is, 

f(x + 2TT) = / ( x ) , for all x G R , 

and equip C with the maximum norm 

H/IU := max \f(x)\, f e C. 

Write D — d/dx, define 

Cs :={f eC :DJf eC f o r O < j < s } , s G N 0 , 

and introduce the norm 

s 

||/||c*:=£||I)VI|oo, s e N0. 
j=0 

As usual, we put C°° := n£L 0 C s . 

Define the Holder-Zygmund seminorm 

m « . _ J S U P * > O M f c £ K o < a < i 
l / J '~ | S U D \\*lf\U a - I 

i. h u P/ i>o hn ' a ~~ x ' 
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where A^ is the forward difference operator 

(Ahf)(t):=f(t + h)-f(t), 

and A | is the second forward difference operator 

(A2
hf)(t) := / (* + 2h) - 2f(t + h) + /(*), 

cf. [23, Vol. 1, p. 42-45]. Given s > 0, write 

(2.1) s = m + ot where m G No and 0 < a < 1, 

and define the periodic Hölder-Zygmund space 

ft* := {/ G C rn : [Dm / ]° < oc}, 

with the norm 

ll/ll*. :=ll/llc".+P'n/]a, 
see Triebel [21]. This function space can be characterized in terms of 
the error for best uniform approximation by trigonometric polynomials. 
Indeed, let 

£ „ ( / ) : = inf | k - / H o c , 
v£Tn 

then for all s > 0, 

f eHs < ^ En(f) = 0(n~s) as n -^ oo; 

see [11, p. 197, 201] or [20, p. 260, 333]. 

Let Vn be the orthogonal projection from L^ onto Tn, then Vnf is 
the best least-squares approximation to / and is also the n-th partial 
sum of the Fourier series (1.4), i.e., 

\l\<n 

In terms of the Dirichlet kernel 

Dn(t) := E ^ 
sin[(2n+l)£/2] 

sin(t/2) 
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we have 

(2.2) (Vnf)(t) = ^ f Dn(t - X)f(x) dx. 

For / G C and n G No, let Cnf be the trigonometric polynomial of 
degree n, which interpolates / at the points (1.2), so that Cnf G Tn 

and 

(2.3) (Cnf){tk,n) = /(**,„) for |fc| < n. 

The Dirichlet kernel satisfies 

J2n+1, if 
^ ( ^ ) - ( o , if 

fc = 0(mod2ra+l) 
/ c ^ 0 ( m o d 2 n + l ) ; 

therefore 

(2.4) (£n/)(i) = ^ - i— 53 f(tk,n)Dn(t - *fc,n) 
|ifc|<n 

and 

( £ n / r ( / ) = 2^Tî ^ e"i""""/(**.»)' l'I ^ n-
\k\<n 

(Of course, {CnfY{l) = 0 for |Z| > n + 1.) 

The following properties of the projections Vn and £ n will be used 
later. Note that 

T>2 _ <p r2 _ r i <p r — r r -p — -p 
I n — I m ^n — *^"n> c l l l u ' n*^n — *^ni *^n > n — ' n-

From now on, we will always assume implicitly that n > 2, in order to 
ensure that logn is non zero. 

THEOREM 2.1. 7/0 < s < r < oo and f G Hr, then 

1. \\CPn-I)f\\n- < c ( l / n r - ( l o g n ) | | / | | W r , 

2. | |(£n - I)f\\Hs < c( l /n)—(logn) | | / | |Wr , 

and, in both cases, the constant c depends only on the integer part ofr. 
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PROOF. For the case 0 < s < r < 1, Part 1 was first proved by 
Prößdorf in [14] and both parts can be found with proofs in the book 
by Prößdorf and Silbermann [16]. A detailed proof of Part 1 for the 
general case is given in [7]. Both parts of the theorem are also discussed 
by Prestin [13] for non-integer values of s and r. Here is the proof of 
Part 2. 

