
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 9, Number 3, Fall 2017

EULER CLASS GROUP OF CERTAIN OVERRINGS
OF A POLYNOMIAL RING

ALPESH M. DHORAJIA

ABSTRACT. Let A be a commutative Noetherian ring
of dimension n and P a projective A-module of rank n
with trivial determinant. In [2], Bhatwadekar and Sridharan
defined the nth Euler class group of A and studied the
obstruction to the existence of unimodular element in P . For
R = A[T ] and R = A[T, T−1], the nth Euler class groups of
R are defined by Das and Keshari in [8, 14], under certain
assumption on A in the latter case. We define the nth Euler
class group of the ring R = A[T, 1/f(T )], where f(T ) ∈ A[T ]
is a monic polynomial and the height of the Jacobson radical
of A is ≥ 2. Also, we prove results similar to those in [14].

1. Introduction. Let A be a commutative Noetherian ring of di-
mension n, and let P be a projective A-module. By a result of Serre
[21], if rank P > n, then P has a unimodular element (equivalently, P
splits off a free summand of rank 1). It is well known that this result is
not true in general if rank P = n. In [19, Theorem 3.8], Murthy proved
that, if P is a projective module of rank n over the coordinate ring of
a smooth n-dimensional affine variety X over an algebraically closed
field, then a necessary and sufficient condition for P to split off a free
summand of rank 1 is the vanishing of its top Chern class Cn(P ) in the
Chow group CH0(X), see [18, 19]. However, this result of Murthy is
not true for smooth affine varieties over non-algebraically closed fields,
as we have the example of the tangent bundle of the real 2-sphere.

In order to tackle this question for smooth affine varieties over
arbitrary base fields, Nori defined the notion of the ‘Euler class group’
of a smooth affine variety X = Spec(A). To any projective A-module
P of rank = dimA, he attached an element in this group, called the
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Euler class of P and asked whether the vanishing of the Euler class of
P would ensure that P splits off a free summand of rank 1.

In [2], Bhatwadekar and Sridharan settled this question of Nori in
the affirmative. We ask the following:

Question 1.1. Let R be a ring and P a projective R-module such that
rank(P ) = dim(R)−1. What is the obstruction for P to split off a free
summand of rank 1?

Let A be a commutative Noetherian ring (containing Q) of dimen-
sion n. In [8], Das defined the notion of the nth Euler class group
En(A[T ]) of A[T ], studied the theory of the Euler class group of a poly-
nomial algebra A[T ] and the relation between the Euler class groups
of A and A[T ]. In [14], Keshari defined the nth Euler class group of
a Laurent polynomial algebra A[T, T−1] and proved similar results as
in [2], under certain conditions on A. Note that the definitions of the
Euler class groups En(A[T ]) and En(A[T, T−1]) are different from the
definition of the Euler class group En(A) (due to Bhatwadekar and
Sridharan) and are not obtained by replacing A by A[T ] or A[T, T−1].
In order to accommodate projective A[T ]-modules with nontrivial de-
terminant, in [11], Das and Zinna defined En(A[T ], L), where L is a
projective A[T ]-module of rank 1.

In this paper, we study the nth Euler class group of the overrings
of a polynomial ring. Let A be a commutative Noetherian ring of
dimension n ≥ 3 with htJ (A) ≥ 2, where J (A) denotes the Jacobson
radical of A. Let R = A[T, 1/f(T )], where f(T ) ∈ A[T ] is monic.
We define En(A[T, 1/f(T )]) and extend the results proved in [3]. In
Section 2, we provide definitions and state some basic results without
proof. In Section 3, we prove addition and subtraction results for
R = A[T, 1/f(T )], which are the main ingredients for Euler class theory.
In Section 4, we define the nth Euler class group of R = A[T, 1/f(T )]
and prove the results similar to those in [14]. In Section 5, we define
the nth weak Euler class group En

0 (R) of R = A[T, 1/f(T )].

2. Preliminaries. All rings are assumed to be commutative Noe-
therian, and all modules are finitely generated.
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Let A be a ring, and let P be a projective A-module. Recall that
p ∈ P is called a unimodular element if there exists a ϕ ∈ P ∗ =
HomA(P,A), such that ϕ(p) = 1. The set of all unimodular elements
of P is denoted by Um(P ). Let p ∈ P and φ ∈ P ∗ be such that
φ(p) = 0. Let φp ∈ End(P ) be defined as φp(q) = φ(q)p. Then
1 + φp is a unipotent automorphism of P . An automorphism of P of
the form 1 + φp is called a transvection of P if either p ∈ Um(P ) or
φ ∈ Um(P ∗). We denote by E(P ) the subgroup of Aut(P ) generated
by all the transvections of P . Throughout this paper, J (A) is the
Jacobson radical of a ring A.

The following is a classical result due to Serre [21].

Theorem 2.1. Let A be a ring of dimension d. Then any projective
A-module P of rank > d has a unimodular element. In particular, if
dim A = 1, then any projective A-module of trivial determinant is free.

Now, we state the following results due to Bhatwadekar and Roy,
which are proved in [6, Lemma 4.1] and [7, Proposition 4.1], respec-
tively.

Lemma 2.2. Let B ⊂ C be rings of dimension d and x ∈ B such that
Bx = Cx. Then

(i) B/(1 + xb) = C/(1 + xb) for all b ∈ B.
(ii) If I is an ideal of C such that ht (I) ≥ d and I + xC = C, then

there exists an element b ∈ B such that 1 + xb ∈ I.

Proposition 2.3. Let A be a ring and I ⊂ A an ideal. Let P be
a projective A-module of rank n. Then any transvection θ of P/IP ,
i.e., θ ∈ E(P/IP ), can be lifted to a (unipotent) automorphism Θ
of P . In particular, if P/IP is free of rank n, then any element
ψ of E((A/I)n) can be lifted to Ψ ∈ Aut(P ). If, in addition, the
natural map Um(P ) → Um(P/IP ) is surjective, then the natural map
E(P ) → E(P/IP ) is surjective.

The next result is proved in [13, Theorem 3.14].
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Theorem 2.4. Let A be a ring of dimension d, and let R =
A[X, f1/g, . . . , fn/g], where g, fi ∈ A[X] with g a non-zerodivisor. Let
P be a projective R-module of rank r ≥ max{2, d+1}. Then E(R⊕P )
acts transitively on Um(R⊕ P ).

The following result is a consequence of a theorem of Eisenbud and
Evans, as stated in [20, page 1420].

Lemma 2.5. Let A be a ring, and let P be a projective A-module of
rank r. Let (α, a) ∈ (P ∗ ⊕ A). Then, there exists an element β ∈ P ∗

such that htIa ≥ r, where I = (α + aβ)(P ). In particular, if the ideal
(α(P ), a) has height ≥ r, then htI ≥ r. Further, if (α(P ), a) is an ideal
of height ≥ r and I is a proper ideal of A, then htI = r.

Now we state some technical results due to Bhatwadekar and Keshari
[1, Proposition 2.11, Lemma 3.3, Lemma 3.6, Lemma 4.4].

Lemma 2.6. Let A be a ring, and let I ⊂ A be an ideal of height n.
Let f ∈ A be such that it is not a zerodivisor mod I. Let P = P1 ⊕A
be a projective A-module of rank n. Let α : P → I be a linear map such
that the induced map αf : Pf → If is a surjection. Then, there exists
a Ψ ∈ E(Pf ) such that

(1) β = Ψ(α) ∈ P ∗, and
(2) β(P ) is an ideal of A of height n contained in I.

Lemma 2.7. Let A be a ring, and let I = (c1, c2) be an ideal of A. Let
b ∈ A be such that I + (b) = A and n is a positive even integer. Then
I = (e1, e2) with c1 − e1 ∈ I2 and bnc2 − e2 ∈ I2.

