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HILBERT REGULARITY OF Z-GRADED MODULES
OVER POLYNOMIAL RINGS

WINFRIED BRUNS, JULIO JOSÉ MOYANO-FERNÁNDEZ

AND JAN ULICZKA

ABSTRACT. Let M be a finitely generated Z-graded
module over the standard graded polynomial ring R =
K[X1, . . . , Xd] with K a field, and let HM (t) = QM (t)/
(1 − t)d be the Hilbert series of M . We introduce the
Hilbert regularity of M as the lowest possible value of
the Castelnuovo-Mumford regularity for an R-module with
Hilbert series HM . Our main result is an arithmetical
description of this invariant which connects the Hilbert
regularity of M to the smallest k such that the power
series QM (1− t)/(1− t)k has no negative coefficients. Finally,
we give an algorithm for the computation of the Hilbert
regularity and the Hilbert depth of an R-module.

1. Introduction. This note may be considered as part of a program
that aims at estimating numerical invariants of a graded module M
over a polynomial ring K[X1, . . . , Xd] (K is a field) in terms of the
Hilbert series HM (t). For the notions of commutative algebra we refer
the reader to Bruns and Herzog [2]. Well-known examples of such
estimates are the bounds of Bigatti [1] and Hulett [6] on the Betti
numbers or the bounds of Elias, Robbiano and Valla [4] on the number
of generators for ideals primary to m = (X1, . . . , Xd).

A more recent result is the upper bound on depthM (or, equiva-
lently, a lower bound on projdimM) given by the third author [11],
namely, the Hilbert depth HdepthM . It is defined as the maximum
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value of depthN for a module N with HM (t) = HN (t). We must em-
phasize that we will always consider the standard grading on R under
which all indeterminates have degree 1. As soon as this hypothesis is
dropped, matters become extremely difficult as witnessed by the paper
[9] of the second and third author.

The objective of this paper is to bound the Castelnuovo-Mumford
regularity regM in terms of HM (t). Of course, the bound is the lowest
possible value of regN for a module N with HM (t) = HN (t), which we
term Hilbert regularity HregM .

Both Hilbert depth and Hilbert regularity can be computed in terms
of Hilbert decompositions introduced by Bruns, Krattenthaler and
Uliczka [3] for arbitrary gradings; for a method computing Hilbert
depth for Zn-graded modules, see Ichim and the second author [7].
The approach by Hilbert decompositions is related to Stanley depth
and Stanley regularity, see Herzog [5] for a survey. Stanley regularity
for quotients by monomial ideals was considered by Jahan [8]. Also,
Herzog introduced Hilbert regularity via decompositions.

Write HM (t) = Q(t)/(1 − t)d with d = dimM and Q ∈ Z[t] (we
may certainly assume that M is generated in degrees ≥ 0). Then
HdepthM = d − m, where m is the smallest value of all natural
numbers j such that Q(t)/(1−t)j is a positive power series, i.e., a power
series with nonnegative coefficients [11]. Note that the Hilbert series
Q(t)/(1 − t)d has nonnegative coefficients. Hilbert regularity cannot
always be described in such a simple way, but it is closely related to
the smallest k for which Q(1− t)/(1− t)k is positive, see Theorems 4.7
and 4.10.

Our main tool for the analysis of Hilbert series is

H(t) =
k−1∑
i=0

fit
i

(1− t)n
+

ctk

(1− t)n
+

d−n−1∑
j=0

gjt
k

(1− t)d−j
,

which we call (n, k)-boundary presentations since the pairs of exponents
(u, v) occurring in the numerator and denominator of the terms ti/
(1− t)n, tk/(1− t)n, and tk/(1− t)d−j occupy the lower and the right
boundary of a rectangle in the u-v-plane whose right lower corner is
(k, n).
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Using the description of Hilbert regularity in terms of Hilbert de-
compositions, one easily sees that HregM is the smallest k for which
a (0, k)-boundary representation with nonnegative coefficients fi, c, gj
exists. (Without the requirement of nonnegativity the smallest such k
is degHM (t).) The bridge to power series expansions of Q(1−t)/(1−t)k

are given by the fact that the coefficients gj appear in such expansions.

The paper is structured as follows. We introduce Hilbert regularity
in Section 2 and discuss boundary representations in Section 3. Hilbert
regularity is then determined in Section 4, whereas Section 5 contains
an algorithm that computes Hilbert depth and Hilbert regularity si-
multaneously.

2. Hilbert regularity. Let K be a field, and let M be a finitely
generated graded module over a positively graded K-algebra R. The
Castelnuovo-Mumford regularity of M is given by

regM = max
{
i+ j : Hi

m(M)j ̸= 0
}
,

where m is the maximal ideal of R generated by the elements of positive
degree.

In the sequel, we only consider R = K[X1, . . . , Xd]. In this case, a
theorem of Eisenbud and Goto [2, 4.3.1] yields

regM = max
{
j − i : TorRi (K,M)j ̸= 0

}
,

where K is naturally identified with R/m.

Definition 2.1. The (plain) Hilbert regularity of a finitely generated
graded R-module is

HregM := min

{
r ∈ N

∣∣∣∣ there is an f.g. gr. R-module N
with HN = HM and regN = r.

}
.

Let Fi be a graded free module over K[X1, . . . , Xi], i = 1, . . . , d,
considered as an R-module via the retraction R → K[X1, . . . , Xi] that
sends Xi+1, . . . , Xd to 0. The module F0 ⊕ · · · ⊕ Fd is called a Hilbert
decomposition of M if the Hilbert functions of M and F0 ⊕ · · · ⊕ Fd

coincide. This leads us to the following:
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Definition 2.2. The decomposition Hilbert regularity of M is

decHregM = min {regN : HN (t) = HM (t)} ,

where now N ranges over direct sums F0⊕· · ·⊕Fd, i.e., over the Hilbert
decompositions of M .