Recall Bernstein's inequality [23, Vol. 2, p. 11] 

(2.5) \\DgWn < nWgWoo for all g e Tn ; 

we claim that if 0 < a < 1, then 

(2.6) [g}"<2na\\g\\00 for all g € Tn. 

Suppose first that 0 < a < 1. On the one hand, if h > n _ 1 , then 

llA/,ff||oo 21101100 
hc ^ ha ^Zn Mil«» 

and on the other hand, since (A/?g)(£) = hDg(^) for some £ G [£,£ + /i], 
if h < n _ 1 , then 

<Ä1-a||^IU<(n-1)1-an|M|00=nft||p|| 

Now suppose a = 1. If ft, > 2/n, then 

\\Alg\\00/h<4\\g\\00/h<2n\\g\\0C. 

For /i < 2/n use A^(<) = h2D2g(£)/2 for some f e [*, t + 2/i], then 

IIA^HooA < Ä_1(Ä2/2)||^2ölloo < (V2)n2||5l|oo < n||5l|oo-

This completes the proof of (2.6). 

Let 0 < s < r < oo and f eW. The triangle inequality implies 

||(£„ - /)/l|«. < ll(n. - /)/llw + IKA, - ^„)/||«., 

and in view of Part 1, it suffices to estimate the ft'-norm of 

g„ := (£„ - P „ ) / € 7;,, 

file:////DgWn
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Let s = m + a as in (2.1), then (2.5) and (2.6) imply 

m 

\\9n\\n° < (X]nJ+2n"') l l^"00- ( s + 2)nS|^n"00' 

The operator norms Halloo and ||£n||oo of VniCn : C —> C generated 
by the maximum norm || • H^ on C satisfy the inequalities 

11/ n 11oo 
< C l o g n , | | £ n | | o c < Clog 77, 

as can be verified by using the representations (2.2) and (2.4), see [2, 
p. 105] and [10, p. 390], respectively. Thus, the triangle inequality 
gives 

| | » „ | | = o < | | ( A . - / ) / | | o o + | | ( 7 > „ - / ) / | | o o 

<(1 + ||£ n | J oo )En(f) + (1 + || 
' n 11 oo )E„(f) 

<c(\ogn)En(f), 

and so Ĥ nll-H* < cns(logn)En(f). The result now follows, because 

En(f) < cn-r\\f\\nr. a 

3. Singular integral operators . In the usual way [4], the periodic 
singular integral operator A is written in the form 

A = aP + bQ + K, 

where P and Q are the complementary projection operators defined by 

Pu(t) := ^û(l)eil\ Qu(t) := ^ û{l)él\ 
/>o / < - i 

and where K : 7is —• Hs is a compact linear operator for every s > 0. 
For simplicity, assume that the coefficients a and 6 belong to C°°, then 

A : ft* -+ ft\ s > 0, 

is a bounded linear operator. If the coefficients satisfy 

|a(t)|2 + |ò(t)|2 ^ 0 for a l i t e R, 
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then A is said to be elliptic (or non-degenerate). 

The function t —» a(t) parametrizes a smooth, closed curve in the 
complex plane, whose winding number (about the origin) is denoted 

by 
W(a) := ( l /27r) [arga( t ) ] r = _, . 

Also, the kernel, image, cokernel and index of A : Hs —• Hs are denoted 

by 
kei(A) := {u G Hs : Au = 0}, 

im (A) := {f eHs :f = Au for some u G W 8 }, 

coker(yl) :=ns/im(A), 

ind (T4) := dimker (A) — dimcoker (A). 

The index theorem for singular integral operators states that A is a 
Fredholm operator if and only if A is elliptic, in which case 

(3.1) md(A) = W(b)-W{a). 

Essentially, this is a classical result of F . Noether [12]. For the 
case 0 < s < 1, a proof may be found in the well-known book 
by Muskhelishvili [9, p. 143], and modern treatments are given by 
Gohberg and Krupnik [4, p . 196] and by Mikhlin and Prößdorf [8, p. 
83]. In [7], we have given a fairly self-contained proof for the general 
case 0 < s < oo. 