Lemma 2.8. Let A be a ring, and let I1 and I2 be two comaximal
ideals of A. Let P = P1 ⊕ A be a projective A-module of rank n.
Let Φ : P � I1 and Ψ : P � I1 ∩ I2 be two surjections such that
Φ⊗A/I1 = Ψ⊗A/I1. Assume that :

(1) a = Φ(0, 1) is a non zerodivisor mod the ideal (
√
(Φ(P1))).

(2) n− 1 > dimA/J (A), where A = A/(Φ(P1)).
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Let L ⊂ I22 be an ideal such that Φ(P1) + L = A. Then, the surjection
Ψ : P � I1 ∩ I2 induces a surjection Ψ : P � I2/L. Moreover, Ψ may
be lifted to a surjection Λ : P � I2.

Lemma 2.9. Let A be a ring with dimA/J (A) = r, and let P be a
projective A-module of rank ≥ r + 1. Let I and L be ideals of A such
that L ⊂ I2. Let ϕ : P � I/L be a surjection. Then ϕ can be lifted to
a surjection ψ : P � I.

The next results are due to Bhatwadekar and Sridharan [2, 2.11,
4.2, 4.3, 4.4].

Lemma 2.10. Let A be a ring, and let I ⊂ A be an ideal. Let I1 and
I2 be ideals of A contained in I such that I2 ⊂ I2 and I1 + I2 = I.
Then I = I1 + (e) for some e ∈ I2 and I1 = I ∩ I ′ , where I2 + I ′ = A.

Theorem 2.11. Let A be a ring of dimension n ≥ 2 containing Q. Let
I be an ideal of A of height n such that I/I2 is generated by n elements.
Let wI : (A/I)n � I/I2 be a surjection. Let P be a projective A-module

of rank n with trivial determinant and an isomorphism χ : A
∼−→ ∧n(P ).

Then the following holds:

(1) If (I, wI) = 0 in E(A), then wI can be lifted to a surjection from
An to I.

(2) Suppose e(P, χ) = (I, wI) in E(A). Then, there exists a surjection
α : P � I such that (I, wI) is obtained from (α, χ).

(3) e(P, χ) = 0 in E(A) if and only if P has a unimodular element.

The following result is due to Mandal and Sridharan [15, Theorem
2.3].

Theorem 2.12. Let A be a ring, and let I1 and I2 be two comaximal
ideals of A[T ] such that I1 contains a monic polynomial and I2 =
I2(0)A[T ] is an extended ideal. Let I = I1 ∩ I2. Suppose that P is
a projective A-module of rank n ≥ dimA[T ]/I1 + 2. Let α : P � I(0)
and ψ : P [T ]/I1P [T ] � I1/I1

2 be two surjections such that ϕ(0) =
α ⊗ A/I1(0). Then there exists a surjective map Ψ : P [T ] � I such
that Ψ(0) = α.



346 ALPESH M. DHORAJIA

The addition and subtraction principles, respectively, presented in
Section 3 are due to Bhatwadekar and Keshari [1, Theorems 3.7, 5.6].

Proposition 2.13. Let A be a ring of dimension d, and let I1 and
I2 ⊂ A be two comaximal ideals of height n, where 2n ≥ d + 3. Let
P = P1 ⊕ A be a projective A-module of rank n. Let Φ : P � I1
and Ψ : P � I2 be two surjections. Then, there exists a surjection
∆ : P � I1 ∩ I2 with ∆⊗A/I1 = Φ⊗A/I1 and ∆⊗A/I2 = Ψ⊗A/I2.

Proposition 2.14. Let A be a ring of dimension d and let I1, I2 ⊂ A
be two comaximal ideals of height n, where 2n ≥ d+3. Let P = P1⊕A
be a projective A-module of rank n. Let Φ : P � I1 and Ψ : P � I1∩I2
be two surjections such that Φ⊗ A/I1 = Ψ⊗ A/I1. Then, there exists
a surjection ∆ : P � I2 such that ∆⊗A/I2 = Ψ⊗A/I2.

3. Addition and subtraction principles. In this section, we
prove the addition and subtraction principles Theorems 3.8 and 3.9,
respectively, as per our requirement. We begin by giving the next
definition.

Definition 3.1. Let f(T ) be a monic polynomial in A[T ]. We call
g(T ) ∈ A[T ] a special polynomial relative to f(T ) if g(T ) = 1 +
f(T )h(T ) for some monic polynomial h(T ) ∈ A[T ].

Let S be the set of all special polynomials relative to f(T ) in A[T ].
Clearly, S is a multiplicatively closed subset of A[T ].

Lemma 3.2. Let A be a ring of dimension d, and let R = A[T, 1/f(T )],
where f(T ) is monic. Let S be the multiplicative set of all special
polynomials relative to f(T ). Then dimS−1R = dimA.

Proof. We show that any maximal ideal R of height d + 1 contains
a special polynomial relative to f(T ). Let M be a maximal ideal of R
such that htM = d+1. It is easy to see that M contains a f(T )g(T ) for
some monic polynomial g(T ) ∈ A[T ]. Since M+ f(T )R = R, applying
2.2 to A[T ] and R with x = f(T ), we get 1 + f(T )h(T ) ∈ M for some
h(T ) ∈ A[T ]. A suitable combination of f(T )g(T ) and 1 + f(T )h(T )
will give the required element. Therefore, dim S−1R = dim A. �
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Notation 3.3. Let R and S be as above. We denote the localized ring
S−1R by R. From Lemma 3.2, we have dimR = dimA.

The next result is proved in [3, Lemma 3.6] in the case where A is
an affine algebra over a field. A more general version of this result is
due to Das and Keshari [10, Lemma 3.1].

Lemma 3.4. Let A be a ring of dimension d and R = A[T, 1/f(T )],
where f(T ) is monic. Let P be a projective R-module of rank n, where
2n ≥ d + 3. Let I ⊂ R be an ideal of height n. Let J ⊂ I ∩ A be any
ideal of height ≥ d − n + 2, and let g ∈ R be any element. Assume
that we are given a surjection ϕ : P � I/(I2g). Then, ϕ has a lift

ϕ̃ : P → I such that ϕ̃(P ) = I2 satisfies the following properties:

(1) I2 + (J2g) = I,
(2) I2 = I ∩ I1 , where htI1 ≥ n, and
(3) I1 + (J2g) = R.

Proof. Let ϕ′ : P → I be any lift of ϕ. Since ϕ′(P ) + I2g = I,
by Lemma 2.10, we can choose b ∈ I2g such that (ϕ′(P ), b) = I. Let
C = R/(J2g) and the bar denote reduction modulo the ideal (J2g).

Now, applying 2.5 to the element (ϕ
′
, b) of P

∗⊕C, there exists a β ∈ P ∗

such that, if N = (ϕ′ + bβ)(P ), then ht(N b) ≥ n.

Since b ∈ (I2g), the element ϕ′ + bβ is also a lift of ϕ. Therefore,
replacing ϕ′ by ϕ′ + bβ, we may assume that N = ϕ′(P ). Now, as
(N, b) = I and b ∈ (I2g), it follows that N = I ∩K, (K, b) = R.

Since b ∈ I, Nb = Kb. Therefore, we have:

(1) N = I ∩K with ht(K) = ht(Kb) = ht(N b) ≥ n.

(2) b+K = C.

