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POSITIVE MARGINS AND
PRIMARY DECOMPOSITION

THOMAS KAHLE, JOHANNES RAUH AND SETH SULLIVANT

ABSTRACT. We study random walks on contingency ta-
bles with fixed marginals, corresponding to a (log-linear) hi-
erarchical model. If the set of allowed moves is not a Markov
basis, then tables exist with the same marginals that are
not connected. We study linear conditions on the values of
the marginals that ensure that all tables in a given fiber are
connected. We show that many graphical models have the
positive margins property, which says that all fibers with
strictly positive marginals are connected by the quadratic
moves that correspond to conditional independence state-
ments. The property persists under natural operations such
as gluing along cliques, but we also construct examples of
graphical models not enjoying this property. We also provide
a negative answer to a question of Engström, Kahle and Sul-
livant by demonstrating that the global Markov ideal of the
complete bipartite graph K3,3 is not radical.

Our analysis of the positive margins property depends on
computing the primary decomposition of the associated con-
ditional independence ideal. The main technical results of
the paper are primary decompositions of the conditional in-
dependence ideals of graphical models of the N-cycle and the
complete bipartite graph K2,N−2, with various restrictions on
the size of the nodes.

1. Introduction. Let B be a finite subset of Zn, and consider
the graph with vertex set Nn (here, N denotes the natural numbers
including zero) and edges (u, v) whenever u − v ∈ ±B. We want to
study the connected components of this graph. Our motivation comes
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from Markov chain random walks on Nn using the elements in B as
moves. If every edge in this graph has positive probability, then the
connected components are the irreducible components of the Markov
chain.

A necessary condition for u, v ∈ Nn to be connected by B is that
their difference vector u− v lies in the lattice ZB generated by B. We
want to know when this condition is sufficient. In this paper we assume
that the lattice ZB is saturated, that is, it can be written as the integer
kernel kerZA of an integer matrix A. We do not require B to be a basis
of ZB there can be more than rank (ZB) generators. For any u ∈ Nn

we call (u + ZB) ∩ Nn the fiber of u. For example, in the statistical
analysis of contingency tables, people are interested in the set of all
contingency tables with given marginals. In this case, the matrix A
corresponds to the linear map that computes the marginals from a
contingency table. Monte Carlo sampling techniques are then applied
to compute approximate p-values in Fisher’s exact test for conditional
inference [11, 12].

In the literature, often the following inverse problem is studied: Given
a saturated lattice and a point u ∈ Nn, find a set B such that the fiber
of u is connected. Such a set is called a Markov subbasis in [6]. Ideally,
one wants to compute a Markov basis, a finite set that connects all
fibers at once.

The fundamental theorem of Markov bases (see [12, Theorem 1.3.6]
and Theorem 2.2 below) implies that Markov bases can be found using
computer algebra. Despite fast computers, excellent algorithms [23]
and efficient implementations [1], computing Markov bases remains
hard and is out of reach for many practical applications. Furthermore,
since Markov bases are guaranteed to connect every fiber, they might
be much larger than needed to connect a particular fixed given fiber. In
this paper we study conditions on the fiber that certify that a given set
of moves connects this fiber. In particular, we say that B ⊆ kerZA has
the positive margins property with respect to the matrix A if (Au)i > 0
for all i implies that the fiber of u is connected by B. This property
depends not only on the lattice kerZA but also the particular matrix A.

The main focus in this paper is on lattices and moves associated to
graphical models. For graphical models, there is a canonical set of
“simple” moves, which correspond to the global Markov conditional
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independence statements. It has been observed that, for some models,
if a contingency table u has strictly positive margins, then these simple
moves connect the fiber of u [7]. Similarly, for the no-three-way
interaction model Bunea and Besag proved a positive margins property
for a set of “simple” moves [5]. In the present paper, we perform a
systematic study of the positive margins property for graphical models.

Connectivity of lattice walks can be studied with tools from commu-
tative algebra using the following idea: Consider the binomial ideal

IB = 〈pu+ − pu− : u ∈ B〉 ⊆ k[p1, . . . , pn],

where k is a field, u = u+−u− is the minimal support decomposition of
u into positive and negative parts, and pv = pv11 · · · pvnn . The following
result is well known (see [10] and the references therein).

Proposition 1.1. Two points u, v ∈ Nn are connected by a path
u = u0, u1, . . . , un = v in Nn with ui+1 − ui ∈ ±B if and only if
pu − pv ∈ IB.

Diaconis, Eisenbud and Sturmfels [10] proposed analyzing the con-
nectivity of the fibers of B using a primary decomposition of the
ideal IB. In Section 2 we study the positive margins property and
relate it to decompositions of IB. In particular, Lemma 2.5 gives a
sufficient condition and a necessary condition for the positive margins
property to hold. We also study a generalization of the positive margins
property, which we call interior point property.

Our ideals IB are conditional independence ideals, in addition to be-
ing motivated by the application to random walks. Primary decompo-
sitions of conditional independence ideals are interesting in their own
right, since they reveal important information about the set of probabil-
ity distributions that satisfy the conditional independence statements
[12, 17, 24, 25, 32]. Moreover, it is interesting to know whether
IB is radical. Section 3 provides background on graphical models and
conditional independence.

Section 4 studies the positive margins property of graphical models
and radicality of their global Markov ideals. Both properties are
preserved when forming the coned graph and when gluing graphs along
cliques. In particular, decomposable graphs have both properties.
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From our results we deduce that, if all nodes are binary, then all global
Markov ideals of graphs on five or fewer nodes are radical, and the
complete bipartite graph K2,3 is the only graph on five or fewer nodes
which does not satisfy the original positive margins property while it
does satisfy the interior point property. We also find graphical models
without positive margins property, for any choice of matrix A, when
the contingency table is sufficiently large (Theorem 4.12).

The graphical models of the N -cycle and the complete bipartite graph
K2,N−2 (with restrictions on the sizes of the contingency tables) are
discussed in detail in Sections 5 and 6. We construct Markov bases
and show that the global Markov ideals are radical by computing the
primary decompositions.

Our results suggest a number of different directions for further re-
search. First, in our analysis, we profited from the fact that all condi-
tional independence ideals that we studied are radical. There do exist
non-radical global Markov ideals, but we do not know how abundant
those are. Second, our proofs of the positive margins property and in-
terior point property for B depend on knowledge of a Markov basis for
the lattice ZB. It remains an open problem to develop proofs that do
not depend on that extra knowledge.