Let 
C™ := {/ e C°° : / ( / ) = 0 for all I < 0} 

C!° := {/ G (7°° : / ( / ) = 0 for all / > 0}, 

then the pointwise multiplication operators associated with functions 
a± G C± satisfy 

Pa+P = a+P, Qa+Q = Qa+, Qa+P = 0, 
( ' ^ Pa_P = Pa-, Qa_Q=:a„Q, Pa_Q = 0, 

cf. [3, p. 126] or [7, Theorem 3.5]. Given a G C°°, a representation 

a(t) = a+(t)eiKta-(t), t G R , 

is said to be a factorization of a if 

Ac G Z, a± G C £ \ l / a ± G C ^ . 
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The integer K is uniquely determined by the function a since n = W(a), 
and if a(t) = à+(t)elKtâ-(t) is another factorization, then a+/a+ — 
a-1à- — constant. A factorization of a G C°° exists if and only if 
a(t) ^ 0 for all t. These facts are all elementary, see [7, Theorems 3.4 
and 3.5], but it is worth noting that the existence of factorizations of 
continuous functions and of matrix-valued functions is more difficult to 
establish; see [3], [4] or [8]. 

Suppose that A = aP + bQ + K is elliptic with W(a) = W(b), then 
the formula (3.1) shows that ind (A) = 0. Furthermore, VF(ò_1a) = 
W(a) — W(b) — 0, so there exists a factorization 

Define the operators 

M:=bp+, N:=Pp-+Qp+\ 

then, by using the identities (3.2) and the fact that P + Q — I, it is 
easy to see that 

M " 1 := p-+
lb-\ N~l := Pp'_} + Qp+ . 

Let [•, •] be the usual commutator bracket, and define 

(3.3) T:=M-lK + [p-,P} + [p+\Q], 

then elementary algebra gives 

(3.4) A = M(N + T). 

This representation is the basis for the stability analysis of the next 
section. 

4. Error est imates. It is clear from (1.3) and (2.3) that the 
trigonometric collocation method can be thought of as the projection 
method determined by the interpolation operator Cn. In other words, 
the functions u and un from §1 satisfy 

(4.1) Au = / , CnAun = Cnf, Cnun = un. 
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Suppose that A = aP + bQ + K is a periodic singular integral operator, 
and consider the following assumptions. 

A l The singular integral operator A is elliptic, with W(a) — W(b) 
a n d k e r ( A ) = {0}. 

A 2 There is an e > 0 such that K : Jis —» HsJt£ is bounded for every 
s > 0. 

A 3 There is an e > 0 such that K : C —> 7iE is bounded. 

It is clear from the index formula (3.1) that the condition A l is 
necessary and sufficient for the invertibility of the operator A : 7is —• 
Hs(s > 0). Prößdorf [15] has shown, for the case K = 0, that A l 
is also necessary and sufficient for un —» u in Ws whenever / G 7Yr 

and 0 < s < r < 1. The assumptions A 2 and A 3 are of a technical 
nature. Both will be satisfied if, for example, K is a periodic integral 
operator with a weakly singular kernel function. In applications, it 
often happens that K is a logarithmic convolution, or that K has a 
C°° kernel function. 

When A l is not satisfied, it may nevertheless be possible to obtain 
approximate solutions of Au — f by the following modification due to 
Mikhlin and Prößdorf [8, p. 442-443]. 

With K := W(a) — W(b) ^ 0 introduce the new operator 

C := e-KaP + bQ + K(e.KP + Q), 

whose coefficients have equal winding numbers. Now let vn = 
J2\i\<rAiei denote the approximate solution of the equation Cv = / 
obtained by applying the collocation method. Then the sequence 

n - 1 

1=0 l = -n 

converges to a solution u of the original equation Au = / provided a 
solution u exists. 