Now we show that K = C. Assume, to the contrary, that K is a proper
ideal of C. Since b ∈ I2g, in view of (1) and (2), we have

n ≤ ht(K) = ht(Kg)

≤ dimCg = dim(A/J2)

[
T,

1

fg

]
= dimA/J + 1 ≤ d− (d− n+ 2) + 1 = n− 1.
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This is a contradiction. Thus, K = C and, from (1), we have ϕ′(P ) +
(J2g) = I. By Lemma 2.10, there is an element c ∈ (J2g) such that
(ϕ′(P ), c) = I. It follows that ϕ′(P ) = I ∩ L and (L, c) = R. Take

I2 = ϕ′(P ), I1 = L and ϕ′ = ϕ̃. Then (1), (2) and (3) follow. �

The next result is an analogue of [1, Lemma 4.5] for A[T, 1/f(T )].
When f(T ) = T , it is proved in [14, Lemma 3.3].

Lemma 3.5. Let A be a ring with dimA/J (A) = d and R =
A[T, 1/f(T )], where f(T ) ∈ A[T ] is a monic polynomial. Let I and
L be ideals of R such that L ⊂ I2 and L contains a special polynomial
relative to f(T ). Let Q be a projective R-module of rank n ≥ d+1. Let
ϕ : Q ⊕ R � I/L be a surjection. Then, we can lift ϕ to a surjection
Φ : Q⊕R� I with Φ(0, 1), a special polynomial relative to f(T ).

Proof. Let 1 + g(T )f(T ) ∈ L be a special polynomial relative to
f(T ) ∈ A[T ]. Let Φ′(= (Θ, h)) : Q ⊕ R → I be a lift of ϕ. By
adding some suitable multiple of 1+ g(T )f(T ) to h(T ), we can assume
that h(T ) is a special polynomial relative to f(T ). (If (Θ, h) is a lift
of ϕ, then, for any b ∈ L, (Θ, h + b) is also a lift of ϕ. Now take
b = −h(1 + gf) + (1 + gf)r for some large integer r > 0).

Let B = R/(h). Since h = 1 + g1f , we have A ↩→ B is an integral
extension, and hence, J (A) = J (B) ∩ A, where g1 ∈ A[T ] is monic.
Since A ↩→ B is an integral extension, A/J (A) ↩→ B/J (B) is also an
integral extension. Let “bar” denote reduction modulo the ideal (h).
Let α : Q� I/L be the surjection induced by Θ. As dim(B/J (B)) = d
and n ≥ d + 1, by Lemma 2.9, α can be lifted to a surjection from Q
to I. Therefore, a map Γ : Q→ I exists such that Γ(Q) + (h) = I and
(Θ− Γ)(Q) = K ⊂ L+ (h). Hence,

Θ− Γ ∈ KQ∗ ⊆ (L+ h)Q∗.

This shows that Θ−Γ = Θ1+hΓ1, where Θ1 ∈ LQ∗ and Γ1 ∈ Q∗. Let
Φ1 = Γ + hΓ1, and let Φ = (Φ1, h). Then

Φ(Q⊕R) = (Γ + hΓ1)(Q) + (h) = Γ(Q) + (h) = I.

Therefore, Φ : Q⊕R� I is a surjection and moreover, Φ(0, 1) = h(T )
is a special polynomial relative to f(T ). Since Φ − Φ′ = (Φ1 − Θ, 0),
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we have Φ1 − Θ ∈ LQ∗, and Φ′ is a lift of ϕ. Hence, Φ is a surjective
lift of ϕ. �

The next result is crucial for the proof of addition and subtraction
principles. For the polynomial ring, the following result is proved
in [1, Lemma 4.6]. Our proof closely follows that proof. Let R =
A[T, 1/f(T )] and S be the set of all special polynomials relative to
f(T ) in A[T ]. Recall that we denote the localized ring S−1R by R.

Lemma 3.6. Let A be a ring of dimension d, and let R = A[T, 1/f(T )],
where f(T ) ∈ A[T ] is monic. Let n be an integer such that 2n ≥ d+3.
Let I be an ideal of R of height n such that I + J (A)R = R. Assume
that htJ (A) ≥ d − n + 2. Let P = Q ⊕ R2 be a projective R-module
of rank n, and let ϕ : P � I/I2 be a surjection. If the surjection
ϕ⊗R : P ⊗R � IR/I2R can be lifted to a surjection from P ⊗R to
IR, then ϕ can be lifted to a surjection Φ : P � I.

Proof. By choosing the common denominator h ∈ S, see Lemma 3.3,
there is a surjective map Φ′ : Ph � Ih which is a lift of ϕh : Ph �
Ih/Ih

2. Since I+J (A)R = R, I is not contained in any maximal ideal
of R which contains a special polynomial relative to f(T ). Therefore, h
is a unit modulo I. Since Φ′ ∈ HomRh

(Ph, Ih), choose a positive even
integer N such that Φ′′ = hNΦ′ ∈ HomR(P, I). Clearly Φ′′

h : Ph � Ih
is a surjection.

Since h is a unit modulo I, the canonical map R/I → Rh/Ih is an
isomorphism, and therefore, I/I2 = Ih/I

2
h. Clearly, ϕ′′ = Φ′′ ⊗ R/I :

P � I/I2 is surjective and ϕ′′ = hNϕ. �

Now, we prove the following claim.

Claim 3.7. The map ϕ′′ : P � I/I2 can be lifted to a surjection form
P to I.

Proof of Claim 3.7. We know that, if ∆ is an automorphism of P
and if the surjection ϕ′′∆ : P � I/I2 has a surjective lift form P
to I, then ϕ′′ also has a surjective lift from P to I. We know that
any element of E(P/IP ) can be lifted to an automorphism of P . By
Lemma 2.6, there exists a ∆1 ∈ E(Ph) such that:
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(1) Ψ = ∆∗
1(Φ

′′) ∈ HomR(P, I), where ∆∗
1 is an element of E(P ∗

h )
induced from ∆1, and

(2) Ψ(P ) is an ideal of R of height n.

Since Ψh(Ph) = Ih and h is unit modulo I, we have I = Ψ(P ) + I2.
By Lemma 2.10, Ψ(P ) = I1 = I ∩ I ′, where I ′ + I = R. Then, since
(I1)h = Ih, we have I ′h = Rh. Since I ′h = Rh, I

′ contains hr, a special
polynomial relative to f(T ) for some integer r. Since ∆1 ∈ E(Ph),

∆ = ∆1 ⊗Rh/Ih ∈ E(Ph/IPh).

Due to P/IP = Ph/IPh, we can regard ∆ as an element of E(P/IP ).
By (2.9), ∆ can be lifted to an automorphism ∆ of P . The map
Ψ : P � I ∩ I ′ induces a surjection ψ : P � I/I2, and we see that
ψ = ϕ′′∆. Therefore, to prove the claim, it is enough to show that ψ
can be lifted to a surjection from P to I.

If I ′ = R, then Ψ is a required surjective lift of ψ. Hence, we assume
that I ′ is an ideal of height n. The map Ψ : P � I ∩ I ′ induces a
surjection ψ′ : P � I ′/I ′2. Since P = Q ⊕ R2 and I ′ contains hr, a
special polynomial relative to f(T ) for some r, by Lemma 3.5, ψ′ can
be lifted to a surjection Ψ′(= (Γ, a1, a2)) : P � I ′, where Γ ∈ Q∗ and
a1, a2 ∈ R, with a1 a special polynomial relative to f(T ). If necessary,
by Lemma 2.5, we can replace Γ by Γ+ a22Γ1 for suitable Γ1 ∈ Q∗ and
assume that htK = n− 1, where K = Γ(Q) +Ra1. Let R = R/K and
A = A/K ∩A. Then, A ↩→ R is an integral extension, and hence,

dim(R/J (R)) = dim(A/J (A))

≤ dim(A/J (A)) ≤ n− 2 < n− 1.