It is in particular clear that decHregM ≥ HregM . As we shall
see below both numbers coincide in our setting of standard graded
polynomial rings. However, both definitions make sense in much
more generality if one replaces the K[X1, . . . , Xi] by graded retracts
of K[X1, . . . , Xd], see [3]. In the more general setting the equality is a
completely open problem, for regularity as well as for depth. In fact,
proving equality for depth in the multigraded setting would come close
to proving the Stanley conjecture for depth, see [5].

Remark 2.3.

(a) The notion of Hilbert decomposition is the same as that in [3],
except that the Fi are further decomposed into cyclic modules there.

(b) Hilbert depth and Hilbert regularity are companions in the
following sense: the Hilbert depth determines the smallest width of
a Betti table admitting the given Hilbert series, Hilbert regularity
determines the smallest such possible height. The Betti table is given
in terms of the graded Betti numbers βi,j = dimK TorRi (K,M)j by

β0,0 β1,1 · · · βp,p

...
...

...
β0,r β1,r+1 · · · βp,r+p,

where p = projdimM and r = regM .

The decomposition Hilbert regularity can be described in terms of
positive representations P = (Qd, . . . , Q0) of the Hilbert series:

HM (t) =
Qd(t)

(1− t)d
+ · · ·+ Q1(t)

(1− t)1
+Q0(t),

where each Qi is a polynomial with nonnegative coefficients. Such
polynomials will be called nonnegative. It is well known that there is
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always a Hilbert decomposition of M . This simple fact will be proved
(again) in Proposition 2.5.

Let F0 ⊕ · · · ⊕ Fd be a Hilbert decomposition of M . Then, we have

HFi = Qi(t)/(1− t)i

with a nonnegative polynomial Qi, and we immediately get a positive
representation of the Hilbert series. Conversely, given a positive repre-
sentation of the Hilbert series, we find a direct sum F0 ⊕ · · · ⊕ Fd by
choosing Fi as the free module over K[X1, · · · , Xi] that has aij basis
elements of degree i where

Qi =
∑
j

aijt
j .

Moreover, regFi = degQi, and therefore, we have

Proposition 2.4.

decHregM = min
P

max
i

degQi, P = (Qd, . . . , Q0),

where P ranges over the positive representations of HM (t).

For Hilbert depth, we can similarly give a “plain” or a “decomposi-
tion” definition: the Hilbert depth of M is defined as:

HdepthM := max

{
r ∈ N

∣∣∣∣ there is an f.g. gr. R-module N
with HN = HM and depthN = r

}
.

The Hilbert depth of M turns out to coincide with the arithmetical
invariant

p (M) := max {r ∈ N | (1− t)rHM (t) is nonnegative} ,

called the positivity of M , see [11, Theorem 3.2]. The inequality
HdepthM ≤ p(M) follows from general results on Hilbert series and
regular sequences. The converse can be deduced from the main result
of [11, Theorem 2.1], which states the existence of a representation

HM (t) =
dimM∑
j=0

Qj(t)

(1− t)j
with nonnegative Qj ∈ Z[t, t−1].
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The decomposition version, or positivity, is close to Stanley decom-
positions and Stanley depth. The same holds true for Hilbert regularity,
as we shall now show; our proof will also confirm the equivalence of the
two notions of Hilbert depth.

Proposition 2.5. There exists a Hilbert decomposition of regularity
equal to regM and depth equal to depthM .

Proof. If M is a free R-module, there is nothing to prove: M is
already in Hilbert decomposition form.

Now, suppose that M is not free. Let m be the maximal degree
of a generator of M . Then m ≤ regM , and we can choose elements
v1, . . . , vn ∈ M of degree ≤ m such that n = rankM and v1, . . . , vn are
linearly independent. (This is a well-known general position argument;
we may have to pass to an infinite field K, but that is no problem.) We
set Fn = Rv1 + · · ·+Rvn. For the sake of Hilbert series computations
we can replace M by Fn ⊕M/Fn.

Note that depthM/Fn = depthM since depthM < depthFn by
assumption on M and standard depth arguments. We obtain dimM/
Fn < n since rankM/Fn = 0 as an R-module.

For the regularity, we observe thatM/Fn is generated in degrees≤ m

and dimM/Fn < n. Since Fn is free, TorRj (K,M/Fn) = TorRj (K,M)
for j ≥ 2, and therefore, 1 is the only critical homological degree for
the regularity of M/Fn. There is a homogeneous exact sequence

TorR1 (K,Fn) = 0 −→ TorR1 (K,M) −→ TorR1 (K,M/Fn)

−→ TorR0 (K,Fn).

This is TorR0 (K,Fn)i = 0 and TorR1 (K,M)i = TorR1 (K,M/Fn)i, except
for i ≤ m. Thus, the only critical arithmetical degree is m. However,
we subtract 1 from the highest shift in homological degree 1 in order to
compute regularity, and it does not affect the inequality regM/Fn ≤
regM if TorR1 (K,M/Fn)i ̸= 0 for some i ≤ m.

On the other hand, regM ≤ max(regFn, regM/Fn), and altogether
we conclude that regM/Fn = regM .
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Let S = R/AnnM , and choose a degree 1 Noether normalization
R′ in S. We first view M/Fn as a module over R′. Then,

regR M/Fn = regS M/Fn = regR′ M/Fn,

since regularity does not change under finite graded extensions. Now,
we can identify R′ with one of the algebras K[X1, . . . , Xi] for some
i < n. Hence, we can proceed by induction considering M/Fn.