2. Lattice walks, binomial ideals and positive margins. As
Diaconis, Eisenbud, and Sturmfels [10] observed, the connectivity of
the lattice walk induced by the moves in B can be analyzed by looking
at a decomposition of the ideal IB. Indeed, suppose that IB = ∩iIi.
Then pu − pv ∈ IB if and only if pu − pv ∈ Ii for all i. The following
example demonstrates how to profit from this simple idea.

Example 2.1 (cf., [10, Example 1.2]). Which lattice points in N2

can be connected by the moves B = {(2,−2), (3,−3)}? The solution
can be read off from the decomposition:

IB = 〈p21 − p22, p
3
1 − p32〉 = 〈p1 − p2〉 ∩ 〈p21, p22〉.

Now, pa − pb ∈ 〈p1 − p2〉 if and only if a1 + a2 = b1 + b2, while
pa − pb ∈ 〈p21, p22〉 if and only if max{a1, a2} ≥ 2 and max{b1, b2} ≥ 2.
Hence, a and b are connected by B if and only if a1 + a2 = b1 + b2 and
min{max{a1, a2},max{b1, b2}} ≥ 2.
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The first decomposition that comes to mind is primary decomposi-
tion. If the ground field is algebraically closed, then, since IB is bi-
nomial, there is a binomial primary decomposition IB = ∩iPi, where
Pi are generated by binomials. When the primary decomposition in-
troduces new coefficients, then it is too fine to accurately reflect the
combinatorics of B everything that matters in Proposition 1.2 are pure
differences (i.e., binomials of the form pu− pv). In this case one should
work with a mesoprimary decomposition of IB [20], the finest decompo-
sition into unital binomial ideals (i.e., ideals generated by pure differ-
ences and monomials). In the examples studied in this paper all ideals
IB are radical, and the primary and mesoprimary decompositions agree.

The “most important” associated prime of IB, according to [30, page
116], is the toric ideal

IZB = IB :

( ∏
i∈[n]

pi

)∞
,

which is the only associated prime of IB that does not contain variables.
It equals the kernel of the ring homomorphism

(2.1)

φ∗
A : k[pi : i = 1, . . . , n] −→ k[θj , θ

−1
j : j = 1, . . . , h],

pi 	−→
∏
j

θ
Aj,i

j

where A is an integral matrix such that kerZA = ZB. Equivalently,
IZB = 〈pu − pv : u, v ∈ Nn, Au = Av〉 [29]. From this we obtain the
following theorem.

Theorem 2.2 (Fundamental theorem of Markov bases [12, Theo-
rem 1.3.6]). A set B ⊆ kerZA is a Markov basis if and only if IB = IZB.

The following is our basic definition.

Definition 2.3. Assume that B generates a saturated lattice ZB, and
let A be a non-negative integer matrix such that ZB ⊆ kerZA. Then B
has the positive margins property (with respect to A) if (Au)i > 0 for
all i implies that the fiber of u is connected.
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In most of the examples below, ZB = kerZA. Still, the choice of
matrix A is crucial. In many situations there is a canonical choice,
such as the marginal computing matrix in the case of graphical models
(see Section 3). We can augment any matrix by adding rows which do
not affect kerZA, but yield further nontrivial positivity conditions to
check. A natural choice is to add all linear functionals corresponding
to facets of the cone R≥0A generated by the columns of A. In this
case, the condition (Au)i > 0 for all i says that Au lies in the relative
interior of the cone R≥0A.

Definition 2.4. Let B be a set of generators of the integer kernel
kerZA of the integer matrix A. Then B has the interior point property
if it connects every fiber for which Au lies in the relative interior of the
cone R≥0A.

We now prove an algebraic criterion to decide the positive margins
property. For any ideal I ⊆ k[p], let mI :=

∏{pi /∈ I} be the product
of the variables not contained in I, and let uI be the exponent vector
of mI . We also need the product m̂I :=

∏{pi : (I : pi) = I} of all
variables that are regular modulo I and its exponent vector ûI . If I is
a prime or a radical cellular ideal, then mI = m̂I .

Lemma 2.5. Let B span a saturated sublattice of kerZA for some
non-negative integer matrix A. Let IB = (∩c

i=1Ii) ∩ IZB be a decompo-
sition such that IZB 
⊆ Ii for all i.

• If, for all i = 1, . . . , c, there exists j such that (AuIi)j = 0, then B
has the positive margins property with respect to A.

• If B has the positive margins property with respect to A, then for
all i = 1, . . . , c, there exists j such that (AûIi)j = 0.

Proof. For the first statement, suppose that u, v ∈ Nn lie in the
same fiber but are not connected. Then pu − pv ∈ IZB \ IB, and hence
pu − pv /∈ Ii for some i. In particular, either pu /∈ Ii or pv /∈ Ii.
Assume that we are in the first case. Then pu is a divisor of ma

Ii
for

some integer a. Now, if there exists j such that (AuIi)j = 0, then also
(Au)j = 0, since A is non-negative. This shows the first statement.
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For the second statement, suppose that (AûIi)j > 0 for some i and
all j. Let pu − pv be a binomial in IZB \ Ii. Then (A(u + ûIi)) =
(A(v + ûIi)) > 0, but since m̂Ii(p

u − pv) /∈ Ii, the two vectors u + ûi

and v + ûi are not connected by B.

Note the asymmetry between the two directions, the first using uIi ,
the second ûIi . If all Ii are prime, then mIi = m̂Ii . In this case,
Lemma 2.5 gives an equivalent characterization of the positive margins
property.

If the positive margins property is not satisfied, then one might still
hope that the fibers are connected if the marginals are large enough.
This is the case in Example 2.1. Unfortunately, if IB is radical, then
this is not true:

Lemma 2.6. Assume that B does not have the positive margins
property with respect to the non-negative matrix A, and suppose that
IB is radical. For any b > 0 there exist u, v ∈ Nn such that (Au)j =
(Av)j ≥ b for all j, but pu − pv 
∈ IB.

Proof. Let IB = IZB ∩ (∩iPi) be the decomposition into minimal
primes. By assumption and Lemma 2.5, for some i the vector uPi

satisfies (AuPi)j > 0 for all j. For any binomial pu−pv ∈ IZB\Pi, there
exists a c large enough such that the exponents satisfy (A(u+cuPi))j =
(A(v + cuPi))j ≥ b for all j. Since Pi is prime, mPi is regular and
therefore mc

Pi
(pu − pv) /∈ Pi. Hence, u + cui and v + cui are not

connected.

Example 2.1 shows that the radicality assumption in Lemma 2.6 is
necessary.