Let P1 = Q ⊕ R. Then P = P1 ⊕ R. Since K contains a1, a
special polynomial relative to f(T ), K+I2 = R. Moreover, surjections
Ψ : P � I ∩ I ′ and Ψ′ : P � I ′ are such that Ψ ⊗ R/I ′ = Ψ′ ⊗ R/I ′.
Therefore, since R = R/K and dim R/J (R) < n − 1, by Lemma 2.8,
there exists a surjection Λ1 : P � I such that

Λ1 ⊗R/I = Ψ⊗R/I = ψ.

Therefore, Λ = Λ1∆
−1 : P � I is a lift of ϕ′′. This completes the proof

of claim.

Let L denote the ideal of R generated by J (A)h(T ), and let D =
R/L. Since L + I = R and ∆(P ) = I, ∆ ⊗ D is a unimodular
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element of P ∗ ⊗ D. Let ∆ = (λ, b1, b2), where λ ∈ HomR(Q,R)
and b1, b2 ∈ R. Since h(T ) is a special polynomial relative to f(T ),
D/J (D) = A/J (A)[T, 1/f(T )] and dim(A/J (A)) ≤ n − 2. By
Lemma 2.4, the unimodular element (λ, b1, b2) ⊗ D can be taken to
(0, 0, 1) by an element of E(P ∗ ⊗ D). By Lemma 2.3, every element
of E(P ∗ ⊗ D) can be lifted to an elementary automorphism of P ∗.
Moreover, since I + (h) = R, a lift can be chosen so that it is identity
modulo I. Therefore, there exists an elementary automorphism Ω of P
such that Ω is identity modulo I and Ω∗(Λ) = ΛΩ = (0, 0, 1) modulo L.
Therefore, replacing Λ by ΛΩ, we can assume that Λ = (λ, b1, b2) with
1− b2 ∈ L.

Choose h1 ∈ R such that hh1 = 1 modulo (b2), and hence, modulo I.
Let I = (hN1 b1, b2) be an ideal. By Lemma 2.7, I = (e1, e2) with
e1 − hN1 b1 ∈ I2 and e2 − hN1 b2 ∈ I2. Since Λ = (λ, b1, b2),Λ(P ) = I
and Rh1 +Rb2 = R, we see that

I = λ(Q) + (b1, b2) = hN1 λ(Q) + (hN1 b1, b2)

= hN1 λ(Q) + (e1, e2).

Let Φ = (hN1 λ, e1, e2) ∈ HomR(P, I). We can see that Φ : P � I is
surjective. Moreover, since 1 − hh1 ∈ I, Φ ⊗ R/I = hN1 Λ ⊗ R/I and
Λ⊗R/I = hNϕ⊗R/I. Therefore, Φ is a lift of ϕ. �

If 2n ≥ d + 4, the following addition and subtraction principles
(Lemmas 3.8 and 3.9, respectively) are due to Bhatwadekar and Keshari
for any f(T ) ∈ A[T ] and without any condition on the Jacobson radical
of A, see [1]. The only case remaining is when 2n = d + 3. Since the
proof of the following results equally work in the case 2n ≥ d + 3, we
give the proof for the general case. In the case f(T ) = T , this is proved
in [14, Proposition 3.5].

Theorem 3.8. Let A be a ring of dimension d and R = A[T, 1/f(T )],
where f(T ) ∈ A[T ] is monic. Let I1, I2 ⊂ R be two comaximal ideals
of height n, where 2n ≥ d + 3. Let P = P ′ ⊕ R2 be a projective R-
module of rank n. Assume that htJ (A) ≥ d − n + 2. Let Φ : P � I1
and Ψ : P � I2 be two surjections. Then, there exists a surjection
∆ : P � I1 ∩ I2 with ∆⊗R/I1 = Φ⊗R/I1 and ∆⊗R/I2 = Ψ⊗R/I2.
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Proof.

Step 1. Write I = I1 ∩ I2 and J = (I ∩ A) ∩ J (A). Let Γ : P
� I/I2 be a surjection induced by the surjections Φ and Ψ such that
Γ ⊗ R/I1 = Φ ⊗ R/I1 and Γ ⊗ R/I2 = Ψ ⊗ R/I2. Therefore, it is
enough to show that Γ has a surjective lift from P to I. Clearly, we
have htJ ≥ d− n+2, as ht(I ∩A) ≥ n− 1 ≥ d− n+2. Now, applying
Lemma 3.4 to Γ : P � I/I2 with g = 1, we get a lift Γ1 : P → I of Γ
such that the ideal Γ1(P ) = I ′′ satisfies the following properties:

(1) I = I ′′ + J2;
(2) I ′′ = I ∩K, where htK ≥ n;
(3) K + J = R.

Clearly, dimR = d and IR = I1R∩ I2R. Applying Lemma 2.13 in the
ring R for the surjections Φ⊗R : P ⊗R � I1R and Ψ⊗R : P ⊗R �
I2R, we obtain a surjection ∆ : P ⊗R � IR such that

∆⊗R/I1R = Φ⊗R/I1R

and

∆⊗R/I2R = Ψ⊗R/I2R.

From the construction of Γ, it follows that ∆ is a lift of Γ ⊗ R. We
have two surjections Γ1 : P � I ∩K and ∆ : P ⊗R � IR. Since Γ1

is a lift of Γ, we have Γ1 ⊗R/IR = ∆⊗R/IR.

Applying Lemma 2.14 in the ringR for the surjections Γ1⊗R and ∆,
we get a surjection ∆1 : P⊗R � KR with ∆1⊗R/KR = Γ1⊗R/KR.
Since K is comaximal with J , we have KR + J (A)R = R. Applying
Lemma 3.6 to the surjection Γ1 ⊗ R/K, we obtain a surjection ∆2 :
P � K which is a lift of Γ1 ⊗R/K : P � K/K2.

Step 2. Recall that P = P ′⊕R2, J = (I∩A)∩J (A) and J+K = R.
Write P1 = P ′ ⊕ R and P = P1 ⊕ R. We have two surjections
Γ1 : P � I ∩K and ∆2 : P � K with Γ1 ⊗R/K = ∆2 ⊗R/K.

Since htJ ≥ d − n + 2, dimA/J ≤ d − (d − n + 2) = n − 2.
Let “bar” denote reduction modulo J2. Then, R = A/J2[T, 1/f(T )].
By Lemma 2.4, after applying an automorphism of P1 ⊕ R, we can
assume that ∆2(P1) = R modulo J2 and ∆2(0, 1) ∈ J2. Assume that
∆2(0, 1) = λ ∈ J2. By Lemma 2.5, replacing ∆2 by ∆2+λ∆3 for some
∆3 ∈ P ∗

1 , we can assume that ht(∆2(P1)) = n − 1. Let p1 ∈ P1 such
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that ∆2(p1) = 1 modulo J2. Further, replacing λ by λ + ∆2(p1), we
can assume that λ = 1 mod J2.

LetK1 andK2 be two ideals of R[Y ] defined byK1 = (∆2(P1), Y +λ)
and K2 = IR[Y ]. Since ∆2(P1) + J = R and J ⊂ I, K1 and K2 are
comaximal. Write K3 = K1 ∩ K2; hence, K3(0) = I ∩ K. Then, we
have two surjections Γ1 : P � K3(0) and Λ1 : P [Y ] � K1 defined by
Λ1 = ∆2 on P1 and ∆1(0, 1) = Y + λ. Then,

Λ1(0) = Γ1 mod K1(0)
2 and ∆2 ⊗R/K = Γ1 ⊗R/K.