Eventually, the procedure ends when the dimension of the Noether
normalization has reached the depth of M , since the quotient of M
then attained is free over the Noether normalization, and we are in the
case of a free module. �

Remark 2.6. The proof shows that regularity may be considered as
a measure for filtrations

0 = U0 ⊂ U1 ⊂ · · · ⊂ Uq = M

in which Ui+1/Ui is always a free module over some polynomial sub-
quotient of R: there exists such a filtration in which each free module is
generated in degree ≤ regM , but there is no such a filtration in which
all base elements have smaller degree. A similar statement holds for
depth.

Corollary 2.7. Let M be a finitely generated graded R-module. Then,

HregM = decHregM.

In fact, if N is a module whose regularity attains the minimum, we
can replace it by a Hilbert decomposition as in Proposition 2.5.

A specific example follows. Let M be the first syzygy module of
the maximal ideal in the polynomial ring K[X1, . . . , X5]. It has been
shown [3, Theorem 3.5] that it has multigraded Hilbert depth 4. It
follows that the standard graded Hilbert depth is also 4, but this is
much easier to see; the Hilbert series is

(2.1)
10t2 − 10t3 + 5t4 − t5

(1− t)5
=

10t2

(1− t)4
+

t4

(1− t)4
+

4t4

(1− t)5
.

Thus, we can get away with the worst denominator (1 − t)4 for the
Hilbert depth.
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Let us look at the Hilbert regularity: the decomposition

(2.2)
10t2 − 10t3 + 5t4 − t5

(1− t)5
=

4t2

(1− t)5
+

3t2

(1− t)4
+

2t2

(1− t)3
+

t2

(1− t)2

shows that HregM = 2. It cannot be smaller sinceM has no generators
in degree < 2. On the other hand, the decomposition (2.2) is the
only one with regularity 2, since the powers of the series 1/(1− t) are
linearly independent, and it comes from a filtration as in the proof of
Proposition 2.5. (In this example, HregM could be determined more
easily since HregM ≥ 2 and regM = 2.) This shows that, in general,
optimization of depth and regularity cannot simultaneously occur.

More generally, if M is a module with all generators in degree r and
of regularity r, then HregM = regM .

However, in general, Hilbert regularity is smaller than regularity.
Let N be the sum of the modules in the Hilbert decomposition (2.1).
Then HregN < regN holds, as (2.2) shows.

A simple lower bound is as follows.

Proposition 2.8. Let M be a finitely generated graded R-module.
Then

HregM ≥ degHM (t).

In fact, for j > HregM , the Hilbert polynomial and the Hilbert
function ofM coincide, and the smallest number k such that the Hilbert
polynomial and the Hilbert function coincide in all degrees j > k is
k = degHM (t), the degree of HM as a rational function; see [2, 4.1.12].

3. Boundary presentation. In this section, we introduce the fun-
damental tool for examination of the Hilbert regularity.

Definition 3.1. Let H(t) = Q(t)/(1− t)d. For integers 0 ≤ n ≤ d and
k ≥ 0, an (n, k)-boundary presentation of H is a decomposition of H
in the form
(3.1)

H(t) =
k−1∑
i=0

fit
i

(1− t)n
+

ctk

(1− t)n
+

d−n−1∑
j=0

gjt
k

(1− t)d−j
with fi, c, gj ∈ Z.
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If c = 0, the boundary presentation is called corner-free.

Note that Q(t)/(1 − t)d may be viewed as a (d, degQ)-boundary
presentation of H. If degQ ≤ d, there is also a (d−degQ, 0)-boundary
presentation: let Q(1− t) =

∑
i q̃it

i, then

H(t) =
Q(t)

(1− t)d
=

∑degQ
i=0 q̃i(1− t)i

(1− t)d
=

degQ∑
i=0

q̃i
(1− t)d−i

.

In the sequel, the polynomial Q(1 − t) will be needed several times;
therefore, we introduce the notation

Q̃(t) := Q(1− t)

for an arbitrary Q ∈ Z[t].

Example 3.2. Let

H(t) =
1− 2t+ 3t2 − t3

(1− t)3
.

A (1, 3)-boundary presentation of H is given by

H(t) =
1

1− t
+

2t2

1− t
+

2t3

(1− t)2
+

t3

(1− t)3
.

The term “boundary presentation” is motivated by visualization of
a decomposition of a Hilbert series. A decomposition

Q(t)

(1− t)d
=

d∑
i=0

∑
j≥0

aij
tj

(1− t)i

can be depicted as a square grid with the box at position (i, j) labeled
by aij .

In the case of an (n, k)-boundary presentation the nonzero labels
in this grid form the bottom and the right edges of a rectangle with
d − n + 1 rows and k + 1 columns. The coefficient in the “corner”
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Figure 1. Two boundary presentations of (1− 2t+ 3t2 − t3)/(1− t)3.

(d− n, k) plays a dual role since it belongs to both edges; therefore, it
is denoted by an extra letter.

Next, we deduce a description for the coefficients in a boundary
presentation.

Lemma 3.3. Let H(t) = Q(t)/(1− t)d be a series with (n, k)-boundary
presentation (3.1). Moreover, let

Q(t)

(1− t)d−n
=

∞∑
i=0

ait
i and

Q̃(t)

(1− t)k
=

∞∑
i=0

bit
i.

