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SQUAREFREE REVLEX IDEALS

MARILENA CRUPI AND CARMELA FERRÒ

ABSTRACT. We study the combinatorics of squarefree
revlex ideals in a polynomial ring in n variables with
coefficients in a field K. We focus our attention on the
relationship between squarefree revlex ideals and revlex
ideals. Also, we analyze the extremal Betti numbers of
squarefree revlex ideals.

1. Introduction. Let S = K[x1, . . . , xn] be a polynomial ring in n
variables with coefficients in a field K. A special class of monomial
ideals of S is the class of squarefree monomial ideals. Such ideals are
closely related to simplicial complexes. Let ∆ be a simplicial complex
on the vertex set [n] = {1, . . . , n} and I∆ the ideal of S generated
by all squarefree monomials xi1 · · ·xir , 1 ≤ i1 < · · · < ir ≤ n, with
{i1, . . . , ir} /∈ ∆. It is well known that, if I is an ideal of S generated
by squarefree monomials of degree ≥ 2, then there exists a unique
simplicial complex ∆ on [n] with I = I∆. The ideal I∆ is known as
the Stanley-Reisner ideal of ∆. Stanley [18] and Reisner [17] were the
first researchers who used in a systematic way concepts and techniques
from commutative algebra to study simplicial complexes by considering
the Hilbert function of Stanley-Reisner rings. Since then the study of
squarefree monomial ideals from both the algebraic and combinatorial
point of view is one of the most inspiring topics in commutative algebra.
Some fundamental results on classes of squarefree monomial ideals can
be found in [2, 5, 14] and in the references therein.

In this paper, our attention is devoted to squarefree revlex ideals
in the polynomial ring S = K[x1, . . . , xn]. Deery [12] was the first
researcher who examined the revlex ideals in the non-squarefree case.
He proved an analogue of Bigatti [4], Hulett [15] and Pardue’s [16]
result about minimal Betti numbers. Precisely, he showed that revlex
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ideals have the smallest Betti numbers among all stable ideals with the
same Hilbert function. Deery’s result was generalized in the case of the
exterior algebra by Crupi and Ferrò [6].

The outline of the paper is the following. Section 2 contains pre-
liminary notions and results. In Section 3, we study the behaviour of
the class of squarefree revlex ideals via tools from simplicial complex
theory. This allows us to use the same arguments as in [6, 7] in or-
der to study the combinatorics of squarefree revlex ideals (Proposition
3.2, Corollary 3.3). In Section 4, we prove the squarefree analogue
of Deery’s result about minimal Betti numbers (Theorem 4.3). In Sec-
tion 5, we compare the class of revlex ideals with the class of squarefree
revlex ideals (Theorems 5.5 and 5.6) by using the shifting operations
introduced in [3]. It is well known that there exists a bijection be-
tween squarefree strongly stable ideals and strongly stable ideals [3].
Similarly, we show that there exists an injection between the class of
squarefree revlex ideals and the class of revlex ideals (Corollary 5.7). In
Section 6, we analyze the extremal Betti numbers of squarefree revlex
ideals. We show that a squarefree revlex ideal has a unique extremal
Betti number (Proposition 6.4) and determine its value (Remark 6.5).
Moreover, given a pair of positive integers (k, ℓ) with k ≥ 1, ℓ ≥ 2, we
state conditions for the existence of a squarefree revlex ideal I with the
extremal Betti number βk, k+ℓ(I) (Proposition 6.6).

2. Preliminaries. Let K be a field and S = K[x1, . . . , xn] the
polynomial ring in n variables with coefficients in K. We begin by
setting up notation that will be useful.

For a graded ideal I = ⊕j≥0Ij of S, we denote by α(I) the initial
degree of I, that is, the minimum s such that Is ̸= 0. Let Mond(S)
be the set of all monomials of degree d in S and Monsd(S) the set of
all squarefree monomials of degree d in S. For any subset T of S, we
denote by Mon(T ) the set of all monomials in T and by Mons(T ) the
set of all squarefree monomials in T . For a monomial 1 ̸= u ∈ S, we
set

supp(u) = {i : xi divides u},

and we write

max(u) = max{i : i ∈ supp(u)}, min(u) = min{i : i ∈ supp(u)}.