Since ht(∆2(P1)) = n − 1 and ∆2(P1) + J (A) = R, dimR[Y ]/K1 =
dimR/∆2(P1) ≤ d − n + 1 ≤ n − 2. Hence, applying Lemma 2.12,
we obtain a surjection Λ2 : P [Y ] � K3 with Λ2(0) = Γ1. Putting

Y = 1 − λ, we get a surjection ∆̃ = Λ2(1 − λ) : P � I with

∆̃ ⊗ R/I = Γ1 ⊗ R/I. Since Γ1 is a lift of Γ : P � I/I2, we have

∆̃⊗R/I = Γ⊗R/I. This completes the proof. �

Theorem 3.9. Let A be a ring of dimension d and R = A[T, 1/f(T )],
where f(T ) ∈ A[T ] is monic. Let I1, I2 ⊂ R be two comaximal ideals of
height n, where 2n ≥ d+ 3. Let P = P ′ ⊕R2 be a projective R-module
of rank n. Assume that htJ (A) ≥ d− n+ 2. Let Φ : P � I1 ∩ I2 and
Ψ : P � I1 be two surjections with Φ⊗R/I1 = Ψ⊗R/I1. Then, there
exists a surjection ∆ : P � I2 such that Φ⊗R/I2 = ∆⊗R/I2.

Proof. Let ϕ : P � I2/I
2
2 be a surjection induced by Φ. Let

J = (I2∩A)∩J (A). Then, htJ ≥ d−n+2, since ht(I2∩A) ≥ n−1 and
n− 1 ≥ d− n+ 2. Applying Lemma 3.4, to surjection ϕ : P � I2/I2

2

with g = 1, we get a lift ϕ̃ : P → I of ϕ such that ϕ̃(P ) = I ′′ satisfies
the following properties:

(1) I2 = I ′′ + J2;
(2) I ′′ = I2 ∩K, where htK ≥ n, and
(3) K + J2 = R.

Note that we have surjections Φ and Ψ such that Φ ⊗ R/I1 =
Ψ⊗ R/I1. Therefore, we have two surjections Φ⊗R and Ψ⊗R such
that

Φ⊗R/I1R = Ψ⊗R/I1R.
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Since dimR = d, applying Lemma 2.14 in the ring R for the surjections
Φ⊗R and Ψ⊗R, there exists a surjection Γ : P ⊗R � I2R such that

Γ⊗R/I2R = Φ⊗R/I2R = ϕ̃⊗R/I2R.

Applying Lemma 2.14 for the surjections Γ and ϕ̃ ⊗ R, there exists a

surjection Γ1 : P ⊗ R � KR such that Γ1 ⊗ R/KR = ϕ̃ ⊗ R/KR.
Since K is comaximal with J (A), applying Lemma 3.6, we obtain a

surjection Γ2 : P � K with Γ2 ⊗R/K = ϕ̃⊗R/K.

We have two surjections ϕ̃ : P � I2 ∩K and Γ2 : P � K such that

Γ2⊗R/K = ϕ̃⊗R/K. Recall that K+J (A) = R. We get a surjection

∆ : P � I2 such that ∆⊗ R/I2 = ϕ̃⊗ R/I2 = Φ⊗ R/I2, by following
Step (2) of the proof of Theorem 3.8. �

In the case of f(T ) = T , the following result is [14, Theorem 3.8].

Theorem 3.10. Let A be a ring of dimension d and R = A[T, 1/f(T )],
where f(T ) ∈ A[T ] is monic. Let n be an integer such that 2n ≥ d+3.
Let I be an ideal of R of height n. Assume that htJ (A) ≥ d−n+2. Let
P = P ′ ⊕R2 be a projective R-module of rank n, and let ϕ : P � I/I2

be a surjection. Assume that ϕ ⊗ R : P ⊗ R � IR/I2R can be lifted
to a surjection Φ : P ⊗R � IR. Then, ϕ can be lifted to a surjection
∆ : P � I.

Proof. Let J = (I ∩ A) ∩ J (A). We have htJ ≥ d − n + 2, as
ht(I2 ∩A) ≥ n− 1 and n− 1 ≥ d− n+ 2. Applying Lemma 3.4 to the
surjection ϕ : P � I/I2 with g = 1, we obtain a lift Φ1 : P → I of ϕ
such that the ideal Φ1(P ) = I ′′ satisfies the following properties:

(1) I = I ′′ + J2;
(2) I ′′ = I ∩K, where htK ≥ n;
(3) K + J2 = R.

If htK > n, then K = R, and hence, I ′′ = I. Therefore, we can
take Φ1 as a required lift of the surjection ϕ. Hence, we assume that
htK = n. We have two surjections Φ : P⊗R � IR and Φ1 : P � I∩K
such thatΦ ⊗ R/IR = Φ1 ⊗ R/IR. Applying Lemma 2.14 in the
ring R for the surjections Φ and Φ1 ⊗ R, we obtain a surjection
Ψ : P ⊗R � KR such that Ψ⊗R/KR = Φ1 ⊗R/KR.
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Since K + J (A) = R, applying Lemma 3.6, we get a surjection
∆1 : P � K, which is a lift of Φ1 ⊗R/K. We have two surjections Φ1

and ∆1 with Φ1⊗R/K = ∆1⊗R/K. Applying Lemma 3.9, we obtain
a surjection ∆ : P � I such that ∆ ⊗ R/I = Φ1 ⊗ R/I = ϕ. This
completes the proof. �

As a consequence of Theorem 3.10, we have the following:

Corollary 3.11. Let A be a Noetherian ring of dimension n ≥ 3 with
htJ (A) ≥ 2, and let R = A[T, 1/f(T )], where f(T ) ∈ A[T ] is a monic.
Let I ⊂ R be an ideal of height n and ϕ : (R/I)n � I/I2 be a surjection.
Assume that ϕ⊗R can be lifted to a surjection from R to IR. Then,
ϕ can be lifted to a surjection Φ : Rn � I.

4. Euler class group of A[T, 1/f(T )].

Assumption 4.1. Throughout this section, let A be a commutative
Noetherian ring containing Q of dimension n ≥ 3 with htJ (A) ≥ 2
and R = A[T, 1/f(T )], where f(T ) ∈ A[T ] is a monic.

The results of this section are similar to [14, Section 4], where it is
proved for f(T ) = T . We proceed to define the nth Euler class group
of the ring R = A[T, 1/f(T )], where f(T ) is monic.

Clearly, dimR = n + 1. Let I be an ideal R of height n such that
I/I2 is generated by n elements. We define a relation on the set of
all surjections from (R/I)n to I/I2. Let α and β be two surjections
from (R/I)n to I/I2. We say α and β are related if there exists
σ ∈ SLn(R/I) such that ασ = β. It is easy to see that this is an
equivalence relation. Let [α] denote the equivalence class of α. We call
such an equivalence class [α], a local orientation of I.

Let α : (R/I)n � I/I2 be a surjection, which can be lifted to a
surjection Θ : Rn � I. Then, any β, related to α can also be lifted
to a surjection Rn � I. For, let β = ασ for some σ ∈ SLn(R/I).
If IR = R, then β ⊗ R can be lifted to a surjection from Rn to IR
and hence, by Lemma 3.11, β can be lifted to surjection. Therefore,
we assume that IR is a proper ideal of R. Since dimR = n, we have
dimR/IR = 0, and hence, SLn(R/IR) = En(R/IR). Therefore, by
Lemma 2.3, σ⊗R can be lifted to an element of SLn(R). Thus, β⊗R
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can be lifted to a surjection from Rn to IR. Again, by Lemma 3.11, β
can be lifted to a surjection from Rn to I. Therefore, from now on, we
shall identify a surjection α with the equivalence class [α] to which it
belongs.

We call a local orientation [α] of I, a global orientation of I, if the
surjection α : (R/I)n � I/I2 can be lifted to a surjection Θ : Rn � I.

Let S be the set of pairs (I, wI), where I ⊂ R is an ideal of height n
such that I/I2 is generated by n elements, having the property that
Spec (R/I) is connected, and wI : (R/I)n � I/I2 is a local orientation
of I. Let G be a free abelian group on S.