Then

fi = ai for i = 0, . . . , k − 1,

c = ak −
d−n−1∑
i=0

bi = bd−n −
k−1∑
i=0

ai,

gj = bj for j = 0, . . . , d− n− 1.

Proof. Multiplication of (3.1) by (1− t)n yields

Q(t)

(1− t)d−n
=

k−1∑
i=0

fit
i + ctk +

d−n−1∑
j=0

gjt
k

(1− t)d−n−j
.

Hence, the fi agree with the first k coefficients of the power series∑∞
i=0 ait

i, while ak = c+
∑d−n−1

j=0 gj .
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Figure 2.

Next, we look at (3.1) with t substituted by 1− t:

Q(1− t)

td
=

k−1∑
i=0

fi(1− t)i

tn
+

c(1− t)k

tn
+

d−n−1∑
j=0

gj(1− t)k

td−j
.

This time, multiply by td/(1− t)k and obtain

Q̃(t)

(1− t)k
=

Q(1− t)

(1− t)k
=

k−1∑
i=0

fit
d−n

(1− t)k−i
+ ctd−n +

d−n−1∑
j=0

gjt
j ;

hence, gj = bj for j = 0, . . . , d− n− 1 and c = bd−n −
∑k−1

i=0 fi. �

Since the coefficients in the power series expansion of a rational
function are unique, Lemma 3.3 has an immediate consequence:

Corollary 3.4. The coefficients in an (n, k)-boundary presentation of
H(t) = Q(t)/(1− t)d are uniquely determined.

In the rest of this section we will make extensive use of the relation

(3.2)
ti

(1− t)j
=

ti+1

(1− t)j
+

ti

(1− t)j−1
, j > 1.

Repeated application of this relation allows us to transform an (n, k)-
boundary presentation of a rational function H into an (n − 1, k),
respectively, (n, k + 1)-boundary presentation. We give a formula for
the coefficients of the new boundary presentation in terms of the old
coefficients next.
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Lemma 3.5. Let

H(t) =
k−1∑
i=0

fit
i

(1− t)n
+

ctk

(1− t)n
+

d−n−1∑
j=0

gjt
k

(1− t)d−j

be an (n, k)-boundary presentation. Then, there exists a corner-free
(n, k+1)-boundary presentation; its coefficients f (k+1), g(k+1) are given
by

f
(k+1)
i =

{
fi for i = 0, . . . , k − 1

c+
∑d−n−1

r=0 gr for i = k

g
(k+1)
j =

j∑
r=0

gr for j = 0, . . . , d− n− 1.

If n > 0, then there is also a corner-free (n−1, k)-boundary presentation
with coefficients f (n−1), g(n−1) given by

f
(n−1)
i =

i∑
r=0

fr for i = 0, . . . , k − 1

g
(n−1)
j =

{
gj for j = 0, . . . , d− n− 1

c+
∑k−1

r=0 fr for j = d− n.

In particular, an expansion of a corner-free boundary presentation leads
to a boundary presentation with the entries next to the corner being
equal.

Corollary 3.6. Let

H(t) =
k−1∑
i=0

fit
i

(1− t)n
+

d−n−1∑
j=0

gjt
k

(1− t)d−j

be a corner-free (n, k)-boundary presentation. If k > 0, then there exists
an (n, k−1)-boundary presentation; its coefficients f (k−1), c(k−1), g(k−1)

are given by

f
(k−1)
i = fi for i = 0, . . . , k − 2,

c(k−1) = fk−1 − gd−n−1,
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g
(k−1)
j =

{
g0 for j = 0

gj − gj−1 for j = 1, . . . , d− n− 1.

If n < d, then there is also an (n + 1, k)-boundary presentation with
coefficients f (n+1), c(n+1), g(n+1) given by

f
(n+1)
i =

{
f0 for i = 0

fi − fi−1 for i = 1, . . . , k − 1,

c(n+1) = gd−n−1 − fk−1,

g
(n+1)
j = gj for j = 0, . . . , d− n− 2.

Corollary 3.7. If a rational function H admits an (n, k)-boundary
presentation, then there is also an (n′, k′)-boundary presentation for
every pair (n′, k′) with n′ ≤ n, k′ ≥ k; for (n′, k′) ̸= (n, k), this
presentation is corner-free. Moreover, the coefficients of this (n′, k′)-
boundary presentation are nonnegative, provided that the same holds
for the (n, k)-boundary presentation.

In particular, there exists an (n, k)-boundary presentation of the
series Q(t)/(1 − t)d for every k ≥ degQ and n = 0, . . . , d − 1.
Note that, in these cases, the formula of Lemma 3.5 provides an
alternative proof for the equality of the coefficients fi and the first
coefficients of Q(t)/(1− t)d−n. Analogously, if d ≥ degQ, then the
(d − degQ, 0)-boundary presentation can be expanded to an (n, k)-
boundary presentation for n = 0, . . . , d − degQ and k ≥ 1, also
confirming the description of the gj .

Lemma 3.8. An (n, k)-boundary presentation of a rational function
H(t) = Q(t)/(1− t)d exists if and only if k − n ≥ degH = degQ− d.
It is corner-free if and only if k−n > degH; otherwise the entry in the
corner is given by (−1)d−naq, where aq denotes the leading coefficient
of Q.

Proof. An (n, k)-boundary presentation with n, k > 0 can be trans-
formed into an (n − 1, k − 1)-boundary presentation, as the relation
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(3.2) implies:

k−1∑
i=0

fit
i

(1− t)n
+

ctk

(1− t)n
+

d−n−1∑
j=0

gjt
k

(1− t)d−j

=
k−2∑
i=0

(∑i
r=0 fr

)
ti

(1− t)n−1
− ctk−1

(1− t)n−1
+

d−n−1∑
j=0

gjt
k−1

(1− t)d−j

+

(
c− gd−n−1 +

∑k−1
r=0 fr

)
tk−1

(1− t)n
.