The following lemma is an immediate consequence of the fact that , 
for any a G C°°, the commutators [a, P] and [a, Q] are periodic integral 
operators with C°° kernel functions. 

L E M M A 4.1. Let T be the operator defined by (3.3). 
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1. If A2 holds, then T : Hs —• 7is+£ is bounded for every s > 0. 

2. If A2 and A3 hold, then T : Cs —» Ws+e is bounded for every 
s G N 0 . 

In the proof of the next theorem, as in the book by Prößdorf and 
Silbermann [16, p. 99], the following identities play a crucial role. 

LEMMA 4.2. For any a G C°° and a± G (75°, 

CnaCn — Cna, Cn(Pa- + Qa+)Cn = (Pa_ + Qa+)Cn. 

PROOF. It is obvious from the definition of Cn that CnaCn = Cna. 
To prove the second identity, note that Gohberg and Fel'dman show in 
[3, p.71] the identities 

Vn{a+P + a-Q)Pn = Vn{a+P + a_Q), 

P„(Po_ + Qa+)Pn = ( P a - + Qa+)Vn. 

Hence, 

£ n (Pa_ + Qa+)£ n = Cn(Pa_ + Qa+)VnCn 

= CnPn(Pa-+ Qa+)VnCn 

= Pn(Pa-+ Qa+)rnCn 

= (Pa_ + Qa+)VnCn 

= {Pa_ + Q a + ) £ n . D 

THEOREM 4.3. Suppose 0 < s < r < oo. If A l ana7 A2 are satisfied, 
then for all n sufficiently large, there exists a unique collocation solution 
un, and 

| | « „ - « | | w - < c ( l / n ) r - ' , ( l o g n ) | H | „ . . 

PROOF. Equations (3.4) and (4.1) imply 

(4.2) M(N + T)u = f, 

(4.3) CnM(N + T)un = £,,/ , 



POINTWISE ERROR ESTIMATES 137 

and Lemma 4.2 implies 

(4.4) CnM
±lCn = £ n M ± 1 , CnN

±lCn = N±x £ n , 

therefore we may proceed as in [16, Chapter 4.3] and [7, Theorem 
4.3]. Indeed, (4.4) shows that CnM~xLn is the inverse of the finite-
dimensional operator CnMCn : Tn -+ Tni hence by multiplying (4.3) 
on the left by £ n M - 1 , one obtains 

£n(iV + T K = £ n M - 7 . 

Furthermore, CnNun = CnNCnun = NCnuni so 

(7V + £ n T K = £ n M - V , 

and in view of (4.2), it follows that 

(4.5) (N + CnT)(un - u) = (Cn - I)Nu. 

Part 1 of Lemma 4.1 and Part 2 of Theorem 2.1 together imply that 
the operator norm | |£nT—T\\^s_ns tends to zero as n —» oo. Moreover, 
the operator N + T : Hs —• 7is is invertible because hid (AT+T) = 0 and 
ker (TV + T) = ker (A) = {0}, so we conclude that for all n sufficiently 
large, the perturbed operator N + CnT has an inverse satisfying the 
uniform bound 

\\(N + CTr'Wn^n, < c. 

The result is now an immediate consequence of (4.5) and Part 2 of 
Theorem 2.1, bearing in mind that N : Hr —» Kr is bounded. D 

It is not possible to replace Hs by Cs in the proof above, since 
(TV -f T)~l fails to be bounded on Cs (unless a = b). The way around 
this difficulty is to multiply (4.5) on the left by TV-1, and obtain a new 
equation for the error, namely, 

(4.6) {I + N^CnT^Un - u) = N-l{Cn - I)Nu. 

Here, the operator on the left is a perturbation of / + N~lT1 which 
does possess a bounded inverse on Cs. 
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THEOREM 4.4. If s e No and s < r < oo, then for all n sufficiently 
large 

\\un - u\\c* < c(l/n)r~s(\ogn)2\\u\\nr. 