Moreover, we set max(1) = min(1) = 0.
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For a monomial ideal I  S, we denote by G(I) the unique minimal
set of monomial generators of I. Let I ( S be a monomial ideal. I
is called stable if, for all u ∈ G(I), one has (xju)/xmax(u) ∈ I for all
j < max(u). I is called strongly stable if, for all u ∈ G(I), one has
(xju)/xi ∈ I for all i ∈ supp(u) and all j < i.

Let >revlex be the usual reverse lexicographic order (revlex order,
for short) on the monomials of S. A subset M ( Mond(S) is a revlex
segment of degree d if, for u ∈ M , v ∈ Mond(S) such that v >revlex u,
then v ∈ M .

Definition 2.1. A monomial ideal I ( S is called a revlex ideal of S
if Mon(Id) is a revlex segment of degree d for all d.

Let I ( S be a squarefree monomial ideal. I is squarefree stable if, for
all u ∈ G(I), one has (xju)/xmax(u) ∈ I for all j < max(u), j /∈ supp(u).
I is squarefree strongly stable if, for all u ∈ G(I), one has (xju)/xi ∈ I
for all i ∈ supp(u) and all j < i, j /∈ supp(u).

For every 1 ≤ d ≤ n, we order Monsd(S) with the squarefree reverse
lexicographic order (squarefree revlex order, for short) ≥srevlex. Let u =
xi1xi2 · · ·xid and v = xj1xj2 · · ·xjd , with 1 ≤ i1 < i2 < · · · < id ≤ n,
1 ≤ j1 < j2 < · · · < jd ≤ n, be squarefree monomials of degree d in S.
Then

u >srevlex v if id = jd, id−1 = jd−1, . . . , is+1 = js+1 and is < js,

for some 1 ≤ s ≤ d. A nonempty set M ( Monsd(S) is called a
squarefree revlex segment of degree d if, for u ∈ M , v ∈ Monsd(S) such
that v >srevlex u. Then v ∈ M .

Definition 2.2. Let I ( S be a squarefree monomial ideal. I is a
squarefree revlex ideal if, for all 1 ≤ d ≤ n, if u, v ∈ Monsd(S) with
u ∈ I and v >srevlex u, then v ∈ I.

Equivalently, a graded ideal I ( S is a squarefree revlex ideal if
and only if Mons(Id) is a squarefree revlex segment of degree d for all
1 ≤ d ≤ n.
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Now, let M be a subset of monomials of Mond(S). The set

{xiu : u ∈ M, i = 1, . . . , n}

of monomials of degree d + 1 of S is called the shadow of M and is
denoted by Shad(M).

If M is a set of squarefree monomials of Monsd(S), the set

{xiu : u ∈ M, i /∈ supp(u), i = 1, . . . , n}

of squarefree monomials of degree d + 1 of S is called the squarefree
shadow of M and is denoted by Shads(M).

Remark 2.3. If M is a revlex segment of degree d, then Shad(M) is
not in general a revlex segment of degree d + 1. Let M = {x2

1, x1x2}
be a revlex segment of degree 2 of S = K[x1, x2, x3]. Then

Shad(M) = {x3
1, x

2
1x2, x1x

2
2, x

2
1x3, x1x2x3}

is not a revlex segment of degree 3. In fact x3
2 >revlex x2

1x3, but
x3
2 /∈ Shad(M).

Similarly, if M is a squarefree revlex segment of degree d, then
Shads(M) need not be a squarefree revlex segment of degree d + 1.
For example, if S = K[x1, x2, x3, x4, x5] and M = {x1x2, x1x3}, then

Shads(M) = {x1x2x3, x1x2x4, x1x3x4, x1x2x5, x1x3x5}

is not a squarefree revlex segment of degree 3. In fact, x2x3x4 >srevlex

x1x2x5, but x2x3x4 /∈ Shads(M).