Hence, the existence of a non-corner-free (n, k)-boundary presentation
of H for (n, k) with k−n = degQ−n and the assertion on the entry in
its corner follow by induction on d − n beginning with the (d, degQ)-
boundary presentation of H. The remainder is clear since an (n, k)-
boundary presentation which is not corner-free cannot be obtained by
expanding some (n′, k′)-boundary presentation with n′ ≥ n, k′ ≤ k. �

Since any (n, k)-boundary presentation with k > degQ can be
obtained as an expansion of the (d, degQ)-boundary presentation of
Q(t)/(1− t)d, we obtain a second description of the coefficients gj :

Proposition 3.9. Let

H(t) =
Q(t)

(1− t)d
=

k−1∑
i=0

fit
i

(1− t)n
+

d−n−1∑
j=0

g
(k)
j tk

(1− t)d−j

with k > d. Then, the coefficient g
(k)
j for j = 1, . . . , d − n − 1

agrees with the (k − 1)th coefficient of the power series expansion of

Q(t)/(1 − t)j+1. In particular, for Q(t)/(1 − t)k =
∑

n≥0 a
(k)
n tn and

Q̃(t)/(1− t)k =
∑

n≥0 b
(k)
n tn, we have

b
(k)
j = a

(j+1)
k−1 for k ≥ degQ and j = 0, . . . , d− 1.

Proof. Let 0 ≤ j ≤ d − 1. We consider the (d − 1 − j, k)-boundary
presentation of H with k > degQ. Since this can be viewed as an
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expansion of the corner-free (d,deg(Q) + 1)-boundary presentation,

Q(t)

(1− t)d
+

0 · tdeg(Q)+1

(1− t)d
,

we have f
(d−1−j)
k−1 = g

(k)
j ; thus, by Lemma 3.3, the coefficient g

(k)
j agrees

with the (k − 1)th coefficient of

Q(t)

(1− t)d−(d−1−j)
=

Q(t)

(1− t)j+1
.

Expanding the (d−1−j, k)-boundary presentation downwards does not

affect g
(k)
j ; therefore, this equality is also valid for any (n, k)-boundary

presentation with n ≤ d− 1− j. The second part follows immediately
from Lemma 3.3. �

4. Arithmetical characterization of the Hilbert regularity.
In this section, we continue our investigation of the Hilbert regularity
so we restrict our attention to nonnegative series H(t) = Q(t)/(1− t)d.
As mentioned above, such a series admits a Hilbert decomposition. In
particular, H is the Hilbert series of some finitely generated graded
R-module M ; we set HdepthH := HdepthM and HregH := HregM .
It is easy to see that H also admits a boundary presentation with
nonnegative coefficients. In the sequel, such a boundary presentation
will be called nonnegative for short.

Lemma 4.1. Let

H(t) =

d∑
i=n

Qi(t)

(1− t)i

be a Hilbert decomposition, and let k = maxi degQi. Then, there exists
a nonnegative (n, k)-boundary presentation of H.

Proof. Obviously, a Hilbert decomposition can be rewritten as

(4.1)
d∑

i=n

Qi(t)

(1− t)i
=

d∑
j=n

k∑
i=0

aijt
i

(1− t)j
with aij ∈ N.
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It is sufficient to show that this decomposition can be turned into one
of the form

p∑
j=n

k∑
i=0

bijt
i

(1− t)j
+

d∑
j=p+1

bkjt
k

(1− t)j
with bij > 0

for any p with n ≤ p ≤ d. Repeated application of relation (3.2) yields

k∑
i=0

bijt
i

(1− t)j
=

k−1∑
i=0

(
∑i

r=0 brj)t
i

(1− t)j−1
+

(
∑k

r=0 brj)t
k

(1− t)j
.

Since the coefficients on the right-hand side are still nonnegative, the
claim follows by reverse induction on p ≤ d, starting with the vacuous
case p = d. �

Corollary 4.2.

(a) Let H(t) = Q(t)/(1 − t)d be a nonnegative series. Then, H
admits a nonnegative (0,HregH)-boundary presentation as well as a
nonnegative (HdepthH, k)-boundary presentation with suitable k ≥ 0.

(b) If H admits a non-corner-free (0, k)-boundary presentation, then
it holds that HregH ≥ k.

Proof. Statement (a) is clear from the definition of HregH, respec-
tively, HdepthH. Part (b) follows from (a) and the fact that a non
corner-free boundary presentation cannot be obtained by expansion of
another boundary presentation. �

Remark 4.3. By Lemma 3.8, a (0, k)-boundary presentation of H
exists if and only if k ≥ degH; together with Corollary 4.2 (a), this
yields another proof of Proposition 2.8.

Corollary 4.2 implies that, for computations of Hilbert regularity
(and also of Hilbert depth), we may exclusively consider boundary
presentations. This observation leads to an estimate for HregM in
the flavor of the equality p(M) = HdepthM . In order to formulate
this inequality we need the following notion:
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Definition 4.4. For any Q ∈ Z[t] and k ∈ N, let Q(t)/(1 − t)k =∑
n≥0 a

(k)
n tn. For any d ∈ N, we set

δd(Q) := min
{
k ∈ N | a(k)0 , . . . , a

(k)
d−1 nonnegative

}
and

δ(Q) := min
{
k ∈ N | Q(t)

(1− t)k
nonnegative

}
.