Assume that I ⊂ R is an ideal of height n such that I/I2 is generated
by n elements. Let I = I1 ∩ · · · ∩ Ir be a decomposition of I, where
the Iks are pairwise comaximal ideals of height n and Spec(R/Ik) is
connected. By [8, Lemma 4.4], it follows that such a decomposition
is unique. We say that the Iks are connected components of I. Let
wI : (R/I)n � I/I2 be a surjection. Then, wI induces surjections
wIk : (R/Ik)

n � Ik/I
2
k . By (I, wI), we denote the element

∑
(Ik, wIk)

of G.

Let S′ = {(I, wI) ∈ G | wI : (R/I)n � I/I2 is a global orientation}.
Let H be the free subgroup of G generated by S′. We define the nth
Euler class group of R, denoted by En(R), to be G/H. By abuse of
notation, we will write E(R) for En(R) throughout this paper.

Let P be a projective R-module of rank n having trivial determinant.
Let χ : R

∼−→ ∧nP be an isomorphism. To the pair (P, χ), we associate
an element e(P, χ) of E(R) as follows:

Let λ : P � I1 be a surjection, where I1 ⊂ R is an ideal
of height n (by Lemma 2.5, such a surjection always exists). Let
λ : P/I1P � I1/I

2
1 be the induced surjection, where “bar” denotes

reduction modulo I1. By Lemma 2.1, P/I1P is a free R/I1-module of
rank n, as dim R/I1 ≤ 1 and P has a trivial determinant. We choose

an isomorphism γ : (R/I1)
n ∼−→ P/I1P such that ∧n(γ) = χ. Let wI1

be the surjection λγ : (R/I1)
n � I1/I1

2. Let e(P, χ) be the image of
(I1, wI1) in E(R). We say that (I1, wI1) is obtained from the pair (λ, χ).

Lemma 4.2. The assignment, sending (P, χ) to the element e(P, χ),
is well defined.
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Proof. Recall that wI1 : (R/I1)
n � I1/I

2
1 is a surjection. Let

µ : P � I2 be another surjection, where I2 is an ideal R of height n.
Let (I2, wI2) be obtained from the pair (µ, χ). Let J = (I1 ∩ I2) ∩ A.
By Lemma 3.4, wI1 can be lifted to Φ : Rn � I1 ∩K, where htK = n
and K + J = R.

Since K and I1 are comaximal, Φ induces a local orientation wK

of K. Clearly, (I1, wI1) + (K,wK) = 0 in E(R). Let L = K ∩ I2.
Since K + I2 = R, wK and wI2 together induce a local orientation
wL of L, it is enough to show that (L,wL) = 0 in E(R) (since
(L,wL) = (K,wK) + (I2, wI2) in E(R) and (L,wL) = 0 implies
(I1, wI1) = (I2, wI2) in E(R)).

Due to the fact that dimR = n = rankP , e(P ⊗ R, χ ⊗ R) is well
defined in E(R) [2, Section 4]. Hence, it follows that wL ⊗ R is a
global orientation of LR. Therefore, by Lemma 3.11, wL is a global
orientation of L, i.e., (L,wL) = 0 in E(R). This proves Lemma 4.2. �

Notation 4.3. We define the Euler class of (P, χ) to be e(P, χ).

Remark 4.4. From [12, Remark 2.16], since the ring extensionR→ R
is flat, there is a group homomorphism Γ : E(R) → E(R). For more
details, we refer to [16, Section 3]. Further, it is easy to see that Γ is
an injective group homomorphism.

Theorem 4.5. Let I ⊂ R be an ideal of height n such that I/I2 is
generated by n elements, and let wI : Rn → I/I2 be a local orientation
of I. If the image of (I, wI) is zero in E(R), then wI is a global
orientation of I.

Proof. Let (I, wI) = 0 in E(R). By Remark 4.4, we have (IR, wI ⊗
R) = 0 in E(R). Therefore, by Lemma 2.11, wI ⊗ R can be lifted to
a surjection from Rn � IR (as dimR = n). By Lemma 3.11, wI can
be lifted to a surjection Rn to I, and hence, wI is a global orientation
of I. �

Theorem 4.6. Let P be a projective R-module of rank n with trivial
determinant, and let I be an ideal R of height n. Let ψ : P � I/I2 be a
surjection such that ψ⊗R can be lifted to a surjection Ψ : P⊗R � IR.

Then, there exists a surjection Ψ̃ : P � I, which is a lift of ψ.
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Proof. Recall that htJ (A) ≥ 2. Let J = I ∩ J (A). Then, htJ ≥ 2.
By Lemma 3.4, ψ can be lifted to a surjection Φ : P � I ∩ I ′, where
htI ′ = n and I ′ + J = R.

Fix a trivialization χ : R
∼−→ ∧nP . Let λ : (R/(I ∩ I ′))n

∼−→
P/(I∩I ′)P be an isomorphism such that ∧n(λ) = χ⊗R/(I∩I ′). Then,
e(P, χ) = (I ∩ I ′, wI∩I′) in E(R), where wI∩I′ = (Φ ⊗ R/(I ∩ I ′))λ.
Therefore, e(P, χ) = (I, wI) + (I ′, wI′), where wI and wI′ are local
orientations of I and I ′ respectively, induced from wI∩I′ .

Since e(P ⊗R, χ⊗R) = (IR, wI ⊗R) (using Ψ), (I ′R, wI′ ⊗R) = 0
in E(R), i.e., wI′ ⊗ R can be lifted to a surjection from Rn to I ′R.
By Lemma 3.11, wI′ can be lifted to an n set of generators of I ′,
say I ′ = (f1, . . . , fn). Since I ′ + J (A)R = R and htI ′ = n, we
have dimR/I ′ = 0. Hence, applying Proposition 2.3, Lemma 2.4
and Lemma 2.5, after performing an elementary transformation on the
generators of I ′, we can assume that

(1) ht(f1, . . . , fn−1) = n− 1;
(2) dim R/(f1, . . . , fn−1) ≤ 1; and
(3) fn = 1 mod J2. �

Write C = R[Y ], K1 = (f1, . . . , fn−1, Y + fn), K2 = IC and
K3 = K1 ∩K2.

Claim 4.7. There exists a surjection ∆(Y ) : P [Y ] � K3 such that
∆(0) = Φ.

First, we show that the theorem follows from the claim. Specializing
∆(Y ) at Y = 1 − fn, we obtain a surjection ∆1 : P � I. Since
1 − fn ∈ J2 ⊂ I2, ∆1 = Φ mod I2. Therefore, ∆1 is a lift of ψ. This
proves the result.

Proof of Claim 4.7. λ induces an isomorphism δ : (R/I ′)n
∼−→ P/I ′P

such that ∧n(δ) = χ ⊗ R/I ′. Also, (Φ ⊗ R/I ′)δ = wI′ . Since
dimC/K1 = dimR/(f1, . . . , fn−1) ≤ 1, and P has trivial determinant,
by Lemma 2.1, P [Y ]/K1P [Y ] is free of rank n. Choose an isomorphism

Γ(Y ) : (C/K1)
n ∼−→ P [Y ]/K1P [Y ] such that ∧n(Γ(Y )) = χ⊗ C/K1.

Since ∧n(δ) = χ ⊗ R/I ′, Γ(0) and δ differs by an element of
SLn(R/I

′). Since dim R/I ′ = 0, SLn(R/I
′) = En(R/I

′). Therefore,
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we can alter Γ(Y ) by an element of SLn(C/K1) and assume that
Γ(0) = δ.