3. Squarefree revlex ideals. In this section, we analyze the class
of squarefree revlex ideals in S = K[x1, . . . , xn].

The notion of simplicial complex plays a key role in our analysis. A
simplicial complex ∆ on the vertex set [n] = {1, . . . , n} is a collection
of subsets of [n] such that

(a) {i} ∈ ∆ for every i ∈ [n], and
(b) σ ∈ ∆, τ ⊆ σ ⇒ τ ∈ ∆.

The ideal I∆ of S generated by all squarefree monomials xi1 · · ·xir , 1 ≤
i1 < · · · < ir ≤ n, with {i1, . . . , ir} /∈ ∆ is called the Stanley-Reisner
ideal of ∆ over K, and the quotient algebra K[∆] = S/I∆ is called the
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Stanley-Reisner ring of ∆ over K. If J∆ = (I∆, x
2
1, . . . , x

2
n), then the

graded K-algebra K{∆} = S/J∆ is called the indicator algebra of ∆.
If Γ is the simplicial complex consisting of all the subsets of the vertex
set [n], then the indicator algebra of Γ is:

K{Γ} = K[x1, . . . , xn]/(x
2
1, . . . , x

2
n),

and the set of all squarefree monomials of S forms a basis of K{Γ}.

Definition 3.1. A simplicial complex ∆ is called strongly stable
(revlex ) if the Stanley-Reisner ideal I∆ is a squarefree strongly stable
ideal (squarefree revlex ideal, respectively).

Let I ( S be a squarefree monomial ideal, and let IΓ be the image
of I in K{Γ}. The structure of K{Γ} ensures that I is a squarefree
(strongly) stable ideal in S if and only if IΓ is a (strongly) stable ideal
in K{Γ}, in the sense of the exterior algebra E [1, 2]. Hence, in
order to study the behavior of the squarefree revlex ideals in S that
are squarefree strongly stable ideals, one can use the same arguments
as in [6, 7].

Proposition 3.2. Let M be a squarefree revlex segment of degree d of
S such that d < n− 2. The following conditions are equivalent :

(1) Shads(M) is a squarefree revlex segment of degree d+ 1;
(2) xn−(d+1) · · ·xn−3xn−2 ∈ M .

Proof. LetMΓ be the image ofM inK{Γ}=K[x1,. . . , xn]/(x
2
1,. . ., x

2
n).

It is clear that M is a squarefree revlex segment in S if and only if MΓ

is a revlex segment in K{Γ}. Hence, the assertion follows from [6,
Corollary 3.8]. �

Corollary 3.3. Let M = {u1, . . . , ut} be a set of monomials of S,
d1 = min{deg(ui) : i = 1, . . . , t} and d2 = max{deg(ui) : i = 1, . . . , t}
with d2 < n− 2. Then I = (M) is a squarefree revlex ideal if and only
if :

(1) Mons(Id) is a squarefree revlex segment for d1 ≤ d ≤ d2;
(2) xn−(d2+1) · · ·xn−3xn−2 ∈ M .
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Proof. See [6, Corollary 3.9]. �

Proposition 3.4. A squarefree revlex ideal I ( S is minimally gener-
ated in at most two consecutive degrees.

Proof. Let d = α(I). Then x1x2 · · ·xd ∈ Mons(Id) and x1x2 · · ·xdxn

∈Mons(Id+1). As I is a squarefree revlex ideal and xn−(d+1)· · ·xn−2xn−1

>srevlex x1x2 · · ·xdxn, it follows that xn−(d+1)· · ·xn−2xn−1∈Mons(Id+1).
Hence, xn−(d+1) · · ·xn−2xn−1xn is the smallest monomial belonging
to Shads(Mons(Id+1)), with respect to >srevlex, and consequently,
Shads(Mons(Id+1)) = Monsd+2(S). Therefore, the minimal monomial
generators of I are at most of degrees d and d+ 1. �

4. A lower bound. Aramova, Herzog and Hibi [3, Theorem 2.9]
proved that, over a field K of characteristic zero, the graded Betti
numbers of a squarefree monomial ideal are bounded by those of the
corresponding squarefree lexicographic ideal. In this section, we prove
the squarefree analogue of Deery’s theorem [12, Theorem 3.10] on the
lower bounds of Betti numbers of a given Hilbert function.

