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WEAKLY SINGULAR INTEGRAL OPERATORS
AS MAPPINGS BETWEEN FUNCTION SPACES

JORGE PUNCHIN

ABSTRACT. Weakly singular integral operators K are in-
vestigated as mappings between function spaces of the Hilbert-
Sobolev type defined on Riemannian manifolds M, with
boundary OM,. The results obtained from this analysis are
applied to the determination of function spaces for which the
Fredholm integral equation of the first kind, Ku = f, admits
solutions, and conditions on these function spaces are studied
for which the boundary value problem Ku = f in Mp,u =g
on My, has meaning.

1. Introduction. Let €2, be a bounded and open subset of R,
lying on one side of its boundary. The boundary of €,, denoted by
0Q,, will be considered to be an infinitely differentiable manifold of
dimension n — 1.

Let K be the weakly singular integral operator K defined on the
Sobolev space H*({,),s € R, by

(Ku)(z) = / Kz, 9)u(y)dy,

n

where 0 < o < n and k(z,y) = 1/|z — y|*.

The main purpose of this paper is to establish properties of weakly
singular integral operators K as mappings between function spaces of
the Hilbert-Sobolev type, and apply them to the study of the boundary
value problem:

(1.1) Ku=finQ,

(1.2) u =g on Q.
The action of K on certain subspaces H of H*(f2,) is characterized,

and these subspaces are shown to be mapped by K into HP(£,),q <
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(n—a)+s. The function space of the boundary values of Ku for u € H
is then determined.

The mapping properties of weakly singular integral operators K are
shown to remain the same in the case when the function spaces are
defined on Riemannian manifolds M, with boundary OM,,, where
M, is assumed to be orientable, imbedded in R,+;, and homotopi-
cally equivalent to the unit ball D,, in R,, with homotopy equivalence
¢ € C>(Dy).

2. Preliminary results.

LEMMA 2.1. The function u(¢) = (1 + [¢]?)*/? € L*(R,) for all
s < —n/2.

PROOF.

|IU||L2(R,,) = (/R Iu(E)Pdf) 1/2 _ (/ I+ |£|2|8d§)1/2 ‘o

Rn

if and only if s < —n/2.00

LEMMA 2.2. Let A be the Laplace operator in n variables. The fun-
damental solution vy of the operator (1 — A) is in H**2(R,,) for all
s < —n/2.

PROOF. (1-A)y=6= (1+[¢?)y=1=4=1/(1+ |£|?). Lemma
2.1 = (1+*)C+2/25 € LA(R,,) for all s < —n/2 = v € H**?(Rn)
for all s < —n/2. 00

The following result can be found in [3].

LEMMA 23. If f € H*(Ry) and g € H{(Ry,), where s and t are

arbitrary real numbers, then f x g € Hf;g”w 2)(Rn).

LEMMA 2.4. Let f(z) = |z|~* where 0 < a < n and x € R,,. Then
f € H*(R,) for all s < (n/2) — a.
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PROOF. f(£) = 2"~/ < ((n—a)/2)/T(/2))(1/|€]*)(see [2]).
Then

2\8/2 ¢ — 9gn—a n/ZF((n~a)/2) . 2\s/2 __1‘_
-+ 16y ) = r-em L (1 e

Lemma 2.1 implies (1 + |£[2)*/2.f(¢) € L%(R,) if s —n+ a < —n/2,
i.e., s < (n/2) —a. This implies f € H*(R,) for all s < (n/2) — a. 00

LEMMA 2.5. Let

_[1idyeqn
X (¥) {0 fveR, -0,

Then xq, € H*(Ry) for all s < 1/2.

PROOF. Case 1. Let n = 2 and let 5 be the unit disc. Let z
(z1,22) € Qs and € = (£1,&2) € Ra. Then Xq,(§) = [o, [ @ dz
f92 [ eilre+&22:1dg, dzy. Using polar coordinates: x1 = rcost), z2
7 sin 6, we have xq,(£) = 02” fol e~ ir1€1COS(a—0)
rdrdf where & = || cos @ and & = || sina.