PROOF. The inclusion TisJr£ C Cs is compact, so by Part 2 of Lemma 
4.1, the linear operator N~lT : Cs —> Cs is compact. It is easy to see 
that ker (7 + N~lT) = 0. Hence, I + N~lT : Cs -> Cs is invertible. 
Using Lemma 4.1 again, together with Part 2 of Theorem 2.1, we find 
that \\N~~1£nT — A^ _ 1T| |c s^c s tends to zero as n —> oo since 

UN-'CnT - N^TMcs < c\\(Cn - I)Tv\\ns+£/i 

< cn~e/2 log n\\Tv\\Hs+e 

< cn~£'2 \og n\\v\\c*. 

Consequently, for all n sufficiently large, the inverse of I + N~lCnT 
exists and satisfies the uniform bound 

\\{I + N-lCnT)-l\\Cs-,cs < c . 

Hence, by (4.6), the error in the Cs norm satisfies 

Ik»-«He <c\\N-l(Cn-I)N\\c,, 

and it only remains to estimate the right hand side. 

By considering the periodic Hilbert transform as in [7, Lemmas 4.6, 
4.7], it is not difficult to show that iV - 1 satisfies the estimate 

(4.7) HA^I Ic* <ce-l\\v\\Hs+e, 

where the constant c is independent of s G (0, lj . Using Part 2 of 
Theorem 2.1, 

\\N-\Cn - I)Nu\\c* < ce~l\\{Cn - I)Nu\\Hs+e 

< ce-l{lln)r-{s+£\\ogn)\\Nu\\<Hr 

<c(l/n)r-s(n£ /e)(logn)|M|Wr, 

and if we choose e — 1/logn, then n£ je = elogn. D 
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In conclusion, note that if r e N , then | H | ? ^ < C|M|CT '? a n ^ the error 
estimate given in the Introduction follows at once from the theorem 
above. Furthermore, we point out tha t if a — b (in other words, if 
A = al -f K is not really a singular integral operator) then it is easy to 
see tha t the pointwise error estimate for the trigonometric collocation 
solution involves only one factor of logn, rather than two such factors. 

5. Per iodic pseudodifferent ial equat ions . We consider equa­
tions with operators 

(5.1) Bv = (aP + bQ + K)Aßv = f 

where the operator A'3 denotes the Bessel potential operator of order 
ß G R, given by 

(5.2) A^ei = |/ + 6oi|^ei 

and corresponding continuous extensions. Here 6QI denotes the Kro-
necker symbol. For ß = 0, B is just a singular integral operator. 

In view of Agranovich's Theorem [1], [17], any one-dimensional 
pseudodifferential operator of order ß acting on periodic functions (or 
functions defined on a closed curve) can be written in the form (5.1). 
If BQ is the principal part of B with 

B0u(x) = ^ao(x,k)û(k)eik\ 
kez 

then the principal symbol CTQ(X, k) of B is 27r-periodic in x and satisfies 

a()(a:,fc) = ( | fc | /Vo(;C'fc/ | fc | )' \t °' ^ 1, k — (J, 

and 

(5.3) a(x) := cro(x,+1), b(x) := cr()(x, — 1). 

Therefore we can write 

B0 = (aP + bQ)Afi. 
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The following mapping property of Aß allows the extension of the 
former results to (5.1), see [18, p.149]. In particular, for s > 0, s — ß > 
0, the mapping A^ : Hs —> Hs"ß is an isomorphism. Hence, as in [7] 
the definition of the spaces TLS can be extended to arbitrary s G R 
by defining Hs to be the set of all periodic distributions / satisfying 
A~ßf G TLs+ß for some (and hence all) ß with s + ß > 0, and then 
equipping 7is with the norm 

(5-4) U/H«. := \\A~ßf\\H^-

Different choices of ß lead to equivalent norms. Note that the operator 
A^ commutes with Vn, with P and with Q. 