If I  S is a monomial ideal and G(I) its unique minimal set of
monomial generators, we define the following sets:

G(I)d = {u ∈ G(I) : deg(u) = d},
G(I; i) = {u ∈ G(I) : max(u) = i},
mi(I) = |G(I; i)| ,

m≤i(I) =
∑
j≤i

mj(I),

for d > 0 and 1 ≤ i ≤ n.

Lemma 4.1. Let J  S be a squarefree revlex ideal generated in
degree d, and let I  S be a squarefree strongly stable ideal generated
in the same degree such that |Mons(Jd)| ≥ |Mons(Id)|. Then,

m≤i(J) ≥ m≤i(I), for 1 ≤ i ≤ n.

Proof. Let J̃ = JΓ and Ĩ = IΓ be the images of J and I in K{Γ},
respectively. It follows that |Mons(Jd)| = dimK J̃d and |Mons(Id)| =
dimK Ĩd. The assertion now follows from [6, Theorem 5.3]. �
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Lemma 4.2. ([2, Lemma 3.7]). Let I  K{Γ} be a strongly stable
ideal with all generators in degree d < n. Then

dimK(Id+1) =
n−1∑
i=1

mi(I)(n− i) =
n−1∑
i=1

m≤i(I).

Hence, using the same arguments as in [2, Theorem 4.4] (see also
[14, Theorem 7.4.3]) and [6, Theorem 5.6], one can state the following
theorem.

Theorem 4.3. Let ∆ be a strongly stable simplicial complex and ∆′

a revlex simplicial complex such that HK{∆}(t) = HK{∆′}(t) for all t.
Then

βi, j(I∆) ≥ βi, j(I∆′), for all i and j.

Proof. Set I = I∆ and J = I∆′ . From [14, Corollary 7.4.2], we
have:

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− j

i

)
, for all i, j.

Let I⟨d⟩ be the ideal in K{∆} generated by all (squarefree) monomials
in I of degree d.

Since G(I)d+1 = G(I⟨d+1⟩)−G(I⟨d⟩){x1, . . . , xn}, the above sum can
be written as a difference βi,i+j(I) = C −D, with

C =
∑

u∈G(I⟨j⟩)

(
max(u)− j

i

)

=

n∑
t=1

∑
u∈G(I⟨j⟩;t)

(
t− j

i

)
=

n∑
t=1

mt(I⟨j⟩)

(
t− j

i

)

=
n∑

t=1

(m≤t(I⟨j⟩)−m≤t−1(I⟨j⟩))

(
t− j

i

)
= m≤n(I⟨j⟩)

(
n− j

i

)

+
n−1∑
t=1

m≤t(I⟨j⟩)

[(
t− j

i

)
−

(
(t+ 1)− j

i

)]

= m≤n(I⟨j⟩)

(
n− j

i

)
−

n−1∑
t=j

m≤t(I⟨j⟩)

(
t− j

i− 1

)
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and

D =
∑

u∈G(I⟨j−1⟩){x1,...,xn}

(
max(u)− j

i

)
=

n∑
t=j

m≤t−1(I⟨j−1⟩)

(
t− j

i

)
,

from Lemma 4.2. On the other hand, since the number of generators
of I⟨d⟩ and J⟨d⟩ are equal for all d, we have m≤n(I⟨d⟩) = m≤n(J⟨d⟩).
Hence, from Lemma 4.1, m≤i(J⟨d⟩) ≥ m≤i(I⟨d⟩) for 1 ≤ i ≤ n, and
consequently:

βi,i+j(I) = m≤n(I⟨j⟩)

(
n− j

i

)
−

n−1∑
t=j

m≤t(I⟨j⟩)

(
t− j

i− 1

)

−
n∑

t=j

m≤t−1(I⟨j−1⟩)