Let Λ(Y ) : (C/K1)
n � K1/K

2
1 be the surjection induced by the set

of generators (f1, . . . , fn−1, Y + fn) of K1. Thus, we get a surjection
∆(Y ) = Λ(Y )Γ(Y )−1 : P [Y ]/K1P [Y ] � K1/K

2
1 . Since Γ(0) = δ,

Φ ⊗ R/I ′ = wI′δ−1 and Λ(0) = wI′ , we have ∆(0) = Φ ⊗ R/I ′. By
Lemma 2.12, we get a surjection ∆ : P [Y ] � K3 such that ∆(0) = Φ.
This proves the claim. �

Lemma 4.8. Let P be a projective R-module of rank n having trivial
determinant and χ : R

∼−→ ∧nP . Let e(P, χ) = (I, wI) in E(R), where
I is an ideal R of height n. Then, there exists a surjection ∆ : P � I
such that (I, wI) is obtained from (∆, χ).

Proof. Since dimR/I ≤ 1 and P has trivial determinant, by
Lemma 2.1, P/IP is a free R/I-module of rank n. Choose an iso-

morphism λ : (R/I)n
∼−→ P/IP such that ∧n(λ) = χ ⊗ R/I. Let

γ = wIλ
−1 : P/IP � I/I2.

Due to the fact that e(P ⊗ R, χ ⊗ R) = (IR, wI ⊗ R) in E(R),
by Lemma 2.11, there exists a surjection Γ : P ⊗ R � IR such that
(IR, wI ⊗ R) is obtained from the pair (Γ, χ ⊗ R), i.e., Γ is a lift of
γ ⊗R. Applying Lemma 4.6, there exists a surjection ∆ : P � I such
that ∆ is a lift of γ. Since (∆ ⊗ R/I)λ = wI and ∧n(λ) = χ ⊗ R/I,
(I, wI) is obtained from the pair (∆, χ). This completes the proof. �

The next lemma follows from Lemma 3.4.

Lemma 4.9. Let (I, wI) ∈ E(R). Then, there exists an ideal I1 ⊂ R of
height n and a local orientation wI1 of I1 such that (I, wI)+(I1, wI1) =
0 in E(R). Further, I1 can be chosen to be comaximal with any ideal
K ⊂ R of height ≥ 2.

Corollary 4.10. Let P be a projective R-module of rank n with trivial
determinant and χ : R

∼−→ ∧n(P ). Then, e(P, χ) = 0 if and only if
P has a unimodular element. In particular, if P has a unimodular
element, then

(1) P maps onto any ideal of height n generated by n elements (4.6).
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(2) Let β : P � I be a surjection, where I is an ideal R of height n.
Then I is generated by n elements.

Proof. Let α : P � I be a surjection, where I is an ideal R of
height n. Let e(P, χ) = (I, wI) in E(R), where (I, wI) is obtained from
the pair (α, χ).

Assume that e(P, χ) = 0 in E(R). Then (I, wI) = 0 in E(R). By
Lemma 4.9, there exists an ideal I ′ of height n such that I ′+J (A) = R
and a local orientation wI′ of I ′ such that (I, wI) + (I ′, wI′) = 0 in
E(R). Since (I, wI) = 0, (I ′, wI′) = 0 in E(R). Hence, without loss of
generality, we can assume that I + J (A)R = R.

By Lemma 4.5, I is generated by n elements, say I = (f1, · · · , fn).
Since I + J (A)R = R, dimR/I = 0. Hence, applying Lemmas 2.3
and 2.4, after performing some elementary transformations on the
generators of I, we can assume that dim R/(f1, . . . , fn−1) ≤ 1.

Let C = R[Y ] and K = (f1, . . . , fn−1, Y + fn) be an ideal of C. We
have two surjections α : P � K(0)(= I) and ϕ : P [Y ]/KP [Y ] � K/K2

such that ϕ(0) = α mod K(0)2, where ϕ is the composition of two

maps, ϕ1 : P [Y ]/KP [Y ]
∼−→ (C/K)n with ∧n(ϕ1) = χ−1 ⊗ C/K and

ϕ2 : (C/K)n � K/K2 defined by (f1, . . . , fn−1, Y + fn). Applying
Lemma 2.12, with I1 = K and I2 = C, we get a surjection Φ : P [Y ] �
K. Since Φ(1− fn) : P � R, P has a unimodular element.

Conversely, we assume that P has a unimodular element. Applying
Lemma 2.11, we have (IR, wI ⊗ R) = 0 in E(R). By Lemma 3.11,
(I, wI) = 0 = e(P, χ) in E(R). �

The next result is an analogue of [1, Theorem 4.13]. The proof is
similar to the case f(T ) = T [14, Theorem 4.10].

Theorem 4.11. Let A be a regular domain of dimension d, essentially
of finite type over an infinite perfect field k and R = A[T, 1/f(T )],
where f(T ) ∈ A[T ] is monic. Let n be an integer such that 2n ≥ d+3.
Let I ⊂ R be an ideal of height n, and let P be a projective A-
module of rank n. Assume that I contains some special polynomial
relative to f(T ), say g(T ), such that g(0) = 1. Then, any surjection
ϕ : P ⊗R� I/I2 can be lifted to a surjection Φ : P ⊗R� R.
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Remark 4.12. The referee suggested that the above result can be
proved for any infinite field.

The following result is a consequence of 4.11.

Theorem 4.13. Let A be a regular domain of dimension n ≥ 3,
essentially of finite type over an infinite perfect field k. Let R =
A[T, 1/f(T )], where f(T ) ∈ A[T ] is monic. Let (I, wI) ∈ E(R).
Assume that I contains a special polynomial relative to f(T ). Then,
(I, wI) = 0.

Let A be a ring of dimension n containing an infinite field, and let P
be a projective A[T ]-module of rank n. In [5], it is proved that, if Pg(T )

has a unimodular element for some monic polynomial g(T ) ∈ A[T ], then
P has a unimodular element. We will prove the analogous result for
A[T, 1/f(T )]. The case f(T ) = T is proved in [14, Theorem 4.13].

Theorem 4.14. Let P be a projective R-module of rank n with trivial
determinant. If Pg(T ) has a unimodular element, where g(T ) is special
polynomial relative to f(T ), then P has a unimodular element.

Proof. Let χ be an orientation of P . Since Pg has a unimodular
element, e(P ⊗ R, χ ⊗ R) = 0 in E(R). By Remark 4.4, e(P, χ) = 0
in E(R). Hence, by Lemma 4.10, P has a unimodular element. This
completes the proof. �

5. Weak Euler class group of A[T, 1/f(T )]. Let A be a commuta-
tive Noetherian ring containing Q of dimension n ≥ 3 with htJ (A) ≥ 2
and R = A[T, 1/f(T )], where f(T ) ∈ A[T ] is monic. We define the nth
weak Euler class group En

0 (R) of R as follows.

Let S be the set of ideals of R with the properties:

(1) htI = n and I/I2 is generated by n elements, and
(2) Spec(R/I) is connected. Let G be a free abelian group on S.

Let I ⊂ R be an ideal of height n such that I/I2 is generated by n
elements. Then, I can be decomposed as I = I1∩· · ·∩Ir, where the Iis
are pairwise comaximal ideals of height n and Spec(R/Ii) is connected
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for each i. We have seen that such a decomposition of I is unique. By
(I), we denote the element

∑
(Ik, wIk) of G.

Let H be the subgroup of G generated by elements of the type (I),
where I ⊂ R is an ideal of height n such that I is generated by n
elements. We define En

0 (R) = G/H. In what follows, by abuse of
notation, we will write E0(R) for E

n
0 (R). Note that there is a canonical

surjective homomorphism from E(R) to E0(R) obtained by forgetting
the orientations. For the rest of this section, assuming the following
assumption, we obtain results similar to those in [14, Section 5].