3. Graphical models and the global Markov statements. Let
V = [N ] := {1, . . . , N} for some integer N > 1. For each v ∈ V ,
let Xv be a discrete random variable taking values in [dv], dv ≥ 2.
Let d = (dv)v∈V , and let X =

∏
v∈V [dv]. For any W ⊆ V , the

random vector XW = (Xv)v∈W takes values in XW =
∏

v∈W [dv]. If
x ∈ X and W ⊆ V , let xW := (xv)v∈W . With h = |X |, denote by
Rh :=

⊗
v∈V Rdv the space of real dv1 × · · · × dvr arrays of the form
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p = (px)x∈X . Then Rh contains the probability simplex

Δh−1 :=

{
p ∈ Rh :

∑
x∈X

px = 1, px ≥ 0 for all x ∈ X
}
.

Each p ∈ Δh−1 represents a joint probability distribution of (Xv)v∈V .
The dependencies among X1, . . . , XN are often visualized by an undi-
rected graph G = (V,E). In this paper, all graphs are undirected and
simple. There are two ways that such a graph can be interpreted as
a statistical model, i.e., as a family of joint probability distributions.
The first leads to the global Markov model, the second to the graphical
model.

The global Markov model associates to G a family of conditional
independence statements among the random variables. Let V =
A∪B∪C be a partition of V (into disjoint possibly empty sets), and let
p ∈ Δh−1. We write XA ⊥ XB | XC and say that XA is independent
of XB given XC if and only if

px
A
x
B
x
C
px′

A
x′
B
x
C
− px

A
x′
B
xC

px′
A
x
B
x
C
= 0

for all possible values xA, x
′
A, xB, x

′
B , xC of XA, XB, XC , respectively.

See [12] for an introduction to conditional independence from an
algebraic point of view.

For each xc ∈ XC , we construct a matrix PA,B,xC of format |XA| ×
|XB|, with columns indexed by XA and rows indexed by XB. The entry
in the xA, xB position of PA,B,xC is the probability pxAxBxC . The
conditional independence statement XA ⊥ XB | XC is equivalent to
the condition that, for all xC ∈ XC , rank (P

A,B,xC ) ≤ 1. If C = ∅ we
get one matrix, and in general we get |XC | matrices.

Let IXA⊥XB |XC
be the ideal in R[px : x ∈ X ] generated by the 2× 2

minors of all the matrices PA,B,xC . If C is a collection of conditional
independence statements, we let

IC =
∑

(XA⊥XB |XC)∈C
IXA⊥XB |XC

.

To the graph G, we associate the global Markov statements:

gl (G) = {XA ⊥ XB | XC : C separates A and B in G,A∪B∪C = V }.
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Separation means that every path in G from some vertex a ∈ A to
some vertex b ∈ B traverses some vertex c ∈ C. The global Markov
model of G is the intersection of Δh−1, and the variety of Igl (G),
i.e., it consists of all joint probability distributions satisfying gl (G).
Note that, while most statements in this paper are independent of the
choice of the field k, only the variety over the real numbers has a
natural statistical interpretation. In general, conditional independence
statements are defined for arbitrary subsetsA,B,C ⊆ V , and the global
Markov statements are defined without the requirement A∪B∪C = V .
However, if A,B,C ⊆ V are disjoint subsets such that A ∪B ∪C 
= V
and such that C separates A and B, then the statement XA ⊥ XB | XC

is implied by the statements in gl (G), see [14, Lemma 7.10].

Graphical models are defined parametrically: Let C(G) be the set of
cliques of G, where a clique is a set of vertices W ⊆ V such that if
v1, v2 ∈ W , v1 
= v2, then (v1, v2) is an edge of G. To each clique
C ∈ C(G) and each xC ∈ XC , associate a parameter θCxC

(or an
indeterminate, depending on the context). Let θC := (θCxC

)xC∈XC .
The image of the polynomial map

φG :
⊕

C∈C(G)

RdC −→ Rh, φG,x(θ
C1 , . . . , θCr) =

∏
C∈C(G)

θCxC
,

intersected with the probability simplex Δh−1 is the parametrized
graphical model M∗

G. In other words, M∗
G consists of all probability

distributions p whose components can be written as a product of the
form px =

∏
W∈C fW (x), where fW are nonnegative functions that only

depend on xv for v ∈ W . See [21] for more about graphical models.

The map φG induces the ring homomorphism

φ∗
G : R[px : x ∈ X ] −→ R[θCyC

: C ∈ C(G), yC ∈ XC ],

px 	−→
∏

C∈C(G)

θCxC
,

and its kernel IG = kerφ∗
G is the vanishing ideal of the image. Then

MG = V (IG)∩Δh−1 is the closure of the parametrized graphical model
M∗

G. We call MG the graphical model of G. Note that other authors
use the term “graphical model” only for the set of strictly positive
probability distributions in MG.
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The ring homomorphism φ∗
G is of the form (2.1); hence, IG is a toric

ideal. The corresponding matrix AG has a natural interpretation: If
p is a joint probability distribution of (Xv)v∈V , then the product AGp
contains, as subvectors, the marginal distribution induced by p on any
clique of G. This collection of marginals is the G-marginals of p. The
cone generated by the columns of AG is known as the marginal cone.

It is easy to check that the graphical model is a subset of the global
Markov model. Moreover, the Hammersley-Clifford theorem [2] says
that, if a probability distribution is strictly positive (that is, px > 0 for
all x in the state space), then p lies in the graphical model if and only
if p lies in the global Markov model. Algebraically, this theorem says
that IG equals the toric component of Igl (G).

In general, Igl (G) � IG, in which case, there may be probability
distributions which satisfy the conditional independence statements
gl (G), but are not in the closure of the graphical model. In fact,
Igl (G) = IG if and only if G is a chordal graph [15]. As suggested in
[15] and [30, Chapter 8], the discrepancy between the two models can
be analyzed using primary decomposition.

4. The positive margins property and graphical models. In
this section we study which global Markov models have the positive
margins property. Let G be a graph with vertex set V = [N ], and
let d = (dv)v∈V ∈ NN with dv ≥ 2 for all v. We say that (G, d)
has the positive margins property, if the quadratic moves Bgl (G) have
the positive margins property with respect to the canonical matrix AG,
and (G, d) has the interior point property if Bgl (G) has the interior point
property.

Our main tool is Lemma 2.5 which we translate here to graphical
models. As all global Markov ideals with known primary decomposi-
tions are radical, we only formulate the radical case.