Just as for the case of a singular integral operator (ß = 0), we say 
that B is elliptic if the functions (5.3) satisfy 

a(x) ^ 0 and b(x) ^ 0 for all x G R, 

but note that K : Hs —> Hs is now assumed to be compact for all 
s G R. Obviously, when B is elliptic, the mapping 

B : W -* H8-ß, s G R, 

is an isomorphism if and only if W(a) — W(b) and ker (B) = {0}. 

Let us write A = aP -\- bQ + K1 then the equation 

(5.5) Bv = AAf3v = f 

is equivalent to 
Au = f with u = Aßv. 

The trigonometric collocation method for (5.5) reads as to find vn G Tn 

satisfying 

(5.6) CnBvn = Cnf 

and is equivalent to finding 

(5.7) un = Aßvn G Tn 

satisfying 

(5.8) CnAun = Cnf, 



POINTWISE ERROR ESTIMATES 141 

i.e., (1.2). In the usual way, (5.6) and (5.8) lead to systems of equations 
for the Fourier coefficients of vn and un, respectively. The two systems 
are related by a simple rescaling of the unknowns, as can be seen from 
(5.7). 

Let us formulate assumptions for B corresponding to the earlier 
assumptions for A. 

B l The pseudodifferential operator JB, given in the form (5.1), is 
elliptic with W(a) = W(b) and ker (B) = {0}. 

B2 There is an e > 0 such that K is a pseudodifferential operator of 
order —e. 

Assumption B2 implies that K satisfies A2 and A3 from §4, because 
K must be a periodic integral operator whose kernel behaves along the 
diagonal x = t like \x — t\£~l if 0 < e < 1, and like log \x — t\ if e = 1; 
see [19, p.40]. 

THEOREM 5.1. Suppose ß < s < r < oc. If B satisfies B l and 
B2, then for all n sufficiently large, there exists a unique collocation 
solution vn of (5.6), and 

\\vn-v\\n* <c( l /n) r - Ä ( logn) | | i ; | | ^ . 

When s G N 0 , 

\\vn-v\\c* <c(l /n) r-"( logn)2 | |V | |Wr . 

PROOF. By using Theorem 4.3 and the relations (5.4) through (5.8) 
we find 

l k - v | | w « = l | A - ' V „ - u ) | | w . 

= IK,. - u\\H,~n 

< c ( l / n ) ( r - ' < ) - ( s - / i ) logra||u||w,-* 

= c(l/n)<'-*>logn| |A'M|w ,- , 

= c(l/n)(*-"Mogn|H|w.- ) 

which is the first estimate. 

For proving the pointwise estimate we introduce the operators 

N = NAf\ f = TAfj 
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and find the equation 

(/ + N-lCnf)(vn - v) = N-\Cn - I)Nv 

as in the proof of Theorem 4.3. Assumption B2 together with the 
definition (3.3) of T implies that T : Hs —> 7is~^+€ is continuous with 
e > 0. Hence, N~1f = A~ßN~1f : Cs -> Cs is a compact operator 
since Hs+S is compactly imbedded into Cs for any 6 > 0. As in the 
proof of Theorem 4.4 we have 

IKN^Cnf - N-^vWcs <cn-£,2\ogn\\u\\Cs 

and, for n sufficiently large, the inverse of / + N~lCnT exists and is 
uniformly bounded, 

\\(I + N-lCnf)-l\\c^c-<c. 

Consequently, 

\\vn-v\\c><c\\N-\Cn-I)Nv\\c. 

(5.9) <c | | iV- 1 A- / 3 (£ n - / ) iVi ; | | c . 

+ c\\(N-xhrfi-hrßN-x)(Cn-I)Nv\\c.. 

For the first term on the right hand side we use (4.7) and Part 2 of 
Theorem 2.1 obtaining 

\\N-lK-f\Cn - I)Nv\\Cs < ce~l\\k-ß(Cn - I)Nv\\H>+e 

<ce-lns-r+£\ogn\\Nv\\Hr-ß 

<ce-lns-r+e\ogn\\v\\Hr. 