(
t− j

i

)

≥ m≤n(J⟨j⟩)

(
n− j

i

)
−

n−1∑
t=j

m≤t(J⟨j⟩)

(
t− j

i− 1

)

−
n∑

t=j

m≤t−1(J⟨j−1⟩)

(
t− j

i

)
= βi,i+j(J). �

5. Revlex ideals and shifting operations. In this section, we
prove that there is a bijection between the revlex ideals generated in
two consecutive degrees and squarefree revlex ideals. Let I ( S =
K[x1, . . . , xn] be a squarefree stable ideal. In [2, page 361], for every
w ∈ Mons(I), there exists a unique pair (u, v) of squarefree monomials
in S such that:

(1) u ∈ G(I), w = uv, max(u) < min(v).

In [3] two shifting operations are introduced.

Let u = xi1xi2 · · ·xij · · ·xid be a monomial of S, with i1 ≤ i2 ≤
· · · ≤ ij ≤ · · · ≤ id ≤ n, and set

uσ = xi1xi2+1 · · ·xij+(j−1) · · ·xid+(d−1).

It is easy to verify that max(uσ) − deg(uσ) = max(u) − 1. If I is a
monomial ideal of S with G(I) = {u1, . . . , us}, we denote by Iσ the
squarefree monomial ideal generated by uσ

1 , . . . , u
σ
s in K[x1, . . . , xm],

where m = max{max(u) + deg u− 1 : u ∈ G(I)}.
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There is another operation τ which is inverse to σ. For a squarefree
monomial u = xi1xi2 · · ·xij · · ·xid of S with 1 ≤ i1 < · · · < ij < · · · <
id ≤ n, we set

uτ = xi1xi2−1 · · ·xij−(j−1) · · ·xid−(d−1).

Note that max(uτ ) = max(u) − deg u + 1. If I ( S is a squarefree
monomial ideal with G(I) = {u1, . . . , us}, then we write Iτ for the
monomial ideal generated by uτ

1 , . . . , u
τ
s in K[x1, . . . , xm], where m =

max{max(u)− deg u+ 1 : u ∈ G(I)}.

Remark 5.1. It is easy to verify that, if u, v ∈ Sd and v >revlex u,
then vσ >srevlex uσ in K[x1, . . . , xm], m = max{max(u) + deg u − 1 :
u ∈ G(I)}.

Moreover, if u, v ∈ Monsd(S) and v >srevlex u, then vτ >revlex uτ in
K[x1, . . . , xm], m = max{max(u)− deg u+ 1 : u ∈ G(I)}.

The next results establish that there is a bijection between strongly
stable ideals and squarefree strongly stable ideals in polynomial rings.

Lemma 5.2. ([3, Lemma 1.2]). Let I ( S be a strongly stable ideal
with G(I) = {u1, . . . , us}. Set m = max{max(u)+deg u−1 : u ∈ G(I)}.
Then Iσ is a squarefree strongly stable ideal of K[x1, . . . , xm] with
G(Iσ) = {uσ

1 , . . . , u
σ
s }.

Lemma 5.3. ([3, Lemma 1.4]). Let I ( S be a squarefree strongly
stable ideal with G(I) = {u1, . . . , us}. Set m = max{max(u)−deg u+1 :
u ∈ G(I)}. Then Iτ is a strongly stable ideal of K[x1, . . . , xm] with
G(Iτ ) = {uτ

1 , . . . , u
τ
s}.

Remark 5.4. From Lemma 5.2, one deduces that, if I ( S is a strongly
stable ideal generated in degrees d1 < d2 < · · · < dt, then Iσ is a
squarefree strongly stable ideal generated in degrees d1 < d2 < · · · < dt,
as well. Similarly, if I ( S is a squarefree strongly stable ideal generated
in several degrees, then Iτ is a strongly stable ideal with generators in
the same degrees as those of I.
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Theorem 5.5. Let I ( S be a revlex ideal generated in degrees
d, d + 1. Then Iσ is a squarefree revlex ideal of K[x1, . . . , xm], where
m = max{max(u) + deg u− 1 : u ∈ G(I)}.