Consider the generating function for Bessel’s functions of integral
order (see [5]):

oo
G/ = S g (g)em,

m=-—00

Letting ¢t = e~ #0+7/2) we obtain

)
e—izSin(9+1r/2) — e—z’zcos 9= Z Jm(z)e—im(0+7r/2)'

m=-—00

Using this and Fubini’s theorem, we get

1 oo 2w
1@ = [ (X [ Imrlehemmieoserdg)rar
0 0 /

m=—00

1 St 27 \
_ - —imla—0+7/2] 39\ 1 d
/O(Z J(r|§|)/0 e Jrdr

m=-—00

1
= 27r/ Jo(r|€|)rdr.
0
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The last equality follows since f e~imla—0+7/214gg = 0 for all m # 0.
Letting y = r|¢|, we get rdr = ydy/|§jz, and hence

lé]
/ Jo(y)ydy.

From the recursion formula Jy, (z) = Jn—1(z) — 2Jn(7), we have

1
27r/ o(r|€])rdr = |§|2

Ji(z) = Jola) - ~i(2)
= J{(z) + Ti(z) = Jo(a)

= zJ(z) + Ji(z) = zJo(z)
= (zJ1(z)) = zJi(z) + J1(z) = zJo(x)

Hence,

aayl  gotw) vy = 25 (1 - 1 leh)

€12 |€l2

= - 76 = 5 = \/_)(cos (1e1-3 - F) +o0er™).

Using the symbol “~” to denote asymptotic behavior in the variable &,

we have
1

|§13/2

(1 + €170, (€) ~ (1 + |€%)*/2.

Then Lemma 2.1 = (1 + |£]2)*/2%q,(£) € L?(R;) for all s such that
s —3/2 < —1, and this implies xq,(y) € H*(Ry) for all s < 1/2.

Case 2. Let Q5 be any bounded, open subset of Ry with boundary
0N

By enclosing 9€2; between two circles and using Case 1, we arrive at
the same result.

Case 3. Let Q,, be a bounded and open subset of R,,, lying on one side
of its boundary 09,, an infinitely differentiable manifold of dimension
n—1.
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The asymptotic behavior of xq, (£) in the variable ¢ is given by
X, (&) ~ 1/)¢|™*+V/2. This implies xo, € H*(R,) for all s such
that s — ((n +1)/2) < —n/2, i.e., for all s such that s < 1/2. 00

LEMMA 2.6. Let vp(y) = xq, (y).e<P¥>. Then:
(i) vp € H*(Ry) for all s < 1/2,
(ii) v, € N(1— A)N H*(R,,) for all s < 1/2 and if |p|2 = 1.

PROOF.
).
/ y)e z<y€>dy_/ XQn(y)e<y"’>e<y’i€>dy
Rn R,
=/ xa, y)e<y”’+’5>dy—/ xq, (y)e<VHE—P>dy
R, Rn
/R Xon ()e" VTP dy = o, (€ —ip).
Therefore,

0p(€)(1+ IEP)? = Ra, (€ = ip)(1 + [E)*/% ~ 1/]€ — ip| ™+ D/2,
(1+[€1%)°/2.

Lemma 2.1 = 9,(¢) - (1 + |¢]?)*/2 € L*(R,) for all s such that
- ((n+1)/2) < —n/2, i.e, for all s < 1/2. Hence, v, € H*(R,)
for all s < 1/2.

(i). This is immediate from (i) and because |p|> = 1 = v, €
N(1-A).o0

LEMMA 2.7. Let f be defined by f(z) = |z|7*,0 < a <n, forz € R,.
Let vp(y) = xq,(y) - e<PY>. If wp(z) = f * v, then w, € H*(R,) for
all s < (n—a)+(1/2).
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PROOF. i, (€) = f(€) - 9,(€) = f(€) - Xa, (€ — ip). Lemmas 2.4 and
2.5 imply

1 1
|§|n—o¢ ' l£ _ ipl(n+1)/2 :

bp(€) = f(€)-Ra, (€ —ip) ~
Then Lemma 2.1 implies
(L+1€[%)*/? - y(€) € L*(Rn)

for all s such that s —n+ a — ((n + 1)/2 < —n/2, ie., for all
s<(n—a)+(1/2).0

3. Singular integral operators on subspaces of H*({,).

LEMMA 3.1. Let vp(y) = xa,(y) - e<P¥>. The operator K maps
vp € N(1-A)NH*R,),s < 1/2 and |p|2 = 1, into Kv, € HY(R,,)
forallg < (n—a)+(1/2).