Note that δd(Q) is finite if and only if the lowest nonvanishing
coefficient of Q is nonnegative, as one easily sees by induction on d.
By [11, Theorem 4.7], δ(Q) is finite if and only if Q, viewed as a
real-valued function of one variable, takes positive values in the open
interval (0, 1).

For a finitely generated graded R-module M with Hilbert series

HM (t) =
QM (t)

(1− t)dimM
,

the equality HdepthM = p(M) implies

δ(QM ) = dimM −HdepthM ;

thus, according to [2, Proposition 1.5.15] and the Auslander-Buchsbaum
theorem, δ(QM ) could be called HprojdimM , the Hilbert projective di-
mension. Note that HprojdimM depends only upon QM but not upon
dimM .

The above-mentioned estimate for the Hilbert regularity reads as
follows:

Proposition 4.5. Let H(t) = Q(t)/(1 − t)d be a nonnegative series.
Then

HregH ≥ δd(Q̃).

Proof. Since Q̃(0) = Q(1) > 0, δd(Q̃) is finite. Let HregH = k.
Then there exists a (0, k)-boundary presentation

H(t) =
k−1∑
i=0

fit
i + ctk +

d−1∑
j=0

gjt
k

(1− t)d−j
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with nonnegative coefficients. By Lemma 3.3, the first d coefficients

of Q̃(t)/(1 − t)k agree with the coefficients gj , and therefore, they are

nonnegative. Hence, δd(Q̃) ≤ k = HregH. �

Proposition 4.6. Under the hypothesis of Proposition 4.5, in addition,

we have HregH ≥ δ(Q̃).

Proof. An (n, k)-boundary presentation of the series Q(t)/(1 − t)d

induces an (n+m, k)-boundary presentation of Q(t)/(1−t)d+m, m ∈ N,
with the same coefficients. The (0,HregH)-boundary presentation of
Q(t)/(1 − t)d has nonnegative coefficients; hence, the same holds for
the (m,HregH)-boundary presentation of Q(t)/(1 − t)d+m, and, by
Corollary 3.7, the (0,HregH)-boundary presentation ofQ(t)/(1−t)d+m

is also nonnegative. This implies δd+m(Q̃) ≤ HregH for all m ∈ N, and
thus, δ(Q̃) ≤ HregH, as desired. �

Theorem 4.7. Under the hypothesis of Proposition 4.5 and the addi-

tional assumption of either (i) δd(Q̃) ≥ degQ or (ii) degQ ≤ d, we
have

HregH = δd(Q̃) = δ(Q̃).

Proof. In both cases, expansion of the (d,degQ), respectively, the

(d−degQ, 0)-boundary presentation, yields a (0, δd(Q̃))-boundary pre-
sentation of H, which is nonnegative by the nonnegativity of H and

the definition of δd(Q̃). Hence,

δd(Q̃) ≥ HregH ≥ δ(Q̃) ≥ δd(Q̃). �

The next example shows that, contrary to HdepthM ≤ p(M) in case

of the Hilbert depth, the inequality HregH ≥ δd(Q̃) may be strict.

Example 4.8. For

H(t) =
1− t+ 2t2 − 2t3 + t4

(1− t)2
,
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we obtain Q̃(t) = Q(t). Therefore,

Q̃(t)

1− t
=

Q(t)

1− t
= 1 + 0t+ 2t2 + 0t3 +

∑
n≥4

tn

implies δ2(Q̃) = 1 = HprojdimH. The (0, 2)-boundary presentation of
H is given by

H(t) = 1 + t+ t2 +
t2

1− t
+

t2

(1− t)2
.

Since this is not corner-free, Lemma 3.8 implies HregH = 2 > 1 =

δ2(Q̃). In particular, the Hilbert regularity of Q(t)/(1− t)d depends on
d: for

H ′(t) =
1− t+ 2t2 − 2t3 + t4

(1− t)d

with d ≥ 4, we have HregH ′ = 1 by Theorem 4.7.

Example 4.8 also explains that non-negativity of Q̃(t)/(1 − t)k for
some k ∈ N does not ensure HregH ≤ k. The decomposition

Q̃(t)

(1− t)k
=

k∑
i=0

Q̃i(t)

(1− t)i

with nonnegative Q̃i ∈ Z[t] according to [11, Theorem 2.1] can be
turned into one of

Q(t)

(1− t)max{deg Q̃i}

by exchanging t and 1− t, but, if d < max{deg Q̃i}, this does not yield
a decomposition of Q(t)/(1− t)d.

Due to the difficulty illustrated by the previous example the general
description of Hilbert regularity is less straightforward than that of

Hilbert depth. In the remaining case of degQ > d, δ(Q̃), the (0, degQ)-
boundary presentation is nonnegative, and hence, HregH ≤ degQ. If
HregH < degQ, then the (0, degQ)-boundary presentation can be
reduced to a nonnegative (0, k)-boundary presentation with smaller k.
Such a reduction may be performed in steps; therefore, we investigate
whether a reduction from k to k − 1 is possible in what follows.
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Proposition 4.9. Let

H(t) =
k−1∑
i=0

fit
i

(1− t)n
+

ctk

(1− t)n
+

d−n−1∑
j=0

gjt
k

(1− t)d−j

with nonnegative coefficients. Then,

HregH ≤ k − 1 ⇐⇒


c = 0

fk−1 ≥ gd−n−1

gj+1 ≥ gj for j = 0, . . . , d− n− 2.

Proof.