Proof. Set S′ = K[x1, . . . , xm] with m = max{max(u) + deg u− 1 :
u ∈ G(I)}. If I is a revlex ideal in S with G(I) = {u1, . . . , us}, then,
from Lemma 5.2, one has that Iσ is a squarefree strongly stable ideal
of S′ with G(Iσ) = {uσ

1 , . . . , u
σ
s }.

Since I is a revlex ideal in S, then the following condition is satisfied
[12, Corollary 2.13]:

(2) xd+1
n−1 ∈ I.

We claim that xm−(d+2) · · ·xm−3xm−2 ∈ Iσ.

Set m̃ = max{max(u) : u ∈ G(I)}. From condition (2), one has
m̃ ∈ {n−1, n}. Let m̃ = n−1. Then m = n+d−1 and, consequently,

m− (d+2) = n− 3. On the other hand, xd+1
n−3 >revlex xd+1

n−1. Therefore,

since I is a revlex ideal in S and xd+1
n−1 ∈ I, it follows that xd+1

n−3 ∈ I.

Since (xd+1
n−3)

σ = xn−3xn−2 · · ·xn−3+d = xm−(d+2) · · ·xm−3xm−2, the
claim follows.

Let m̃ = n. Then m = n + d and so m − (d + 2) = n − 2.

One has that xd+1
n−2 >revlex xd+1

n−1. Therefore, since xd+1
n−1 ∈ I and

I is a revlex ideal in S, it follows that xd+1
n−2 ∈ I. Finally, since

(xd+1
n−2)

σ = xn−2xn−1 · · ·xn−2+d = xm−(d+2) · · ·xm−3xm−2, the claim
follows.

Now we have to prove that Mons(Iσd ) and Mons(Iσd+1) are squarefree
revlex segments in S′. Let w ∈ Iσ be a squarefree monomial, and let
v >srevlex w be a squarefree monomial of S′ with deg v = degw. We
will show that v ∈ Iσ.

From (1), since Iσ is a squarefree strongly stable ideal, one can
decompose w = uσy, where u ∈ G(I) and y is a squarefree monomial
with max(uσ) < min(y). Then wτ = uz, z ∈ S and wτ ∈ I. Since I is
a revlex ideal, and since vτ >revlex wτ , one obtains that vτ ∈ I. Hence,
vτ = u′z′, where u′ ∈ G(I) and max(u′) ≤ min(z′) [13, Lemma 1.1].
Therefore, u′σ divides (vτ )σ = v. Hence, Corollary 3.3 ensures that Iσ

is a squarefree revlex ideal of S′. �
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Theorem 5.6. Let I ( S be a squarefree revlex ideal generated in
degrees d, d + 1. Then Iτ is a revlex ideal of K[x1, . . . , xm], where
m = max{max(u)− deg u+ 1 : u ∈ G(I)}.

Proof. If I is a revlex ideal in S with G(I) = {u1, . . . , us}, then,
from Lemma 5.3, one has that Iτ is a squarefree strongly stable ideal
of K[x1, . . . , xm], m = max{max(u) − deg u + 1 : u ∈ G(I)}, with
G(Iτ ) = {uτ

1 , . . . , u
τ
s}.

Since I is a squarefree revlex ideal in S, then, from Corollary 3.3,
the following condition is satisfied

(3) xn−(d+2) · · ·xn−3xn−2 ∈ I.

We claim that xd+1
m−1 ∈ Iτ .

Set m̃ = max{max(u) : u ∈ G(I)}. From (3), one has m̃ ∈
{n− 2, n− 1, n}.

Let m̃ = n − 2. Then m = n − d − 2,and m − 1 = n − (d + 3).
Consider the squarefree monomial xn−(d+3)xn−(d+2) · · ·xn−3 of S. One
has xn−(d+3)xn−(d+2) · · ·xn−3 >srevlex xn−(d+2) · · ·xn−3xn−2. Since I
is a squarefree revlex ideal of S, then xn−(d+3)xn−(d+2) · · ·xn−3 ∈ I. It

follows that (xn−(d+3)xn−(d+2) · · ·xn−3)
τ = xd+1

n−(d+3) = xd+1
m−1 ∈ Iτ .