PROOF. Let w, = Kv,. Then wy(z) = (KeP¥>)(z) = [, f
y)e<P¥>dy = f v, implies, by Lemma 2.7, that w, € HY(R,,) for all
g<(n—a)+(1/2).0

LEMMA 3.2. If u € H§(,), then Ku € quoc(R") for all ¢ <
(n—a)+s.

PROOF. Since u € H§(f,), we can write Ku = f * u. Lemma 2.4
implies f € H*(R,,) for all t < (n/2) — a. Lemma 2.3 implies Ku =
frue PR, forallt < (n/2)—a, ie. , Ku€ HL (Ry)for
all g such that ¢ = s+t+(n/2) < s+((n/2)—a)+(n/2) = (n—a)+s.0

In order to analyze the existence and nature of the boundary values
of the image of u € H*({,) under the operator K, the action of K
on certain subspaces H of H*(f},) is studied, and these subspaces are
shown to be mapped by K into H?(f,),q < (n — a) + s. The function
space of the boundary values of Ku for u € H is then determined.
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A few terms needed in the sequel are introduced in the following def-
initions.

DEFINITION 3.1. Consider the equation (1 — A)u = wup. If
u € N(1 - A) in O, takes on boundary values ¢ = (you,v1u)”T =
(u|39n,—g%|aﬂn)T = (¢1,—¢2)T on 09Q,, then u is said to be outgo-
ing with respect to 8Q, if u = 1/2L(¢), where L(¢) is expressed in
terms of the single layer operator S and the double layer operator D
by L(¢) = D¢1 — S¢o.

DEFINITION 3.2. Let u be a function that takes on boundary values
¢ = (u+loq,, —g%+|agn )T on 09,. Then u is said to be incoming with
respect to 0Q,, if u € N(1 — A) in Q,, and u = —1/2L(¢).

DEFINITION 3.3. Let the operator I' be defined by r = ( KQ iT)

where, for y(z) = (['(n/2)/7"/2) - (e?kl=l }|z|(n—1)/2),

o
K6 =P.V. /(9 o B (z — y)0(y)dw,,

KTo=P.V. /

0
o On ¥(z — y)0(y)dwy,

Q0 =PV. [ oa=1)0)da,

n

2

~ 0

For the properties of the above operators, see [4]. The proof of the
following lemma can be found in [3].

LEMMA 3.3.

(1) u is outgoing in 2, with respect to O, if and only if the boundary
values ¢ satisfy (—I1 +T)¢ = 0.

(ii) u is incoming with respect to 9Q, if and only if (I +T')¢ = 0.
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(iii) #f u takes on boundary ¢ where u € N(1 — A), then ¢ =
1/2(I+T)¢ +1/2(I —T)é.

DEFINITION 3.4. u € N(1—A)NH*(Q,) will be said to have smooth
boundary values if the image of u under the trace operators v; is in
H>®(0Q,) = Nser H5(00,,) C C™(0Qy,).

LEMMA 3.4. IfK is defined on H*(Q) by (Ku)(z) = [, k u(y)dy,
then the transpose of K, denoted KT, is deﬁned on (Hq( n))’ by

(KTv)(z) = / k(y,z)v(y)dy, where ¢ < (n — @) + s.
Qn
Furthermore, KT : HJ(Q,) — H?(;C(R") forallo' <o+n-—a.

PROOF. Let u € HS(Q ) be such that Ku € H4(Q,),q¢ < (n—a) +s.
Let v € (H1(Q,)) = Hy (). Then

(KTv,u)q, = (v, Ku)q, —/ / k(z,y) u(y)v(z)dzdy

= /Qn u(y) /Qn k(x,y)v(x)dx)dy
B /Q,, u(m)(/nn k(yvx)v(y)dy)d:c

= (KTo)(@) = [ Koy

n

In our case, k(z,y) = 1/|]z — y|* = k(y,z). Hence Lemma 3.2
= KT : H{(Qn) — Hf (Ry) forallo’ <o+n-a.0

REMARK As a matter of convenience, the following notation will be
used: fQ (z)g(z)dw(x), where w is a measure on {2, shall
1nd1cate the 1nner product of two elements f and g in some Hilbert
function space defined on the set 2,,.