Lemma 4.1. Let Igl (G) = (∩c
i=1Pi) ∩ IG be a decomposition into

prime ideals such that IG 
⊆ Pi for all i. Then (G, d) has the positive
margins property if and only if, for all i = 1, . . . , c, the G-margins of
uPi are not strictly positive.
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TABLE 1. Properties of binary graphical models for selected irreducible graphs.

graph pos. margins interior point Igl (G) radical # of min. primes

C4 yes yes yes 9

square-pyramid yes yes yes 81

G48 yes yes yes 201

K2,3 no yes yes 37

C5 yes yes yes 41

Table 1 summarizes some of our computational results. We computed
Markov bases with 4ti2 [1] and binomial primary decompositions using
the package Binomials [18] in Macaulay2 [16]. Then we used the
Macaulay2 package Polyhedra [3] to check the condition of Lemma 4.1
applied to the primary decomposition.

The binary graphical model of every graph on five or fewer vertices
that is not mentioned in Table 1 satisfies the positive margins property,
and the corresponding global Markov ideals are radical.

These results suggest two general questions:

• Is it true that, for any graphical model the ideal Igl (G) is radical
[14]?

• Does every graphical model have the interior point property?

The answers to both questions are negative in general. Example 4.9
discusses the binary CI ideal of K3,3 which is not radical. Theorem 4.10
settles the second question.

Before discussing the graphs of Table 1, we treat reducible graphs.
Note that all graphs on five or fewer vertices not contained in this table
are either complete or decomposable, in the following sense:

Definition 4.2. A graph G = (V,E) is reducible if there exist proper
subsets V1, V2 ⊂ V such that V1 ∩V2 is a clique, and such that G is the
union of the subgraphs G1 and G2 induced on V1 and V2. Moreover, G
is decomposable if G1 and G2 are complete or decomposable.

Lemma 4.3. Let k be algebraically closed. Assume that G is
reducible into G1 = (V1, E1) and G2 = (V2, E2). If both Igl (G1) and
Igl (G2) are radical, then Igl (G) is radical.
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Proof. This is [14, Corollary 7.13] together with the observation that
the toric fiber product of prime ideals is a prime ideal.

Lemma 4.4. If G is reducible into G1 = (V1, E1) and G2 = (V2, E2),
and if both (G1, (dv)v∈V1) and (G2, (dv)v∈V2) have the positive margins
property, then (G, d) also has the positive margins property.

Proof. The proof is essentially the same as that of [31, Theorem 2.9],
which shows how to obtain a Markov basis of G from Markov bases
of G1 and G2. The fact that we do not have Markov bases here is
compensated by the fact that we do not want to connect all fibers, but
just those fibers with positive margins. In order to apply the proof
of [31, Theorem 2.9], two things need to be checked: (1) A fiber with
positive G-margins restricts to fibers with positive G1-margins and G2-
margins, respectively.

(2) When the construction that turns Markov bases of G1 and G2

into a Markov basis of G is applied to Bgl (G1) and Bgl (G2), then the
result is a subset of Bgl (G). For brevity, we omit the details.

By Lemmas 4.3 and 4.4, decomposable graphs have the positive
margins property and radical global Markov ideals (for all d). On four
or fewer vertices, there is only one graph, the four-cycle C4, which is
neither complete nor decomposable. The following theorem is proved
in Section 5.

Theorem 4.5. For N ≥ 4, the binary N -cycle model has the positive
margins property. Its global Markov ideal Igl (CN ) is radical.

On five vertices, there are five irreducible graphs: The complete
graph (which trivially has the positive margins property), the five-
cycle C5 (covered by Theorem 4.5), the complete bipartite graph K2,3,
the square pyramid, and the graph G48 (see Figure 1; the name G48

comes from [27]). The complete bipartite graph K2,3 is treated in the
following theorem, proved at the end of Section 6.
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FIGURE 1. G48 and the square pyramid.

Theorem 4.6. For N ≥ 4, the complete bipartite graph K2,N−2,
where dv = 2 for the first group of 2 nodes, has the interior point
property. It has the positive margins property if and only if N = 4. Its
global Markov ideal is radical for all N ≥ 4.

We next discuss the pyramid. To obtain a more general result the
following definition is needed: For any graph G = (V,E) with vertex

set V = [N ], the cone over G is the graph Ĝ = (V̂ , Ê) with V̂ = V ∪{0}
and Ê = E ∪ {(0, i) : i ∈ [N ]}.

Lemma 4.7. Assume that k is a perfect field. If Igl (G) is radical for

some d ∈ NV , then Igl (Ĝ) is radical for all d̂ ∈ NV̂ with d̂v = dv for
all v ∈ V .

Proof. Let X̂ = [d0] × X . For any polynomial f ∈ k[px : x ∈ X ],

denote by f̂i the polynomial in k[py : y ∈ X̂ ] where each variable px,
x ∈ X , has been replaced by pix. Let Ii be the ideal generated by the
polynomials f̂i for all f ∈ Igl (G). The equality

gl (Ĝ) = {XA ⊥ XB | XC ∪X0 : XA ⊥ XB | XC ∈ gl (G)}
implies Igl (Ĝ) = I1 + · · · + Id0 . The ideals I1, . . . , Id0 are radical,
since Igl (G) is radical, and I1, . . . , Id0 are generated by polynomials
in disjoint sets of variables. To show that their sum is also radical
it suffices to show that the tensor product of reducible rings is again
reducible. This is true if the field k is perfect by [4, Chapter 5, Section
15].

Lemma 4.8. If (G, d) has the positive margins property, then (Ĝ, d̂)

also has the positive margins property, where d̂v = dv for v ∈ [N ] and

d̂0 is arbitrary.
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Proof. Any contingency table û for Ĝ can be seen as a family
(u(i))i∈[d̂0]

of contingency tables for G. If û has positive Ĝ-margins,

then each u(i) has positive G-margins. Now û and v̂ have the same Ĝ
margins if and only if u(i) and v(i) have the same G-margins for all i.
Hence, if û and v̂ have the same positive Ĝ-margins, then u(i) and v(i)

are connected by quadratic moves for all i, and the same moves can be
used to connect û and v̂.

It remains to discuss G48. It is easy to see that the binary model
for this graph is equal to the model of K2,2 with d = (2, 2, 2, 4)
and therefore covered by Theorem 4.6 G48 has the positive margins
property, and its global Markov ideal is radical.

Next, we give an example of a global Markov ideal that is not radical.