⇒. Let HregH ≤ k− 1. Then there exists a boundary presentation

(4.2) H(t) =
k−2∑
i=0

f ′
it

i

(1− t)n
+

c′tk−1

(1− t)n
+

d−n−1∑
j=0

g′jt
k−1

(1− t)d−j

with nonnegative coefficients. By Lemma 3.5, this presentation may be
transformed into

H(t) =
k−2∑
i=0

fit
i

(1− t)n
+

(c′ +
∑d−n−1

j=0 g′j)t
k−1

(1− t)n
+

d−n−1∑
j=0

(
∑j

i=0 g
′
i)t

k

(1− t)d−j
,

and, by uniqueness of the (n, k)-boundary presentation, we have

fk−1 = c′ +
d−n−1∑
j=0

g′j ≥
d−n−1∑
j=0

g′j = gd−n−1.

Necessity of the other conditions was already noted in Corollary 4.2 (b)
and Proposition 4.5.

⇐. If the conditions on the right are satisfied then Corollary 3.6
yields a nonnegative (0, k − 1)-boundary presentation (4.2). �

The (0,HregH)-boundary presentation can be achieved by iterated
reduction steps starting from the (0, degQ)-boundary presentation.
The reduction continues as long as the conditions of Proposition 4.9
remain valid. Hence, it ends in one of the three cases illustrated by the
diagrams in Figure 3.
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Figure 3.

Construction of the (0,HregH)-boundary presentation may be de-
scribed as follows. Beginning with k = degQ, we consider the (0, k)-

boundary presentation. As long as k > δd(Q̃) and fk−1 = g
(k)
d−n−1, there

is also a nonnegative and corner free (0, k − 1)-boundary presentation;

thus, we continue with k − 1 instead of k. As soon as k = δd(Q̃) or

fk−1 ̸= g
(k)
d−n−1, we have reached the minimal k for which a nonnega-

tive and corner-free (0, k)-boundary presentation exists. If k = δd(Q̃)

or fk−1 < g
(k)
d−n−1, no further reduction is possible; hence, HregH = k.

However, if k > δd(Q̃) and fk−1 ≥ g
(k)
d−n−1, one last reduction step,

leading to a non corner-free boundary presentation, may be performed;
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thus, HregH = k − 1 in this case. Note that, here, Lemma 3.8 implies
HregH = degH.

Theorem 4.10. Let H(t) = Q(t)/(1 − t)d =
∑

n≥0 ant
n be a non-

negative series with d > 0, and let Q̃(t)/(1 − t)j =
∑

n≥0 b
(j)
n tn for

j ∈ N.

(i) If degQ ≤ d or δd(Q̃) ≥ degQ, then HregH = δd(Q̃).
(ii) Otherwise, with

k := min{i | δd(Q̃) ≤ i ≤ degQ and

aj = b
(j+1)
d−1 for all j = i, . . . , degQ},

we have

HregH =

{
k if k = δd(Q̃) ∨ ak−1 < b

(k)
d−1

k − 1 if k > δd(Q̃) ∧ ak−1 > b
(k)
d−1.

Proof. The cases in (i) were already treated in Theorem 4.7.

Part (ii) follows from the discussion preceding this theorem; the
number k, which is well defined by Proposition 3.9, is merely the width
of the minimal nonnegative and corner-free boundary presentation. �

The closing result of this section is the analogue of Proposition 4.6
for δ(Q).

Lemma 4.11. Let H(t) = Q(t)/(1− t)d be nonnegative and

e := max{δd(Q̃), deg (Q) + 1}.

Then, δ(Q) = δe(Q).

Proof. The (d−δe(Q), δe(Q))-boundary presentation of the series H

is nonnegative by Lemma 3.3, and the definition of δd(Q̃) and δe(Q).
Hence the (d − δe(Q), δe+m(Q))-boundary presentation with m ≥ 0
is nonnegative as well, but this implies that δe+m(Q) ≤ δe(Q) for all
m ∈ N. Therefore, δ(Q) = δe(Q). �
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5. Computation of Hilbert depth and Hilbert regularity.
The aim of this section is an algorithm for computing the Hilbert
depth and Hilbert regularity of a module with given Hilbert series
H(t) = Q(t)/(1 − t)d, see Algorithm 5.1. An algorithm solely for the
Hilbert depth was given by Popescu [10].

The correctness of Algorithm 5.1 follows immediately from the
previous results. The output could easily be extended by boundary
presentations realizing Hdepth or Hreg since the required coefficients
are computed in the course; for example, a nonnegative boundary
presentation of the minimal height HdepthH is given by

H(t) =

e−1∑
i=0

a
(h)
i ti

(1− t)h
+



d−h−1∑
j=0

a
(j+1)
e−1 te

(1− t)d−j
for e = degQ > δd(Q̃)

d−h−1∑
j=0

b
(δd(Q̃))
j te

(1− t)d−j
for e = δd(Q̃) ≥ degQ,

with a and b used as in the description of the algorithm, and h :=
HprojdimH.

For completeness, we give an upper bound for the number of rep-
etitions of the loop in the second step of Algorithm 5.1. The idea is

to replace Q̃(t) =
∑

i q̃it
i with a polynomial q̃0 + rt such that, for all

n, i ∈ N, the coefficient c
(k)
n of (q̃0 + rt)/(1− t)k is not greater than the

coefficient b
(k)
n of Q̃(t)/(1− t)k. Such a polynomial may be obtained by

repeated application of the map

f =
m∑
i=0

hit
i 7−→

m−2∑
i=0

hit
i +min{hm−1, hm−1 + hm}tm−1

to the polynomial Q̃. Since

q̃0 + rt

(1− t)k
=

∑
n≥0

[
q̃0

(
n+ k − 1

n− 1

)
+ r

(
n+ k − 2

n− 2

)]
tn

=
∑
n≥0

[∏k−2
j=0 (n+ j)

k!
(q̃0(n+ k − 1) + r(n− 1))

]
tn,
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Algorithm 5.1: Computing Hilbert depth and Hilbert regularity.