B®,s € R, shall denote the cross-product space H*~1/2(8Q,) x
H*=3/2(8Q,,) of Sobolev spaces defined on the boundary 9, of Q,.
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B? shall denote the space of boundary values of incoming functions
taking on boundary values in B®. Likewise, BY shall denote the space

of boundary values of outgoing functions taking on boundary values in
Bs.

THEOREM 3.1. Letu € N(1-A)NH*(Q,), s € R, be incoming with
respect to 0y,. Then Ku € H4(Qy,) for allg < (n — a) + s.

PROOF. Let ¢ denote the boundary values of v on 0€2,,. From Lemma
3.4, we have KT : HS(Q,) — Hf (R,) for all o' < o +n—a. Let
p € Hy () where —¢ > (@ —n) —s. Then KTp € Hﬁ)'c(Rn) for all
o <(-q)+n—a.

In particular, —s < (—¢) + n — « implies

(3.2) KTp € Hijh (Ry).

Let n = ¢KTp where ¢ =1 on Q, and ¢ € C;°(R,,). Then
(32) 1€ Hy*(Ra).

Let «y be the fundamental solution of (1—A) such that 4(¢) = 1/1+|¢|%.
We then have

(3.3) v € HY(R,) for all t < 2 — (n/2).
From (3.2), (3.3), and Lemma 2.3, we obtain

yrneHTYAR,)  forallt < 2-(n/2)

and

(3.4) Y*n € leocs(R")'

Let v = ~*n and let ¢ denote the boundary values of v on 9Q,.
Since v € N(1 — A) is incoming with respect to 9€Q,, we have
(I+T)¢ =0. Hence ¢ =1/2(I+T)¢p+1/2(I -T')¢p =1/2(I —T')¢ and
[¢,9] = [1/2(I=T)¢, 9] = [$,1/2(1 +T)]. Therefore ¢ = 1/2(I+T)y.

This implies v = « % 7 is outgoing in Q with respect to 9§12, since
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1/2(=I+T)y =0. Hence, v € N(1-A)N Hfo'c“’(ﬁfb) takes on bound-
ary values ¢ € B2™* = HG/D-5(3Q,,) x H1/H~%(3Q,) by the trace
theorem (see [7, pp. 41-43] or [1, pp. 189-200]).

Casel. s > 1/2. The trace theorem implies ¢ € B® = H*~Y/2(9Q,,)x
H*~3/2(89,,). We also have (A—1)u = 0 and (A—1)v = 5 in Q,. Then
(Av,u)q, — (u,v)a, = (u,n)a, = (u,n)e, and (Au,v)q, — (u,v)q, =
(0,v)q, =0 implies (Av,u)q, — (Au,v)q, = (v, n)q,-

Green’s theorem implies (u,n)q, fann ( 5 = Uan)dw, ie.,
(u,m)a fan (192 — th12)dw. We use the notation [¢,] to de-
note the functional on 00, defined by the boundary integral. Then
(Ku,p)a, = (u, KTp)a, = (v,na, = [$¢]. By transposition (see (6,
p. 164] or [7, p. 166]), Ku € (H™%4(Q,)) = HY(Q,),¢ < (n — a) + s.

Case2. s <1/2.If ¢ is smooth, then we have (Ku,p)q, = =
[¢,¥], and, by transposition, Ku € (Hy (%)) = HY(Q),q¢ <
(n—a)+s.

If ¢ is not smooth, let ¢, be a sequence of smooth boundary values
of u, € N(1 — A) N H*(Q,) converging to ¢ in the Hilbert space B,
and where u, converges to u in H*({,). Such a sequence of smooth

boundary values ¢, exists since H*(09,,) is dense in H*({),) and B*®
is dense in B®.

We have (A — 1)u, = 0 and (A —1)v = 7 in Q,. Green’s theorem
implies (uvw”>9n = [¢u»1/}] But [¢V’¢] - [¢a "/)] and (uuan>9n -
(u,mq, as v — +oo implies (u,n)q, = [¢,¥].

Hence, (Ku,p)q, = (u,KTp)q, = (u,n)q, = [¢,4]. By transposi-
tion, Ku € (Hy4(Q,)) = HY(Q),g<(n—a) +s.0

THEOREM 3.2. Let u € N(1 — A)N H*(Qy) be incoming with respect
to OQy,. Let ¢ denote the boundary values of u on 89, and let 1 denote
the boundary values of Ku on 0Qy,. Then € BY, for allq < (n—a)+s.