Example 4.9. Consider the graph K3,3, and let dv = 2 for all
vertices v ∈ K3,3. The global Markov ideal Igl (K3,3) is contained in
a polynomial ring with 64 indeterminates. It is generated by 144
quadrics corresponding to the six CI statements Xi ⊥ Xjk | X456

and Xi ⊥ Xjk | X123, where {i} ∪ {jk} runs through the non-trivial
bipartitions of {1, 2, 3} and {4, 5, 6}, respectively.
The global Markov ideal Igl (K3,3) is complicated enough that Buch-

berger’s algorithm for Gröbner basis computation does not terminate
within a reasonable time. On the other hand, a Gröbner basis of the
graphical model IK3,3 can be computed using 4ti2 [1]. This is another
example of the fact that toric ideals are less complex than arbitrary
binomial ideals [28].

In view of these complications, the classical tools of computer algebra
do not work for this example, as they depend on Gröbner bases.
However, we can use Proposition 1.1: containment of a binomial in
a pure difference ideal can be checked by analyzing the connected
components of a graph. We implemented this idea in a C++-library
that can test whether two exponent vectors lie in the same connected
component by enumerating their connected components via breadth-
first search. The C++-source code of our library is available on
the internet under the GPL licence [19]. The directory examples

contains code forK3,3, and other graphs, which generates the connected
components and constructs a path in the case of connectivity.
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To disprove radicality, it suffices to find a binomial pu − pv ∈
IK3,3 \ Igl (K3,3) (for example, a degree four Markov move) and a
square-free monomial pw such that pw(pu − pv) /∈ Igl (K3,3) while
p2w(pu−pv) ∈ Igl (K3,3). Checking the degree four Markov moves pu−pv

and monomials of degree two, our program found the following witness:
Let

pu−pv := p121|222p212|212p122|112p222|122−p221|222p112|212p222|112p122|122,

and let pw := p111|111p221|111 (the vertical bar | separates the states
of the two groups of nodes in K3,3). Then pupw and pvpw are not
connected by gl (K3,3), but pup2w and pvp2w are connected. The
connected components of pu+w and pv+w consist of 18 monomials each,
while that of pup2w and pvp2w consists of 90 monomials.

We now construct examples of graphical models that do not have the
interior points property (and, hence, cannot have any positive margins
property). Remember that a graph G is triangle-free if it does not
contain a cycle of length three, and a graph is two-connected if it
remains connected when a single node is eliminated.

Theorem 4.10. Let G be a two-connected triangle-free graph with N
vertices, and let p ≥ N − 1 be a prime power. If da = p for all a ∈ [N ],
then (G, d) does not have the interior point property.

Before proving the theorem, we first give an explicit example.

Example 4.11. Consider the four-cycle C4 with d = (3, 3, 3, 3), and
let

u = e1111 + e1222 + e1333 + e2123 + e2231 + e2312 + e3132 + e3213 + e3321.

The marginal vector AC4u of u lies in the interior of the marginal cone,
and many other vectors with the same marginals can be constructed by
applying elements of the symmetry group (Z/3Z)4. At the same time,
no quadratic move can be applied to u.

The combinatorially inclined reader may have observed two orthogo-
nal Latin squares of order three in the last two indices of the elements
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contributing to u. Recall that a Latin square of order d is a (d × d)-
matrix L with entries in [d] such that each number in [d] appears exactly
once in each row and in each column. Two Latin squares L,L′ are or-
thogonal if (Li,j , L

′
i,j) = (Lk,l, L

′
k,l) implies i = k and j = l. For general

d, the number of mutually orthogonal Latin squares of order d is not
known. The following is known:

1. There are at least two orthogonal Latin squares of order d, unless
d ∈ {1, 2, 6}.
2. There are at most (d− 1) orthogonal Latin squares of order d.

3. If d is a power of a prime, then there are precisely (d−1) orthogonal
Latin squares of order d.

See [8] for an introduction to Latin squares. Theorem 4.10 is a corollary
to these facts and the following theorem.

Theorem 4.12. Let G be a two-connected triangle-free graph with
N vertices. If there exist N − 2 mutually orthogonal Latin squares of
order d0 ≥ 2, then (G, (d0, d0, . . . , d0)) does not satisfy the interior
point property.

Proof. Let L(1), . . . , L(N−2) be mutually orthogonal Latin squares of
order d0, and let

L = {(i, j, L(1)
i,j , . . . , L

(N−2)
i,j ) : i, j ∈ [d0]} ⊂ X = [d0]

N .

The set L has the property that, for every pair a, b ∈ [N ], a 
= b, one
has

{(la, lb) : l ∈ L} = [d0]
2.

Since G is triangle-free, all G-margins are 2-way margins. The vector
u(L) defined via

u(L)(l) =
{
1 if l ∈ L,
0 otherwise,

has the following property: all entries in all its 2-way margins are ones.
The group SN

d0
(Nth direct power of the symmetric group Sd0 of [d0])

acts on X by permuting each factor. This action induces an action on
the marginal cone that is transitive on the extreme rays. Under this
action, the margins of u(L) are invariant, which implies that AGu(L)
lies in the interior of this cone and, in particular, is not on any facet.
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FIGURE 2. Splitting all vertices of C4.

On the other hand, it is not possible to apply any quadratic global
Markov move to the table u(L). Indeed, since G is two connected, any
quadratic move v corresponds to a statement XA ⊥ XB | XC , where
the separator C contains at least two distinct elements i, j. Hence, v
can only be applied to tables where some entry in the (i, j)-marginal
is two. Therefore, u(L) is isolated in its fiber. On the other hand,
the symmetric group action on tables sends u(L) to other points in its
fiber, so that the fiber is disconnected.

Example 4.13 (A binary grapical model without interior point
property). We can use Theorem 4.12 to show that not all graphs
with binary nodes have the interior point property. First, C4 with
d = (4, 4, 4, 4) does not have the interior point property, since there
exists a pair of orthogonal Latin squares of order four. We define a
graph G by splitting every vertex of C4 into an edge as in Figure 2.

It can be seen that the binary model of G is equivalent to that of
C4 with d = (4, 4, 4, 4) in the sense that the ideals IC4 and Igl (C4) are
related to the ideals IG and Igl (G) via a renaming of the coordinates.

All examples where we could prove the interior point property involve
graphs where the toric ideal IG is generated in degree at most four, and
our proofs of the primary decomposition also depend on this fact.

Question 4.14. If IG is generated in degree at most four, does this
imply that (G, d) has the interior point property?

There are five graphs G on IG such that IG (with dv = 2 for all v) is
not generated in degree four; and, in this case, IG is generated in degree
six [26]. Among these graphs, K3,3 and G154 are the only triangle-free
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FIGURE 3. K3,3 and G154.

graphs. It is a challenging problem to compute primary decompositions
of Igl (G) for these two graphs. By Example 4.9, Igl (K3,3) is not radical.
The same method did not allow us to disprove radicality of Igl (G154).
Note that G154 can be obtained from K3,3 by deleting an edge.