Input: Q ∈ Z[t], d ∈ Z with H(t) = Q(t)/(1− t)d nonnegative

1 Q̃(t) := Q(1− t);

2 - - Determine δd(Q̃):

k := −1;

repeat
k := k + 1;

Compute the first d coefficients b
(k)
0 , . . . , b

(k)
d−1 of Q̃(t)/(1− t)k;

until b
(k)
0 , . . . , b

(k)
d−1 nonnegative;

δd(Q̃) = k;

3 - - Determine HprojdimH:

e := max{δd(Q̃),deg(Q) + 1};
k := −1;

repeat
k := k + 1;

Compute the first e coefficients a
(k)
0 , . . . , a

(k)
e−1 of Q(t)/(1− t)k;

until a
(k)
0 , . . . , a

(k)
e−1 nonnegative;

HprojdimH = k;

4 HdepthH = d−HprojdimH;

5 - - Determine HregH:

if degQ ≤ d or δd(Q̃) ≥ degQ then

HregH = δd(Q̃);

else
Compute the ith coefficient ai of H for i = 0, . . . , degQ;

Compute the (d− 1)th coefficient b
(j)
d−1 of

Q̃(t)

(1− t)j
for

j = δd(Q̃), . . . , degQ;

k := min{i | δd(Q̃) ≤ i ≤ degQ and aj = b
(j+1)
d−1 for all j =

= i, . . . , degQ};
if ak−1 ≥ b

(k)
d−1 and k > δd(Q̃) then

HregH = k − 1;

else
HregH = k;

end

end
Output: HdepthH,HregH
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we want to determine the least k such that

(5.1) q̃0(n+ k − 1) + r(n− 1) = (q̃0 + r)(n− 1) + kq̃0 ≥ 0

holds for 0 ≤ n ≤ d − 1. Without loss of generality, we may assume
that q + r < 0. Then, (5.1) is equivalent to

n ≤ 1− q̃0k

q̃0 + r
.

This inequality must be valid, in particular, for n = d − 1, and thus,
for

k ≥ (2− d)(q̃0 + r)

q̃0
,

the first d coefficients of (q̃0 + rt)/(1 − t)k and a fortiori those of

Q̃(t)/(1− t)k are nonnegative.

Example 5.1. Let H(t) =
2− 5t+ t2 + 4t3

(1− t)7
. Then Q̃(t) = Q(1− t) =

2− 9t+ 13t2 − 4t3, and we find δ7(Q̃) = 7 since

Q̃(t)

(1− t)5
= 2 + t− 2t2 − 4t3 + 0t4 + 17t5 + 56t6 + · · ·

Q̃(t)

(1− t)6
= 2 + 3t+ t2 − 3t3 − 3t4 + 14t5 + 70t6 + · · ·

Q̃(t)

(1− t)7
= 2 + 5t+ 6t2 + 3t3 + 0t4 + 14t5 + 84t6 + · · · .

In order to determine the Hilbert depth we first compute the δ7(Q̃) = 7
coefficients of Q(t)/(1− t)k for k ≥ 0. Since

Q(t)

(1− t)5
= 2 + 5t+ 6t2 + 4t3 + 0t4 − 3t5 + 0t6 + · · ·

Q(t)

(1− t)6
= 2 + 7t+ 13t2 + 17t3 + 17t4 + 14t5 + 14t6 + · · · ,

we have HdepthH = 7 − 6 = 1. The Hilbert regularity requires no
further computations since degQ = 3 < 7 = d, and thus, HregH =
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δ7(Q̃) = 7. Moreover, in this case, the boundary presentation

H(t) =
2 + 7t+ 13t2 + 17t3 + 17t4 + 14t5 + 14t6

1− t

+
14t7

(1− t)2
+

3t7

(1− t)4
+

6t7

(1− t)5
+

5t7

(1− t)6
+

2t7

(1− t)7

simultaneously has the minimal height HdepthH and the minimal
width HregH.

Finally, we give two examples illustrating the remaining cases occur-
ring in Algorithm 5.1.

Example 5.2. Let H(t) =
1− t+ t3

(1− t)2
. Then, Q̃(t) = 1− 2t+ 3t2 − t3

and δ2(Q̃) = 2. Since degQ exceeds δd(Q̃) as well as d, the final loop
of our algorithm applies. By

Q(t)

(1− t)2
= 1 + t+ t2 + 2t3 + · · ·

Q̃(t)

(1− t)2
= 1 + 0t+ · · ·

Q̃(t)

(1− t)3
= 1 + t+ · · · ,

we find k = 2 = δ2(Q̃). Hence, HregH = 2.

This example confirms that HregH = δd(Q̃) may also occur if

degQ > d, δd(Q̃).

Example 5.3. For H(t) =
1− t+ 2t2 − t3

(1− t)2
, we have δ2(Q̃) = 1, and

the calculations may be summarized by

The third subcase of HregH > δd(Q̃), which leads to a non corner-
free (0,HregH)-boundary presentation, was already shown in Exam-
ple 4.8.
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Figure 4. H(t) = (1− t+ t3)/(1− t)2.
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Figure 5. H(t) = (1− t+ 2t2 − t3)/(1− t)2.
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