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DIFFERENTIAL OPERATORS ON
MODULAR EXTENSIONS

MATTHEW WECHTER

ABSTRACT. Given a finite purely inseparable extension
of positive characteristic, this paper determines necessary
and sufficient conditions on the ring of relative differential
operators to establish whether the extension is modular.

1. Introduction. Classical Galois theory is the study of finite sep-
arable field extensions and their relation to the group of relative auto-
morphisms of a field extension. If P/k is a field extension, there exists
a unique maximal intermediate subfield Σ such that Σ/k is separable
[6, Section 1, IV]. Σ is called the separable closure of k in P . Classi-
cal Galois theory provides information about Σ/k when Σ/k is a finite
extension but no information about the purely inseparable extension
P/Σ.

The lattice of subfields of a finite purely inseparable extension
is often very large, and we will restrict our attention to a certain
type of purely inseparable extension. A finite field extension L/K is
called modular if there exists a subset {x1, . . . , xn} such that L ∼=
K(x1) ⊗K · · · ⊗K K(xn). A careful study of modular extensions was
continued by Sweedler [10], and Chase [2] proved the existence of a
Galois correspondence between modular extensions and special sub-
group schemes of the automorphism scheme of a purely inseparable
extension.

We seek to describe modular extensions by studying the endomor-
phisms of the field extension. It is a consequence of the Jacobson-
Bourbaki theorem [6, page 22, Theorem 2] that there is a one-to-one
correspondence between intermediate subfields of a finite purely insep-
arable extension L/K and certain subalgebras of the ring of K-linear
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endomorphisms of the extension. In fact, unlike the classical Galois the-
ory regarding intermediate normal subextensions of a field extension,
the Jacobson-Bourbaki theorem gives a Galois correspondence between
intermediate subfields and subalgebras of the algebra of endomorphisms
in which the type of subfield or field extension is irrelevant.

For any ring extension B/A, define DiffAB to be the ring of dif-
ferential operators of B which are linear with respect to A. Com-
bining the Jacobson-Bourbaki theorem with the well-known fact that
EndKL = DiffKL whenever L/K is finite purely inseparable, one can
ask whether the subalgebras DiffK′L ⊂ DiffKL which correspond to
intermediate subfields L/K ′/K with L/K ′ modular can be character-
ized?

Setting charK = p > 0, in this paper we define Lpi

-subspaces of
the L-vector space DiffKL, denoted by AL/K, i ⊂ DiffKL, which are
characterized by the action of the differential operators on the subfields

Lpi ⊂ L. Using these objects, the question above is answered by the
main theorem:

Theorem 1.1. Let L/K be a finite purely inseparable extension of
exponent e, and let charK = p > 0. Then L/K is modular if and
only if, for all 0 < i ≤ e − 1, the multiplication homomorphism

L⊗Lpi AL/K, i → Diff pi

K L is a surjection, where Diff pi

K L is the space of

differential operators of L/K of order ≤ pi. That is, for each i, AL/K, i

spans Diff pi

K L as an L-subspace.

It follows directly from this theorem that we can use these subsets
to determine the maximal modular subextension of a finite purely
inseparable extension:

Corollary 1.2. Let L/K be as in the theorem. Let D be the L-
subalgebra of DiffKL generated by Ai. Then D is the largest subalgebra
of DiffKL such that L/LD is a modular extension.

The first section of this paper will provide a simple introduction to
differential operators on purely inseparable extensions, while the second
section will state properties of generators for such extensions. The third
section contains the main theorem and corollary, as well as a technical
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lemma that may have future use to provide explicit constructions of
differential operators on field extensions.

2. Differential operators on finite purely inseparable exten-
sions. To study the endomorphisms of a finite purely inseparable ex-
tension, it suffices to study the ring of differential operators of the
extension.

Proposition 2.1. Let L/K be a finite purely inseparable extension,
and suppose K has characteristic p > 0. Then DiffKL = EndKL.