PROOF. By Theorem 3.1, we have that Ku € H%(Q,) for all ¢ <
(n—a)+s.
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Case 1. If ¢ > 1/2, then the trace theorem implies Ku has boundary
values i € BY.

Case 2. If ¢ < 1/2, then 2 — ¢ > 3/2. By definition, there exists

v E quoc(R") such that Ku = rq_ v. If 7 is the fundamental solution

of (1— A) such that v € HY(R,,) for all t < 2 —(n/2), then there exists
w € HI*(R,) such that v = 7y * w.

Let 11 denote the boundary values of v *x w. Let ¢ € N(1 - A)N
H?79(f),) take on boundary values x. Since 2 — ¢ > 3/2, the trace
theorem implies xy € B>79. Since (A —1)v = w and (A — 1)¢ = 0 on
Q,,, an application of Green’s theorem yields

(3.5) (¢, wla,) = [x; ¥1],

where ¢ € N(1 — A) N H*"9(Q,),w € HI *(R,),x € B*9, and ¢,
denotes the boundary values of v*w on 9Q,. From (3.5), we have that
11 € B9, But v takes on boundary values 1;, and since Ku and v take
on the same boundary values on 0f,, we have that ¢ = ¢; € BY. o

THEOREM 3.3. Let HZ%(Ry) = {f/f € H™%Rn),f with sup-
port in Q,}. Then KT : HZY(Rn) — (H*(Qn))" for all s such that
—-s< —q+ (n—a).

PROOF. Let u € N(1 — A)N H*(f2,). Using the same notation and
terminology as in the proof of Theorem 3.1, and using the fact that
there exists a w € HI(R,,) such that Ku = rq_ w, we have

<Ku7p)9n = (Tﬂnwap)ﬂn = (wﬂ'g‘;np)Rn

(3.6)
= (KU, Tgnp>ﬁn = <u7 KTrgnp)ﬁn 3

where r§, is an isomorphism of Hy ?(Q,) = (H9(2,))’ onto Hg*(R»,),
ie, r§ : Hy¥ QW) — Hﬁ_Z(R") (see [7]). But (3.6) implies
KTrd pHy®(Q) = (H*(2n))". We conclude that K7 : H&:(Rn) -
H;?(Qy,) where ¢ < (n—a) + s, or equivalently, —s < —¢+ (n—a). G

COROLLARY. K maps HS (Rn) into H§(Qn) for allg < (n—a)+s.
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Of importance in the study of the boundary value problems for
differential operators defined on a domain  is the determination of
spaces of functions defined on the boundary of 2 containing the traces
You = u|an of functions u in H®*(2). The problem of characterizing
the image of H*(§) under the operator g : u — u|sq has been studied
by many authors; for example Lions [6]. This idea is extended to the
boundary value problem (1.1), (1.2) for the weakly singular integral
operator K, where the Fredholm integral equation of the first kind

(3.7) Ku=f

is considered.

The problem of existence of solutions of (3.7) is considered by viewing
the operator K as a mapping between function spaces, and the results
of this paper show that if equation (3.7) has a solution u for given
f € H(Q,),q < (n—a)+ s, then the solution u must be in H*(y,).

In addition, the boundary value problem (1.1), (1.2) has meaning in
the following sense.

If (1.1) has solutions for f € F = HY(Q,),q < (n — a) + s, then the
set of solutions

U={u=Kf+uy: Kup =0} C H(Q,)
must take on boundary values in the set

G = {g = g1 + g0 : g1is the boundary value of K~ ! f
and go is the boundary value of ug on 9Q,}

c H*=/2(6Qy,).

Hence, if (1.1), (1.2) is to have a solution u € U for given f € F, then
gE€QG.

On the other hand, if we let g € G = H*~(/2(9Q,,) and require (1.2)
to be satisfied by solutions of (1.1) which are in the set
U = {uy : Kug = f,u, takes on the boundary value g, and
is in some indexing set A} C H*(Q,), then F = {f : f =
ZaGA aoKug, ZaeA aq =1} C H{(Q,), g < (n—a) +s.

Hence, if (1.1), (1.2) is to have a solution u € U for given g € G, then
ferF.
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These results regarding the Fredholm integral equation of the first
kind can be extended to function spaces defined on Riemannian mani-
folds M,, with boundary 0M,,.