Let m̃ = n− 1. Then m = n− d− 1 and m− 1 = n− (d+2). Since

xn−(d+2) · · ·xn−2 ∈ I, then (xn−(d+2) · · ·xn−2)
τ = xd+1

n−(d+2) = xd+1
m−1 ∈

Iτ .

Let m̃ = n. Then m = n − d and m − 1 = n − (d + 1). Consider
the squarefree monomial xn−(d+1) · · ·xn−1 of S. Let u be the greatest
monomial of G(I) with respect to the revlex order such that max(u) =
n. Since xn−(d+1) · · ·xn−1 >srevlex u, then xn−(d+1) · · ·xn−1 ∈ I. It

follows that (xn−(d+1) · · ·xn−1)
τ = xd+1

n−d−1 = xd+1
m−1 ∈ Iτ .

Checking that Mon(Iτd ) and Mon(Iτd+1) are revlex segments in S is
similar to the proof given in Proposition 5.5 with the operator σ. The
assertion follows from [12, Corollary 2.13]. �

Denote by Rev the class of all revlex ideals and by Rev s the class
of all squarefree revlex ideals in S.

As a consequence of Proposition 3.4 and Theorem 5.6, we get the
following corollary.

Corollary 5.7. There is an injection between Revs and Rev.
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6. Extremal Betti numbers of squarefree revlex ideals. In
this section, we analyze the extremal Betti numbers of squarefree revlex
ideals. Since the extremal Betti numbers of a squarefree monomial ideal
I, as well as their positions, are preserved by passing to Iτ [3, Theorem
2.4], from Theorem 5.6, one can expect that a squarefree revlex ideal
has a unique extremal Betti number as in the non-squarefree case
([8, 10]).

Definition 6.1. A Betti number βk, k+ℓ(I) ̸= 0 is called extremal if
βi, i+j(I) = 0 for all i ≥ k, j ≥ ℓ, (i, j) ̸= (k, ℓ).

The following results were proved in [9, 11].

Proposition 6.2. Let I ( S be a squarefree stable ideal. The following
conditions are equivalent :

(1) βk, k+ℓ(I) is extremal ;
(2) k+ ℓ = max{max(u) : u ∈ G(I)ℓ} and max(u) < k+ j for all j > ℓ

and u ∈ G(I)j.

Corollary 6.3. Let I ( S be a squarefree stable ideal.

(1) If βk, k+ℓ(I) is an extremal Betti number of I, then

βk, k+ℓ(I) = |{u ∈ G(I)ℓ : max(u) = k + ℓ}|.

(2) Set d = max{j : G(I)j ̸= ∅} and m = max{max(u) : u ∈ G(I)}.
Then βm−d,m(I) is the unique extremal Betti number of I if and
only if m = max{max(u) : u ∈ G(I)d} and for every w ∈ G(I)j,
j < d, max(w) < m.

Proposition 6.4. Let I ( S be a squarefree revlex ideal. Then I has
a unique extremal Betti number.

Proof. The assertion follows from Proposition 3.4 and Corollary 6.3.

In fact, if I is generated in degree d, then βk, k+d(I) is the unique
extremal Betti number of I with k + d = max{max(u) : u ∈ G(I)d} ∈
{n− 2, n− 1, n}.

Let I be generated in degrees d, d + 1. If xn−(d+1) · · ·xn−2 ∈
G(I)d, then βk, k+d+1(I) is the unique extremal Betti number of I with
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k + d + 1 = max{max(u) : u ∈ G(I)d+1} = n. If xn−(d+2) · · ·xn−2 ∈
G(I)d+1, then βk, k+d+1(I) is the unique extremal Betti number of I
with k + d+ 1 = max{max(u) : u ∈ G(I)d+1} ∈ {n− 2, n− 1, n}. �

Remark 6.5. Let I ( S be a squarefree revlex ideal with extremal
Betti number βk, k+ℓ(I). Then, from Corollary 6.3,

1 ≤ βk,k+ℓ(I) ≤
(
k + ℓ− 1

ℓ− 1

)
.