Theorem 4.10 proves that, for any two connected triangle-free graph,
if the cardinalities d = (dv)v∈V are increased to all coincide with the
same prime power, then this model does not have the interior point
property. We conjecture that this generalizes to many other graphs, i.e.,
the situation should not improve when the numbers dv are increased.
A similar phenomenon occurs with Markov bases. For instance, in the
no-three-way interaction model, the Markov basis becomes arbitrarily
complicated as two of the dv diverge [22].

Conjecture 4.15. Assume that (G, d) does not have the positive
margins (or interior point) property. If d′v ≥ dv for all v ∈ V , then
(G, d′) does not have the positive margins (or interior point) property
either.

5. Binary N-cycle models. In this section, we study the binary
model of the N -cycle CN . We find a Markov basis (Theorem 5.1)
and compute a prime decomposition, showing that Igl (CN ) is radical
(Theorem 5.6). We then use this decomposition to prove the positive
margins property (Theorem 4.5).

We first describe a Markov basis of the toric ideal ICN . A Markov
basis for this model was already presented in [9]. Here, we construct a
smaller Markov basis in order to simplify our proofs of the primary
decomposition. We use tableau notation to denote monomials and
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binomials in the polynomial ring k[px : x ∈ X ]. The monomial
px1,1x1,2···x1,N · · · pxt,txt,2···xt,N is represented by the following tableau
with t rows:

⎡
⎢⎣
x1,1 x1,2 · · · x1,N

...
...

...
xt,t xt,2 · · · xt,N

⎤
⎥⎦ .

This notation greatly facilitates computations since applying moves to
a monomial merely corresponds to manipulating the entries of tableau
according to rules encoded by the moves. Tableau calculations are
widely used in algebraic statistics, see for example [12].

The cyclic group of order N acts on CN by rotations, inducing an
action on tableaux. For example, the generator of this symmetry group
moves the rightmost column to the left, and all other columns move
one step to the right. The Markov basis that we construct is invariant
under this symmetry.

Let B2 be the set of quadrics that are, up to cyclic symmetry, of the
form

(5.1)

[
a A b B
a A′ b B′

]
−
[
a A′ b B
a A b B′

]
,

a, b ∈ [2], A,A′ ∈ [2]l, B,B′ ∈ [2]N−l−2,

A 
= A′, B 
= B′, 0 < l < N − 2.

The quadrics in B2 correspond to conditional independence statements
of the form {Xk+1, . . . , Xl−1} ⊥ {Xl+1, . . . , Xk−1} | {Xk, Xl} with k
and l non-adjacent (here, indices are considered modulo N). Note that
gl (CN ) contains further statements; but, their quadrics are contained
in the ideal generated by those in B2.

To each binary state K ∈ X there is a unique opposite state K ∈ X ,
defined by switching 1 and 2 in each component. Let B4 be the set of
quartics that are, up to cyclic symmetry, of the form
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(5.2)

⎡
⎢⎣
A B C
A B C
A B C
A B C

⎤
⎥⎦−

⎡
⎢⎣
A B C
A B C
A B C
A B C

⎤
⎥⎦ ,

A ∈ [2]k, B ∈ [2]l−k, C ∈ [2]N−l,

0 < k < l < N.

Theorem 5.1. For N ≥ 4, the set B2 ∪ B4 is a Markov basis of the
binary graphical model of the N -cycle.

Remark 5.2. For N = 3, the cycle is a complete graph, and therefore
IG = Igl (G) = 0. The single generator contained in B4 defines another
interesting statistical model: the no-three-way interaction model. It is
the hierarchical model of the graph C3, considered as a one-dimensional
simplicial complex (see [12]). Such models were named graph models
in [9], in order to distinguish them from graphical models. For N ≥ 4,
all cliques of the N -cycle are edges, and therefore the graphical model
agrees with the graph model.

Proof of Theorem 5.1. We prove that B2 ∪ B4 is actually a Markov
basis of the graph model of CN for all N ≥ 1. We use induction on N .
For N < 3, both B2 and B4 are empty, and the graph model contains
all probability distributions. For N = 3, the set B2 is empty, while B4

contains only the defining quartic of the binary graph model of C3.

The N -cycle is a codimension-one toric fiber product of a chain of
length (N − 1) with a chain of length three (see [14]). Since these
chains are decomposable graphs, the Markov bases of these chains
consist of quadratic moves, corresponding to conditional independence
statements. These Markov bases are slow-varying, in the sense of [14],
and gluing them yields moves in B2. By [14, Theorem 5.10], in or-
der to obtain a Markov basis of the N -cycle, we need to add further
quadrics (which belong to B2) and a Markov basis of the corresponding
codimension-zero toric fiber product, which is the toric fiber product
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of an (N − 1)-cycle with the graph model of the 3-cycle. By induction,
we know the Markov bases of these smaller cycles, and by [14, The-
orem 5.4], we need to lift these Markov bases (and add some further
quadrics that belong to B2). A lift of a quadric gives again a quadric
from B2, and hence it suffices to consider the quartics.

We first show that the ideal IB2∪B4 contains all tableaux of the form

(5.3)

⎡
⎢⎣
1 1 1 A
1 2 2 B
2 1 2 C
2 2 1 D

⎤
⎥⎦−

⎡
⎢⎣
1 2 1 A
1 1 2 B
2 2 2 C
2 1 1 D

⎤
⎥⎦ ,

where each entry is a {1, 2}-string of length at least one. Suppose
that there is a column k such that Ak = Ck. Without loss of
generality, assume Ak = Ck = 1. Decompose the strings A,B,C,D
into substrings, such that A = (AlAkAr), and so on. The tableau
calculation⎡

⎢⎣
1 1 1 Al 1 Ar

1 2 2 Bl b Br

2 1 2 Cl 1 Cr

2 2 1 Dl d Dr

⎤
⎥⎦
∗

∗ −→

⎡
⎢⎣
1 1 2 Cl 1 Ar

1 2 2 Bl b Br

2 1 1 Al 1 Cr

2 2 1 Dl d Dr

⎤
⎥⎦

∗
∗
+
+

−→

⎡
⎢⎣
1 2 2 Cl 1 Ar

1 1 2 Bl b Br

2 2 1 Al 1 Cr

2 1 1 Dl d Dr

⎤
⎥⎦

∗

∗ −→

⎡
⎢⎣
1 2 1 Al 1 Ar

1 1 2 Bl b Br

2 2 2 Cl 1 Cr

2 1 1 Dl d Dr

⎤
⎥⎦

shows that this move actually lies in the ideal generated by the quadrics.
Here, ∗ and + mark the rows to which a quadric has been applied. By
symmetry, the same holds true if Bk = Dk for some k. If, in the
tableau (5.3), Ak 
= Ck and Bk 
= Dk for all k, then C = A and D = B,
and the move is of the form⎡

⎢⎣
1 1 1 A
1 2 2 B
2 1 2 A
2 2 1 B

⎤
⎥⎦−

⎡
⎢⎣
1 2 1 A
1 1 2 B
2 2 2 A
2 1 1 B

⎤
⎥⎦ .