Proof. Since L/K is a finite extension, the degree of the extension
is a power of p. Hence, there exists an e ∈ Z such that Lpe ⊆ K. Thus,
if I is the ideal of the diagonal of L/K, then Ip

e

= 0 ∈ L ⊗K L and

(L ⊗K L)/Ip
e ∼= L ⊗K L. Since there is a one-to-one correspondence

between elements of EndKL and HomL(L ⊗K L, L), where L acts on
L⊗KL on the left, then every endomorphism in EndKL is a differential
operator of order ≤ pe by the definition of a differential operator (cf.,
[4, subsection 16.8]). �

Galois correspondences for purely inseparable extensions were first
studied by Jacobson, and he showed a close relationship between ex-
ponent 1 extensions and their modules of derivations. This correspon-
dence follows directly from the Jacobson-Bourbaki theorem and cannot
be extended to include extensions of higher exponent. Sweedler’s study
of modular extensions relates Hasse-Schmidt derivations (or higher
derivations) [5] to certain modular subextensions and provides mo-
tivation for studying the higher order differential operators on purely
inseparable extensions.

Theorem 2.2. ([10, Theorem 1]). Let k be a field of characteristic
p > 0, and suppose K/k is a finite purely inseparable extension of
exponent e. The following are equivalent :

(i) K/k is modular.
(ii) There exist higher derivations of K for which k is the subfield of

constants.
(iii) Kpi

is linearly disjoint from k for all positive integers i.
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Note that, for any finite purely inseparable extension K/k, if F is
the subfield of constants of all higher derivations of K/k, then K/F
is modular and F will be the smallest intermediate subfield such that
K/F is modular. By the Jacobson-Bourbaki theorem, any intermediate
subfield k ⊆ F ⊆ K with K/F modular corresponds to a unique
K-subalgebra of EndkK. The main theorem will give an intrinsic
description of these subalgebras.

We end this section by defining special classes of differential opera-
tors that are required to distinguish modular from non-modular exten-
sions. Let A be a commutative ring of prime characteristic p > 0 and B
a commutative A-algebra. For any positive integer n, write Diffn

AB for
the module of differential operators of B/A of order ≤ n [4, subsection
16.8.1]. Define

AB/A, i = {D ∈ Diff pi

A B : for all j ≤ i, D(Bpj

) ⊆ Bpj

}.

Note that AB/A, i is a Bpi

-submodule of Diff pi

A B. For example, let
L/K be a modular field extension with a p-basis {x1, . . . , xn} such
that ei = exp[xi : K] > 1 for each 1 ≤ i ≤ n. Then a K-basis of L is

{xj1
1 · · ·xjn

n }0≤ji<pei . For m < ei, let(
d

dxi

)[m]

be the unique endomorphism of L/K sending xj1
1 · · ·xjn

n to(
ji
m

)
xj1
1 · · ·xji−m

i · · ·xjn
n .

AL/K, 1 consists of all differential operators of order ≤ p which map
Lp → Lp. Since (

d

dxi

)[i]

(Lp) = 0 for i < p,

AL/K, 1 = Lp
⊕

0<i1+···in<p

L

(
d

dx1

)[i1]

· · ·
(

d

dxn

)[in]

⊕
0<i≤n

Lp

(
d

dxi

)[p]

.
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Similarly,

AL/K, 2 = Lp2 ⊕
0<i1+···in<p

L

(
d

dx1

)[i1]

· · ·
(

d

dxn

)[in]

⊕
0<i1+···in<p

Lp

(
d

dx1

)[pi1]

· · ·
(

d

dxn

)[pin]

⊕
0<i≤n

Lp2

(
d

dxi

)[p2]

.

For an integer i < exp[L : K], write Γ[i] for the ith divided powers
functor. Since DerKL is an L-vector space,

Γ[pi] (DerKL)
/( ∑

0<j<i

Γ[pj ] (DerKL)⊗L Γ[pi−j ] (DerKL)

)
is naturally an Lpi

-vector space. Call this space the pith indecomposable

divided powers of DerKL, and denote it by Γ
[pi]

(DerKL). There is a

natural map γpi

: DerKL → Γ
[pi]

(DerKL) which sends an element

D ∈ DerKL to the image of γpi

(D) ∈ Γ[pi](DerKL) in Γ
[pi]

(DerKL).

γ[pi] respects addition and induces an Lpi

-space isomorphism between

Lpi ⊗L DerKL and Γ
[pi]

(DerKL) where the L-action on Lpi

is induced
by the ith Frobenius map. Finally, the image of AL/K, i under the

symbol map is isomorphic to both of these Lpi

-vector spaces.

3. Pickert generating sequences. To better study the differential
operators on a purely inseparable field extension, it is worthwhile to
determine more properties and invariants of the extension. For a purely
inseparable extension L/K and any x ∈ L, set exp[x : K] to be the
exponent of x in K, and exp[L : K] to be the exponent of L/K.