In fact, there are exactly
(
k+ℓ−1
ℓ−1

)
squarefree monomials of degree ℓ

in S with max(u) = k + ℓ.

More precisely, let I be generated in degree ℓ. Set k+ ℓ = n− 2+ i,
for i = 0, 1, 2. Then

1 ≤ βk,k+ℓ(I) ≤
(
n− 3 + i

ℓ− 1

)
.

Let I be generated in degrees d and d+ 1. Therefore, ℓ = d+ 1.

Suppose xn−ℓ · · ·xn−2 ∈ G(I)ℓ−1. Set k + ℓ = n. Then

1 ≤ βk,k+ℓ(I) ≤
(
n− 1

ℓ− 1

)
.

Suppose xn−(ℓ+1) · · ·xn−2 ∈ G(I)ℓ. Set k + ℓ = n − 2 + i, for
i = 0, 1, 2. Then

1 ≤ βk,k+ℓ(I) ≤
(
n− 3 + i

ℓ− 1

)
.

For u, v ∈ Monsd(S) with u >srevlex v, we define the following set:

R(u, v) := {w ∈ Monsd(S) : u ≥srevlex w ≥srevlex v}.

Finally, we have the following result.

Proposition 6.6. Given a pair of positive integers (k, ℓ) such that k ≥
1 and ℓ ≥ 2, then there exists a squarefree revlex ideal I ( K[x1, . . . , xn]
with extremal Betti number βk,k+ℓ(I) = a if and only if one of the
following conditions holds:
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(i) k + ℓ = n− 2 and 1 ≤ a ≤
(
n−3
ℓ−1

)
;

(ii) k + ℓ = n− 1 and 1 ≤ a ≤
(
n−2
ℓ−1

)
;

(iii) k + ℓ = n and 1 ≤ a ≤
(
n−1
ℓ−1

)
.

Proof. Suppose I is a squarefree revlex ideal with extremal Betti
number βk,k+ℓ(I) = a. Then conditions (i), (ii) and (iii) follow from
Remark 6.5.

Let us now suppose that condition (i) holds. If a =
(
n−3
ℓ−1

)
, we

construct the squarefree revlex ideal I of S generated in degree ℓ with
G(I) = R(x1 · · ·xℓ, xn−(ℓ+1) · · ·xn−2). Suppose 1 ≤ a <

(
n−3
ℓ−1

)
. Let

W = {u ∈ Monsℓ(S) : max(u) = n − 2}. Set W = {w1, w2, . . . , wr},
where w1 >srevlex w2 >srevlex · · · >srevlex wr = xn−(ℓ+1) · · ·xn−2. We
construct the squarefree revlex ideal I of S generated in degrees ℓ− 1
and ℓ with G(I) = A∪B, where A is given by all monomials of degree
ℓ − 1 from x1 · · ·xℓ−1 down to the greatest monomial z ∈ Monsℓ−1(S),
with respect to the squarefree revlex order, such that zxn−2 = wr−a,
and B = R(wr−a+1, wr). Note that |B| = a.

Suppose condition (ii) holds. We construct the squarefree revlex
ideal I of S generated in degree ℓ withG(I)= R(x1· · ·xℓ, xn−(ℓ+1)· · ·xn−2)
∪A, where A consists of the largest amonomials u less than xn−(ℓ+1) · · ·
xn−2 with respect to the squarefree revlex order on S such that
max(u) = n− 1.

Suppose condition (iii) holds. We construct the squarefree revlex
ideal I of S generated in degree ℓ withG(I) = R(x1 · · ·xℓ, xn−ℓ · · ·xn−1)
∪ A, where A consists of the largest a monomials u less than xn−ℓ · · ·
xn−1 with respect to the squarefree revlex order such that max(u) =
n. �
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