4. Singular integral operators on subspaces of H5(M,,). Let
M, denote a Riemannian manifold of dimension n with boundary dM,,,
assumed to be an infinitely differentiable manifold of dimension n — 1.

Let A be a complete atlas of M, consisting of the collection of local
charts (also called local coordinate systems) (Uq, ¢o) on My, where a is
in some indexing set A. If p € U, and ¢ (p) = (z1(p), .- ., Zn(p)) € Ry,
then the open set U, will be called a coordinate patch or coordinate
neighborhood of p and the numbers z;(p),1 < i < n, will be called
local coordinates of p. The mapping ¢, : p € Uy — (z1(p),-- -, Zn(p))
will in general be denoted by (z1,...,zy).

We assume M, is orientable, i.e., we can find a collection of local
charts (Uy, ¢o) such that {Uy}aeca is a covering of M,, and such that
for any a, 3,€ A, the mapping ¢g - ¢, ' has strictly positive Jacobian
determinant in its domain of definition ¢o(Us N Up).

DEFINITION 4.1. Let M, be an orientable Riemannian manifold of
dimension n, imbedded in R, ; and homotopically equivalent to the
unit ball D, = { € R,, : [{| < 1}. Let OM,, denote the boundary of
M, assumed to be a C°°-manifold of dimension n — 1, and let 8D,
denote the boundary of D,,. If ¢ is a homotopy equivalence of M,, with
D, then we define the function space H*(M,),s € R, by

u € H*(M,,) if and only if u- ¢~! € H*(¢(M,)) = H*(Dy,).

DEFINITION 4.2. Let M,,0M,, D, and 8D, be manifolds satisfying
the same conditions as in Definition 4.1. By means of the Riemannian
metric on the Riemannian manifold M,,, we can obtain a distance
function p between two points of M, in such a way that p is metrically
equivalent to the usual Euclidean distance function d(z,y) = |z — y|.

We define the weakly singular integral operator K on H*(M,),s € R,
by

(Ku)(z) = /M mu@)dmy,
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where 0 < a < n, and m is a measure on M, which gives the surface
area, volume element, etc. (depending on the appropriate dimension),
locally equivalent to Lebesgue measure.

REMARK. In the sequel, we shall use (Ku)(z fM e y|°‘ u(y)dmy,

since the action of K on H*(M,) is unchanged as a mapping between
function spaces due to the equivalence of the metrics p and d.

Let ¢ be a homotopy equivalence of D, with M, such that ¢ €
C>(D,). Denote by (z1,...,T,) the coordinates in M, and by
(&1,-.-,&) the coordinates in K,. If y = (y1,...,Yn) € My, then
there exists n = (n1,...,7,) € D, such that ¢(n) =y, i.e.,

{yl = ¢1(771a 777n)
Yn = ¢n(771,- . -ann)

We use ¢ to perform a change of variables in the integral as follows:

(K@) = [ =zutdm,

1
B /D 9@ = o & A Is(n)ldwn,

where w is Lebesgue measure on D,, and

9¢1

851 lé =1 """ B, |£=n
Jp(n) = det : :

O¢n A¢n

B le=n 0 GEE le=n

By Definition 4.1, u € H*(M,) if and only if u- ¢ € H*(¢™1(M,)) =
H#(Dy,,).

We now let

(i) a(&m) = ()| ==
il)v=u- ¢,
(i) (Qv)(& fDn 56 1) ( (n)dwy.

We then have (Ku)(z) = (Qu)(£), where ¢(¢) = z.
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LEMMA 4.1. If M, is orientable, then q(&,n) = |Jy(n)
bounded and smooth for all (£,m) € Dy, X D,,.

[ |
[(€)—p(m)]*

PROOF. Denote by (z1,...,%,) the coordinates in M, and by
(&1,...,&n) the coordinates in D,,.

Ifz=(z1,...,2,) € My, and & = (&1,...,&n) € Dy, by ¢(€) =z we
mean

{1"1 = 4)1(617"' 7671)
Tn = (€15 1 &n)

Since M, is orientable, we have that ¢ has strictly positive Jacobian
determinant in its domain of definition ¢~1(M,) = D,,, i.e.,

9 .. 9
a&l 6§n
Js(€) = det : : >0 forall £ € D,
O¢n .. O¢n
661 aén
and hence
d 3
olle=n -0 5Ele=n
Js(n) = det : : >0

s"lﬁl e %I
ag, 1€=n B¢, 1€=n

Denote by (J) the Jacobian matrix corresponding to the above
Jacobian determinant Jy(n).