Definition 3.1. Let L/K be a finite purely inseparable extension of
fields of characteristic p > 0. A sequence {x1, . . . , xn} ⊂ L is called a
Pickert generating sequence if the xi form a p-basis for L/K and, for
each i,

exp [K(x1, . . . , xi) : K(x1, . . . , xi−1)] = exp [xi : K(x1, . . . , xi−1)] .
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Any p-basis of a finite purely inseparable extension can be ordered
to make it a Pickert generating sequence. Let ei denote the exponents
in Definition 3.1. For any α ∈ L, exp[α : K(x1, . . . , xi−1)] ≤ ei. Hence,
ei ≥ exp[xi+1 : K(x1, . . . , xi−1)], and exp[xi+1 : K(x1, . . . , xi−1)] ≥
exp[xi+1 : K(x1, . . . , xi)] = ei+1. Thus, e1 ≥ e2 ≥ · · · ≥ en, and

{xr1
1 xr2

2 · · ·xrn
n }0≤ri<pei

is a K-basis for L. Rasala [9] showed that the sequence of exponents
is independent of the choice of p-basis for a finite extension.

Pickert [8] originally proved the following theorem, which Rasala
applied in his work studying properties of purely inseparable extensions.

Proposition 3.2. ([9, Section 3, Theorem 1]). Let L/K be a finite
purely inseparable extension of fields of characteristic p > 0. Suppose
{x1, . . . , xn} is a Pickert generating sequence for L/K with correspond-
ing exponent sequence {ei}. For each i,

xpei

i ∈ K(xpei

1 , . . . , xpei

i−1).

By the above proposition, for each xi in a Pickert generating se-
quence, there is a corresponding gi ∈ K(xqi

1 , . . . , xqi
i−1) such that

xqi
i = gi. These polynomials in the xi will be called the structure

equations for L/K corresponding to the Pickert generating sequence
{x1, . . . , xn}, and

L ∼= K[x1, . . . , xn]
/
(xq1

1 − g1, x
q2
2 − g2, . . . , x

qn
n − gn)

as K-algebras. For each i, the definition of ei guarantees that qi is the
minimal power of p for which the structure equations have the property
described in Proposition 3.2.

Pickert generating sequences provide another criterion for determin-
ing modularity:

Proposition 3.3. ([9, Section 5, Theorem 4]). Let K be a field of
characteristic p > 0, and suppose L/K is a finite purely inseparable
field extension with Pickert generating sequence {x1, . . . , xn} and cor-
responding exponent sequence e1 ≥ · · · ≥ en. L/K is modular if and
only if for all i, ei = exp[xi : K].
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Modularity can be determined from the exponent sequence by
Proposition 3.3, but this determination will still be non-intrinsic since a
choice of p-basis is required in the proposition. The structure equations
of an extension, however, can be related to behavior of the differential
operators, allowing us to construct another test for modularity.

4. Differential operators on modular field extensions. The
filtration of the differential operators by their orders provides the nec-
essary information to determine which subrings of EndKL correspond
to modular extensions by the Jacobson-Bourbaki theorem. To prove
the main theorem, the following technical lemma is required.

Lemma 4.1. Let K be a field of characteristic p > 0, and suppose
L/K is a finite purely inseparable extension of K. Let {x1, x2, . . . , xn}
be a Pickert generating sequence for L/K with corresponding expo-
nent sequence e1 ≥ e2 ≥ · · · ≥ en, and let D be a differential op-
erator of order N in DiffKK(x1, . . . , xi) for some i < n. Suppose

D̃ ∈ DiffKK(x1, . . . , xi+1) is the unique extension of D such that

D̃|K(x1,...,xi) = D and D̃(xj
i+1) = 0 for all 0 ≤ j < pei+1 . Then D̃

is a differential operator of order N .

Proof. Set qi = pei , and let fi+1 be the structure equation for xi+1

with respect to the Pickert generating sequence {x1, . . . , xn}. Thus,
x
qi+1

i+1 = fi+1(x1, . . . , xi) where, by Proposition 3.2, the degree of each
xj in fi+1 is a multiple of qi+1. Note that

K(x1, . . . , xi+1) =

qi+1−1⊕
j=0

K(x1, . . . , xi)x
j
i+1.