Hence, invoking the symmetry and exchanging 1 ↔ 2 in some columns
of the last block, we may assume that any column in the last block
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agrees with a column from either the first or the third block. If[
A

B

]
=

[
1 1

2 1

]
, then the lift belongs to B4. Otherwise, using a rotation

of the cycle, the move can be brought into the form

⎡
⎢⎣
1 1 1 1 A 1
1 2 2 1 B 2
2 1 2 2 A 2
2 2 1 2 B 1

⎤
⎥⎦−

⎡
⎢⎣
1 2 1 1 A 1
1 1 2 1 B 2
2 2 2 2 A 2
2 1 1 2 B 1

⎤
⎥⎦ .

Applying quadrics to the first two rows transforms this into the move

⎡
⎢⎢⎢⎣
1 1 1 1 B 2
1 2 2 1 A 1
2 1 2 2 A 2
2 2 1 2 B 1

⎤
⎥⎥⎥⎦−

⎡
⎢⎣
1 2 1 1 B 2
1 1 2 1 A 1
2 2 2 2 A 2
2 1 1 2 B 1

⎤
⎥⎦ .

In this move, the first and third entries of the last column agree, and,
by the argument given above, it is a combination of quadrics. Now the
theorem follows from the observation that, up to symmetry, any lifted
quartic is of form (5.3).

For any quartic f of form (5.2) let

Pf = 〈pi : pi divides neither f+ nor f−〉.

Lemma 5.3. The ideals Pf are prime ideals containing Igl (CN ).

Proof. Clearly, Pf is a monomial prime ideal. Each generator of

Igl (CN ) is of the form (5.1). If the left term
[
a A b B

a A′ b B′

]
is not contained

in Pf , then it divides f+f−. In this case either A = A′ or B = B′,
and so both terms in (5.1) agree. Hence, Pf contains all generators of
Igl (CN ).

Proposition 5.4. The minimal primes of Igl (CN ) are precisely the
toric ideal ICN and the monomial ideals Pf .
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The proof of Proposition 5.4 makes use of the following lemma.

Lemma 5.5. Let f = f+ − f− ∈ B4 be a quartic generator of ICN .
If the variable pi divides neither f+ nor f−, then pif ∈ Igl (CN).

Proof. We have to show that pif is a combination of quadrics
coming from conditional independence statements of the N -cycle. Up
to symmetry, pif is of the form

⎡
⎢⎢⎢⎣
1 1 1
1 2 2
2 1 2
2 2 1
K L M

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

2 1 1
1 2 1
1 1 2
2 2 2
K L M

⎤
⎥⎥⎥⎦ ,

where pi = pKLM . We now transform pif into another binomial pj f̃

of total degree five using quadrics. Then pj f̃ belongs to the toric

ideal ICN , and hence f̃ ∈ ICN . Since pj 
= pi the multidegree of f̃

is not the multidegree of any quartic in B4. Therefore, f̃ must be a
combination of quadrics, and we are done.

Using symmetry we may assume that K,L,M all contain at least
one 1, i.e., KLM = K11K2L11L2M11M2. The tableau calculation

⎡
⎢⎢⎢⎣
2 1 1
1 2 1
1 1 2
2 2 2
K L M

⎤
⎥⎥⎥⎦ ∗

∗

−→

⎡
⎢⎢⎢⎣

2 2 2 1 1 1 1
1 1 1 2 2 2 1
1 1K2 L11 1 2
2 2 2 2 2 2 2
K11 1 1 1L2 M

⎤
⎥⎥⎥⎦
∗

∗

−→

⎡
⎢⎢⎢⎣

2 2 2 1 1 1 1 1 1
K11 1 2 2 2 1 1M2

1 1K2 L11 1 2 2 2
2 2 2 2 2 2 2 2 2
1 1 1 1 1L2 M11 1

⎤
⎥⎥⎥⎦

∗

∗

−→

⎡
⎢⎢⎢⎣

2 2 2 1 1L2 M11 1
K11 1 2 2 2 1 1M2

1 1K2 L11 1 2 2 2
2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎦
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shows how to transform the second term of pif such that the resulting
binomial is of the form p111f̃ .

Proof of Proposition 5.4. Let p ∈ V (Igl (CN )) \ V (ICN ). Then there
is a quartic f ∈ B4 such that f(p) 
= 0. Lemma 5.5 implies that
pK = 0 for all K such that pK does not divide f+f−, and hence
p ∈ V (Pf ). Clearly, the ideals Pf are all distinct. By symmetry, they
are all minimal primes.

Theorem 5.6. The global Markov ideal Igl (CN ) is radical and has
prime decomposition

Igl (CN ) = ICN ∩
⋂

f∈B4

Pf .

Proof. The intersection J := ICN ∩⋂
f∈B4

Pf is a binomial ideal be-
cause, by Proposition 5.4, it is the radical of the binomial ideal Igl (CN )

[13, Theorem 3.1]. Therefore, it suffices to consider an arbitrary bino-
mial pu − pv ∈ J and show that it is contained in Igl (CN ). Since J is
homogeneous in the multigrading of the toric ideal ICN , there exists a
sequence v = u0, u1, . . . , ur = u such that ui − ui−1 is a move in the
Markov basis B2∪B4 of ICN . If only quadratic moves are necessary, then
pu−pv ∈ I. Assume that ui−ui−1 is the first quartic move, and let f be
the corresponding quartic binomial. Then pv − pui−1 ∈ Igl (CN ) ⊂ Pf ,
and hence pui−1 − pu ∈ Pf . Therefore, pui−1 must be divisible by a
variable generating Pf and, by definition, pui is divisible by the same
variable. Hence, pui − pui−1 ∈ Igl (CN ) by Lemma 5.5. Iteration of this
argument shows pu − pv ∈ Igl (CN ).

Remark 5.7. The minimal primes of Igl (CN ) are exactly witnessed by
degree four binomials in the Markov basis of ICN . More precisely, if
f ∈ B4, then (ICN : f) is a minimal prime, and all minimal primes arise
in this way.