To prove that ¢(&,7) is bounded for all (¢,n) € D, x D,, we need
only show that |¢(¢) — #(n)|/|€ — n| is bounded away from zero, i.e.,
[¢(€) — d(m)|/|€ —n| > 0. Using Taylor’s theorem for several variables,
we have ¢(€) — ¢(n) = 32, H((€ —n) - V)F(¢(n) for all £ in a
neighborhood of 7, say ns = {¢ € D, : |€ —n| < §}. Writing out
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explicitly the first term of the expansion we have
o0 ) 191)_ ‘
$(€) — o(n) = (61— nl)%lgzn + (&2 —m2 6{ eon
9¢
ot (G =) e +2 —((€ = m)-V)*¢(n)

= (& - 711)(351‘ U %%:@n)

O¢n
"+(€n—77n)(a§n |§ L "’5%|€=77)

£ (€ - V)6

= (J)(¢ - n)+z—((€ n) - V)*(n),

where

(J) =

(«9{1 le=n -+ agn > le= n\

351 |€‘n 5%,|€ =n

|E =n " ‘E ‘n\
3€1 3{,,
<J><€-">=( f (&23)

€, |€ =n 5?7|€=71

In fact, if we use multi-index notation, the Taylor series expansmn takes
the form ¢(£) — ¢(n) = ¥ a1 D800} (¢ _pye = Y aim1 ZED (g —n)®
+o(§ = nl?).

Hence [¢(€) — ¢(l/I€ = nl = [(J)E = /1€ — nl + o(l€ ~ =)
for all £ € ns. But det(J) # 0 = (J)(E—-n)/|€—n] # 0 since
(§ —m)/I€ — nl is a unit vector. Then [$(§) — ¢(n)|/|€ —n| > 0 for
all £ € ns = {¢ € Dy : |€ — 7| < 6}. Obviously, |6(§) — ¢(n)|/1€ —nl >
Oforall{ € {¢ €D, :|£—n|>6}

Since |¢(€) — #(n)|/|€ — n| is bounded away from zero for all (¢,7) €
D,, x D, we conclude that q(£,n) is bounded for all (¢,n) € Dy, X Dy,
and also smooth since ¢ € C*°(D,,).
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THEOREM 4.1. Let u € H*(D,,),s € R, be such that Ku € HY(D,)
where

(Ku)(§) =/ ;u(n)dw,7 andg<n—a+s, 0<a<n.
p, | —nl*

Let (Qu)(& fD |'é 5;17|’“ n)dw, where q(€,n) is bounded for all £,7) €

D, x D,. ThenQuqu(D )-

PROOF. Let v = Ku and w = Qu. We know by hypothesis that
u € H*(D,,) implies v = Ku € HY(D,). We suppose w € H(D,). We
wish to show w = Qu € HY(D,,), i.e., H(Dy) C HY(D,).

Suppose not. Then, for all M > 0 and for all w € H(D,),
there exists v’ € (HY(D,))’ such that [(w,v')p,|] > M. We wil

obtain a contradiction by showing that there exists M; < 0 such that
[{(w,v")| < M; for all w € H(D,) and for every v' € (H%(Dy,))'.

Note that [(w, )| = | [, v'(€).w(€)dwel = | [, v'(€) [, EBhu(n)
dwpdwe|. Let |q(€,m)| < A for every (§,n) € D x D,. Then |(w, )| <
Al{v,v")| < AN for some N > 0. Hence we can choose M; = AN to
get the contradiction and conclude that H(D,) C HY(D,), i.e.,

Qu € HY(D,,) if Ku € HI(D,,).

COROLLARY. Let H*(M,) = {u € H*(M,) :uo¢ € H*(D,)NN(1—
A) is incoming with respect to 8D,}. Then Ku € HY(M,) for all
g<n—a+s.

REMARK. The problem of investigating the action of weakly singular
integral operators on function spaces of a Riemannian manifold with
boundary has in effect been reduced to a problem already investigated
in the previous sections, namely the action of weakly singular integral
operators as mappings between Sobolev spaces on Euclidean manifolds.
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