Therefore, the map D̃ as defined in the statement of the lemma is a well-
defined endomorphism of K(x1, . . . , xi+1) over K and is unique by the
direct sum decomposition of K(x1, . . . , xi+1). Since K(x1, . . . , xi+1)/K
is a finite purely inseparable extension, every endomorphism is a differ-

ential operator by Proposition 2.1. Hence, D̃ ∈ DiffKK(x1, . . . , xi+1).

The order of D̃ is greater than or equal to the order of D as
differential operators in DiffKK(x1, . . . , xi) and DiffKK(x1, . . . , xi+1),

respectively. Thus, it remains to show that the order of D̃ is N .
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Suppose M is the order of D̃. Then there exist a1, . . . , aM such that:

(4.1)
[[
· · ·

[
D̃, a1

]
, a2

]
, . . . , aM

]
= z ∈ K(x1, . . . , xi+1)

where z ̸= 0. This expression is symmetric in the ai and is a derivation
in each commutator. That is, for any a, b ∈ K(x1, . . . , xi+1)[[

· · ·
[
D̃, a1

]
, a2

]
, . . . , ab

]
= a

[[
· · ·

[
D̃, a1

]
, a2

]
, . . . , b

]
+ b

[[
· · ·

[
D̃, a1

]
, a2

]
, . . . , a

]
.

Hence, equation 4.1 can be decomposed as a sum of commutators
such that one of the summands is nonzero. In particular, there exists
a nonnegative integer J and g1 . . . gM−J ∈ K(x1, x2, . . . , xi) such that
(4.2)[[[

· · ·
[[[[

D̃, xi+1

]
, xi+1

]
, . . . , xi+1

]
, g1

]
, g2

]
. . . ,

]
, gM−J

]
̸= 0,

where the number of xi+1’s in this expression is J . By Gerstenhaber
[3, Lemma 5.1], qi+1 divides J . If J = cqi+1 where c is a nonnegative
integer, then using a formula proven by Nakai [7, Corollary 11.2],
equation 4.2 simplifies to

(4.3)
[[[

· · ·
[[[[

D̃, fi+1

]
, fi+1

]
, . . . , fi+1

]
, g1

]
, g2

]
. . . ,

]
, gM−J

]
,

an element of K(x1, . . . , xi+1)
×, where the number of fi+1’s in the

expression is c. This equation is the commutator of D̃ with M − J + c
elements of K(x1, . . . , xi). Hence, equation 4.3 equals

(4.4) [[[· · · [[[[D, fi+1] , fi+1] , . . . , fi+1] , g1] , g2] . . . , ] , gM−J ] .

Each fi+1 is a polynomial of degree at least qi+1; hence, the order of
the differential operator [D, fi+1] is at most N − qi+1. Therefore, the
order of the differential operator in equation 4.4 is at most N − cqi+1−
(M −J) = N−M . This iterative commutator is a differential operator
of order 0 by its original construction; hence, N = M and the order of

D̃ equals the order of D. �

Theorem 1.1. Let L/K be a finite purely inseparable extension
with exponent e, and let charK = p > 0. L/K is modular if and
only if for all 0 < i ≤ e − 1, the multiplication homomorphism
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L ⊗Lpi AL/K, i → Diff pi

K L is a surjection. That is, for each i, AL/K, i

spans Diff pi

K L as an L subspace.

Proof. Let AL/K, i be denoted Ai in this proof. Suppose L/K is
a modular extension. By definition, there exist {x1, . . . xn} ⊂ L such
that

L ∼=
n⊗

i=1

K(xi).

Then

(4.5) DiffKL ∼=
n⊗

i=1

DiffKK(xi).

Now, if li = exp[xi : K], then DiffKK(xi) is generated as a K(xi)-
algebra by {(

d

dxi

)[pk]}
0≤k<li

.

Hence, by the isomorphism in equation 4.5, any D ∈ DiffKL is a linear
combination over L of differential operators of the form

Da1,...,an :=

(
d

dx1

)[a1]

· · ·
(

d

dxn

)[an]

where 0 ≤ aj < lj . Da1,...,an ∈ Ai if and only if a1+ · · ·+an ≤ pi, so for

some integer j Da1,...,an
is an element of Aj . Thus, every D ∈ Diff pi

K L

is the L-linear combination of elements in Ai. Hence, Ai spans Diff pi

K L.