Assumption 5.1. Let A be a commutative Noetherian ring containing
Q of dimension n ≥ 3 with htJ (A) ≥ 2 and R = A[T, 1/f(T )], where
f(T ) ∈ A[T ] is monic.

Notation 5.2. Let I ⊂ R be an ideal of height n, and let wI :
(R/I)n � I/I2 be a local orientation of I. Let θ ∈ GLn(R/I) be
such that det θ = g, where g ∈ R/I is unit. Then wIθ is another
orientation of I, which we denote by gwI .

Remark 5.3. If wI and w̃I are two local orientations of I, then by [2,
Lemma 2.2], it is easy to see that w̃I = gwI for some unit g ∈ R/I.

The proof of the next result is essentially contained in [2, 2.7, 2.8,
5.1].

Lemma 5.4. Let P be a projective R-module of rank n having trivial
determinant and χ : R

∼−→ ∧n(P ). Let α : P � I be a surjection, where
I ⊂ R is an ideal of height n. Let (I, wI) be obtained from (α, χ).
Let g ∈ R be a unit mod I. Then there exists a projective R-module
P1 of rank n having trivial determinant with χ1 : R

∼−→ ∧n(P1) and a
surjection β : P1 � I such that :

(1) [P ] = [P1] in K0(R);

(2) (I, gn−1wI) is obtained from (β, χ1).

The next lemma can be proved using [2, Lemmas 5.3, 5.4] and 3.11.
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Lemma 5.5. Let (I, wI) ∈ E(R) and g ∈ R/I be a unit. Then

(I, wI) = (I, g2wI) in E(R).

Adapting the proof of [4, Lemma 3.7] and using the Eisenbud-Evans
theorem (Lemma 2.5) in place of “Swan’s Bertini” theorem, the proof
of the next lemma follows.

Lemma 5.6. Let P be a stably free R-module of even rank n ≥ 4, and
let χ : R

∼−→ ∧n(P ) be a trivialization. Suppose that e(P, χ) = (I, wI)
in E(R). Then, (I, wI) = (I1, wI1) in E(R) for some ideal I1 ⊂ R of
height n generated by n elements. Moreover, I1 can be chosen to be
comaximal with any ideal of R of height 2.

The following results can be proved by adapting the proofs of [4,
3.8, 3.9, 3.10, 3.11] and Lemma 5.6.

Proposition 5.7. Let P be a projective R-module of even rank n ≥ 4
with trivial determinant. Then we have the following :

(1) Let I1, I2 ⊂ R be two comaximal ideals of height n and I3 = I1∩I2.
If any two of I1, I2, I3 are surjective images of stably free R-modules
of rank n, then so is the third.

(2) Let (I, wI) ∈ E(R). Then, (I) = 0 in E0(R) if and only if I is a
surjective image of a stably free projective R-module of rank n.

(3) e(P ) = 0 in E0(R) if and only if [P ] = [Q⊕R] in K0(R) for some
projective R-module Q of rank n− 1.

(4) Suppose that e(P ) = (I) in E0(R), where I ⊂ R is an ideal of
height n. Then there exists a projective R-module Q of rank n such
that [Q] = [P ] in K0(R) and I is a surjective image of Q.

The proof of the following result is the same as that of [8, Proposi-
tion 6.7].

Theorem 5.8. Let n be an even integer ≥ 4. Let (I, wI) ∈ E(R) belong
to the kernel of the canonical homomorphism E(R) � E0(R). Then,
there exists a stably free R-module P1 of rank n and an isomorphism
χ1 : R

∼−→ ∧nP1 such that e(P1, χ1) = (I, wI) in E(R).
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Proof. Since (I) = 0 in E0(R), by Proposition 5.7 (2), there exist
a stably free R-module P of rank n and a surjection α : P � I. Let
χ : R

∼−→ ∧n(P ) be an isomorphism. Suppose that (I, wI) is obtained
from (α, χ). By Remark 5.3, there exists a g ∈ R such that g ∈ R/I
is a unit and w̃I = gwI . By Lemma 5.4, there exists a projective R-
module P1 such that P1 is stably isomorphic to P and an isomorphism
χ : R

∼−→ ∧n(P1) and such that e(P1, χ1) = (I, gn−1wI) in E(R). Since

n is even, by Lemma 5.5, we have (I, gn−1wI) = (I, gwI) in E(R).
Hence, e(P1, χ1) = (I, wI) in E(R). �

Acknowledgments. I sincerely thank the referee for carefully going
through the manuscript and suggesting improvements in the exposition
and bringing crucial points to my attention. I wish to thank Mrinal
Kanti Das for many very useful conversations and ideas. I am grateful
to Manoj Kumar Keshari for his generous help and constant encour-
agement.

REFERENCES

1. S.M. Bhatwadekar and M.K. Keshari, A question of Nori : Projective gener-
ation of ideals, K-Theory 28 (2003), 329–351.

2. S.M. Bhatwadekar and Raja Sridharan, The Euler class group of a Noetherian

ring, Composit. Math. 122 (2000), 183–222.

3. , Projective generation of curves in polynomial extensions of an affine
domain and a question of Nori, Invent. Math. 133 (1998), 161–192.

4. , Zero cycles and the Euler class groups of smooth real affine varieties,
Invent. Math. 136 (1999), 287–322.

5. , On a question of Roitman, J. Ramanujan Math. Soc. 16 (2001),
45–61.

6. S.M. Bhatwadekar and A. Roy, Stability theorems for overrings of polynomial
rings, Invent. Math. 68 (1982), 117–127.

7. , Some theorems about projective modules over polynomial rings, J.

Algebra 86 (1984), 150–158.

8. M.K. Das, The Euler class group of a polynomial algebra, J. Algebra 264
(2003), 582–612.

9. , The Euler class group of a polynomial algebra II, J. Algebra 299
(2006), 94–114.

10. M.K. Das and M.K. Keshari, A question of Nori, Segre classes of ideals and
other applications, J. Pure Appl. Alg. 216 (2012), 2193–2203.

11. M.K. Das and Md. Ali Zinna, The Euler class group of a polynomial algebra

with coefficients in line bundle, Math. Z. 276 (2014), 757–783.



CERTAIN OVERRINGS OF A POLYNOMIAL RING 365

12. M.K. Das and Md. Ali Zinna, On invariance of the Euler class groups under
a subintegral base change, J. Algebra 398 (2014), 131-155.

13. A.M. Dhorajia and M.K. Keshari, Projective modules over overrings of
polynomial rings, J. Algebra 323 (2010), 551–559.

14. M.K. Keshari, Euler class group of a Laurent polynomial ring: Local case,

J. Algebra 308 (2007), 666–685.

15. S. Mandal and Raja Sridharan, Euler classes and complete intersections, J.

Math. Kyoto Univ. 36 (1996), 453–470.

16. S. Mandal and Yong Yang, Excision in algebraic obstruction theory, J. Pure
Appl. Alg. 216 (2012), 2159–2169.

17. N. Mohan Kumar, Some theorems on generation of ideals in affine algebras,
Comment. Math. Helv. 59 (1984), 243–252.

18. N. Mohan Kumar and M.P. Murthy, Algebraic cycles and vector bundles
over affine three-folds, Annals Math. 116 (1982), 579–591.

19. M.P. Murthy, Zero cycles and projective modules, Annals Math. 140 (1994),

405–434.

20. B. Plumstead, The conjecture of Eisenbud and Evans, Amer. J. Math. 105
(1983), 1417–1433.

21. J.P. Serre, Sur les modules projectifs, Sem. Dubreil-Pisot 14 (1960)–(1961).

Birla Institute of Technology and Science, Pilani, India
Email address: alpesh@goa.bits-pilani.ac.in