For the second term on the right side of (5.9) we use the fact that the 
commutator [AT-1, A_/3] is a pseudodifferential operator of order —ß — 6 
with some 6 > 0 since N~l,A~ß and A~ßN~x have the same principal 
symbol (see [19, p.46, Theorem 4.4]) and we obtain 

IKJV^A-" - A-(iN^)(Cn - I)Nv\\c 

<c||[ArSA-0](£n-/)AH|w.+« 
< c | | ( £ „ - I)Nv\\H,-ß 

< cn*~rlogn\\v\\n-. 
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Both inequalities together yield 

Wvn-vWc^ce-'n^'+'lognWvWnr 

and the choice e — 1 / logn gives the desired estimate. D 

6. S y s t e m s of pseudodifferential equat ions . As in [7] following 
the arguments by Prößdorf and Silbermann [16, Chap. 4, §3, §9 and 
1.2], the analysis of the previous paragraphs can be extended to 
systems of singular integral equations and, further, to elliptic systems 
of pseudodifferential equations on T. As indicated in [22, §4], and using 
the results of [1], [17], every system of pseudodifferential equations on 
r can be written in the form 

(6.1) Bv = (<j0(x, + 1 ) P + cr0(x, -l)Q + K)Aßv = / , 

where do is the principal symbol of ß , a matrix valued function 
associated with the 27r-periodic parametrization, and where ß — 
(ßi,-— , / ? L ) G R L is a suitable vector of orders. A^ is defined by 
the diagonal matrix of operators 

A? = (6jkA
ßi), 

j , k — 1, • • • , L, 6jk the Kronecker symbol, K satisfies assumptions A 2 
and A 3 . Equations of the type (6.1) include a large class of integro-
differential equations [6] and boundary integral equations of various 
types resulting from the reduction to the boundary T of elliptic two-
dimensional boundary value problems [22]. Now, with 

the trigonometric collocation method for (6.1) reads as to find vn G Tn 

satisfying 

(6.2) Bvn(tkin) = f(tk,n), \k\<n. 

Then (6.2) is equivalent to 

(6.3) L,nJ\.Un — L,nJ 



144 MCLEAN, PROßDORF AND WENDLAND 

with the operator 

(6.4) A = cr0(x, +1)P + (70(x, -1 )Q + If 

which defines a classical system of singular integral equations. For 
the application of the analysis of §4 to (6.3), assumption A l or B l , 
respectively, is to be replaced by corresponding properties for the 
system (6.4). Following Prößdorf and Silbermann [16, p. 137], we 
assume: 

B l ' detcr0(x,±l) ^ 0 for all x and the left indices of ao(x, —l)_1ao(x,-fl) 
are all equal to zero, ker (B) = {0}, 

and B2. Assumption B l ' guarantees the existence of the matrix 
factorization 

a0(x, - l ) _ 1cr 0(x, +1) = p+p-

with p± G (C±)LxL, having all the desired properties needed in §3 
and §4. In [6] one finds some stronger but simpler conditions for <7o 
implying B l ' . 

THEOREM 6.1. Suppose 0 < s < r < oc. If B satisfies B l ' and B2, 
then for all n sufficiently large, there exists a unique collocation solution 
vn of (6.2), and 

\\vn-v\\nß+s < c(l/n)r~s(\ogn)\\v\\^ß+r and 
(fi ^ 

\\vn - v\\cß+s < cf(l/n)r~s(logn)2\\v\\nß+r. 

Here we denote H!^s — Ylj=i 'H^j+S which is equipped with the norm 

L 

\\9\\n
ß
L+3 = ^ l b l l ^ i + -

Correspondingly, we define C^s and identify its components with non 
integer ß3 + s with Hßj+8. 

As was indicated above, the proof follows as before if the function 
factorizations are replaced by the matrix factorizations; we omit these 
details. 
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The results in Theorem 6.1 can also be extended to systems which 
generalize (6.1) by incorporating additional compatibility conditions 
and unknown scalars as in [6]. 
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