Now suppose L/K is not a modular extension. We will find elements

a, b ∈ L with a ∈ Lpi

and b ∈ Lpj

and a differential operator

D ∈ Diff pl

K L, i, j ≤ l that satisfy the following properties: D is not

the sum of products of differential operators of lower order, D(a) ∈ Lpi

and D(b) /∈ Lpj

. This operator D will then not be spanned by Ai.

Let {x1, . . . , xn} be a Pickert generating sequence for L/K with
e1 ≥ e2 ≥ · · · ≥ en the intrinsic non-increasing sequence of exponents.
Since L/K is not modular, by Proposition 3.3, there exists an integer
i satisfying

exp [xi : K(x1, . . . , xi−1] ̸= exp [xi : K] ,
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and xi has a structure equation with coefficients which are not all in
Lpei

.

Let z := xi be the first such element in the Pickert generat-
ing sequence to exhibit this property. Set q = pei , and let zq =
f(xq

1, . . . , x
q
i−1) be the structure equation of z. Since zq /∈ K, f is

neither constant nor does the degree of every xq
j in the polynomial

exceed pe/ei .

The polynomial f must have at least two terms with coefficients
which are not qth powers in L. That is, suppose αxqa1

1 . . . x
qai−1

i−1 is
the only summand of f with α ∈ K \ Lq. Then, solving the structure
equation of z for α, we get

α =
zq − f(xq

1, . . . x
q
i−1) + αxqa1

1 · · ·xqai−1

i−1

xqa1

1 · · ·xqai−1

i−1

.

The right-hand side is a qth power in L, which contradicts α /∈ Lq.

Thus, at least two of the coefficients of terms of f are not in Lq.
Let C denote the set of all such monomials of f . C has at least two
elements, so f must have K-independent summands axqa1

1 · · ·xqai−1

i−1

and bxqb1
1 · · ·xqbi−1

i−1 where a and b are not in Lq and aj , bj < pej−ei for
all 1 ≤ j ≤ i − 1. At least one of the xj must have different degrees
in these summands or else they are not linearly independent. Suppose,
without loss of generality, that x1 is the element with a1 ̸= b1 and that
b1 is the largest such exponent of xq

1 for such an element of C. Define
Q as the largest power of p which is ≤ qb1. Write

f(xq
1 . . . , x

q
i−1) =

∑
0≤jk<pek−ei

αj1,...,ji−1x
qj1
1 · · ·xqji−1

i−1 .

Now, (
d

dx1

)[Q]

is a differential operator of

K(x1, . . . , xi−1) =
i−1⊗
j=1

K(xj)
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over K of order Q. By Lemma 4.1, we can extend ( d
dx1

)[Q] to a

differential operator D ∈ DiffKK(x1, . . . , xi) of order Q. By induction
on i, we can extend D in this manner to a differential operator on L.

Call D̃ the extension of ( d
dx1

)[Q] to L. Gerstenhaber [3] calls D̃ the

normal extension of ( d
dx1

)[Q], which is a differential operator of order
Q by Lemma 4.1.

So,

D̃(zq) = D
(
f(xq

1, . . . , x
q
i−1)

)
=

(
d

dx1

)[Q]( ∑
0≤jk<pek−ei

αj1,...,ji−1x
qj1
1 · · ·xqji−1

i−1

)

=
∑

0≤jk<pek−ei

αj1,...,ji−1

(
qj1
Q

)
(x1)

qj1−Q(xq
2)

j2 · · · (xq
i−1)

ji−1

This last sum is not zero because, by the choice of x1, f has at least
one nonzero term with the degree of xq

1 greater than 0. Additionally,

by the choice of Q,
(
qj1
Q

)
̸= 0 for some j1 [1, page 577]. Likewise, the

sum is not a qth power in L, because at least one of the coefficients
αj1,...,ji−1 is neither a qth power in L nor the coefficient of a term which

vanishes by D̃. Therefore, D̃(zq) /∈ Lq but D̃(xQ
1 ) = 1 ∈ LQ. Since

( d
dx1

)[Q] is not the product of differential operators of lower order in

DiffKK(x1, . . . , xi−1), D̃ is not the product of differential operators of

lower order either. Therefore, D̃ is not in the L-span of Ai for any i,
and the theorem is proven. �

An immediate corollary of the theorem is

Corollary 1.2. Let L/K be as in the theorem. Let D be the L-
subalgebra of DiffKL generated by the Ai. Then D is the largest
subalgebra of DiffKL such that L/LD is a modular extension.
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