Proof of Theorem 4.5. Let P = Pf be one of the minimal primes,
where f is a quartic of the form (5.2). Then mP = f+f−. Since
N ≥ 4, the quartic f has at least two neighboring columns i, i + 1
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which are identical (up to symmetry). Hence, not all components of
the {i, i+1}-marginal of the exponent vector of mP can be positive.

6. The complete bipartite graph K2,N−2. In this section, we
study the complete bipartite graph K2,N−2 with vertex sets {1, 2},
{3, . . . , N} and with d1 = d2 = 2 and arbitrary d3, . . . , dN . A
Markov basis of the graphical model is presented in Theorem 6.1.
Using this Markov basis, we compute a prime decomposition and show
that Igl (K2,N−2) is radical (Theorem 6.5). With this decomposition, we
prove that, for N > 4, the complete bipartite graph does not satisfy
the positive margins property (Theorem 6.6), but the interior point
property (Theorem 6.8).

The set gl (K2,N−2) consists of the CI statement X1 ⊥ X2 |
{X3, . . . , XN} and all statements XA ⊥ XB | {X1, X2, XC}, where
A,B,C is a partition of {3, . . . , N}. The variables of the polynomial
ring k[px : x ∈ X ] can be arranged in a (2 × 2 × d3 × · · · × dn)-tensor

p = (pijK : i ∈ [2], j ∈ [2],K ∈ ∏N
s=3[ds]). Define (d3 × · · · × dN )-

tensors Aij and (2× 2)-matrices BK via Aij
K = BK

ij := pijK . Then Aij

and BK are slices of p. The two sets of CI statements in gl (K2,N−2)
correspond to the two ideals

I1 = 〈2 × 2 minors of flattenings of Aij , i, j ∈ {1, 2}〉

and

I2 = 〈2 × 2 minors of BK ,K ∈ ∏N
i=3[di]〉.

In I1 we take all flattenings of the (N − 2)-way tensor Aij down to
a matrix and compute the 2 × 2 minors of those matrices. With this
notation, we have Igl (K2,N−2) = I1+ I2. The quadratic generators of I2
are of the form

(6.1a)

[
1 1 K
2 2 K

]
−
[
1 2 K
2 1 K

]
,

and, up to symmetry, the generators of I1 are of the form

(6.1b)

[
i j K L
i j K ′ L′

]
−
[
i j K ′ L
i j K L′

]
,
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where i, j,K,K ′, L, L′ are arbitrary in their respective domains (here,
the symmetry says that we can permute the last N − 2 columns).

Theorem 6.1. A Markov basis of the toric ideal IK2,N−2 with
d1 = d2 = 2 consists of the quadratic generators (6.1) of Igl (K2,N−2)

and the quartic binomials

BL11L12L21L22

3;k1,k2
:=

⎡
⎢⎣
1 1 k1 L11

1 2 k2 L12

2 1 k2 L21

2 2 k1 L22

⎤
⎥⎦−

⎡
⎢⎣
1 1 k2 L11

1 2 k1 L12

2 1 k1 L21

2 2 k2 L22

⎤
⎥⎦

for all k1, k2 ∈ [d3] and L11, L12, L21, L22 ∈ [d4] × · · · × [dn], and the
corresponding quartics BL11L12L21L22

a;k1,k2
for a = 4, . . . , N , where the roles

of the columns 3 and a are exchanged in the above equation.

Proof. The proof is by induction on N . The base case N = 4 is [14,
Corollary 2.2]. Suppose that Theorem 6.1 holds for some N . We show
that it also holds for N + 1. The graph K2,N−1 is obtained by gluing
the graph K2,N−2 and the graph K2,1 at the first two vertices. This is
a codimension-one toric fiber product, which is slow-varying, since all
quartic generators BL11L12L21L22

a;k1,k2
project to the zero polynomial when

just considering their indices associated to the first two vertices, see
[14, subsection 5.3].

We first show that the set B̃ which consists of all quartics of the
form BL11L12L21L22

a;k1,k2
and the quadratic moves of the form (6.1b) is a

Markov basis of the associated codimension-zero toric fiber product,
which is the graph model of the graph K̃2,N−1 with vertex set [N + 1]
and edge set {(i, j) : i < j ≤ N + 1, i ≤ 2}. Again, this can be

proved by induction: The induction base K̃2,1 = C3 is discussed in
Remark 5.2. By [14, Theorem 5.4], a Markov basis of IK̃2,N−1

consists
of the quadrics generating I2 and lifts of elements of the Markov bases
of IK̃2,N−2

and IK̃2,1
. The lift of a quadratic generator of IK̃2,N−1

is a
quadratic generator of I2. The lift of a quartic generator of IK̃2,N−1

or IK̃2,1
is of the form BL11L12L21L22

a;k1,k2
. This proves that B̃ is a Markov

basis of IK̃2,N−1
.

By [14, Theorem 5.10], we can obtain a Markov basis of IK2,N−1 from

B̃ by adding additional quadrics of form (6.1b) and moves obtained by
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gluing elements from the Markov bases of IK2,1 and IK2,N−2 . Since
K2,1 is decomposable, the quadratic moves of form (6.1a) alone form
a Markov basis of I2,1 (no quartics are needed). These quadratic
moves can only be glued with the corresponding quadratic generators
from IK2,N−1 , and this gluing procedure yields all quadratic moves of
form (6.1a).

To sum up, the quartic moves and the quadratic moves of form (6.1b)
belong to the associated codimension-one toric fiber product, and the
quadratic moves of form (6.1a) arise iteratively from the quadratic
generators of IK2,1 .

Now we proceed to describe the other minimal primes of the ideal
Igl (K2,N−2).

Lemma 6.2. Let a, b ∈ {3, . . . , N}, and let C ⊂ [da] and D ⊂ [db].
Then the ideal Pa,C,b,D generated by Igl (K2,N−2) and the variables

{p11K : Ka ∈ C} ∪ {p12K : Kb ∈ D} ∪ {p21K : Kb /∈ D}
∪ {p22K : Ka /∈ C}

is a prime ideal containing Igl (K2,N−2).

Proof. Pa,C,b,D is prime since it is a sum of geometrically prime
ideals which are defined in disjoint sets of variables. This can be seen
as follows. First, the variables in Pa,C,b,D generate a monomial prime
ideal. Second, all binomial generators of I2 are redundant modulo that
ideal, i.e., they are implied by the variables in Pa,C,b,D. Third, let
f = pu − pv be a binomial generator of I1. Then pu contains a variable
generating Pa,C,b,D if and only if pv contains a variable in Pa,C,b,D.
The binomials in I1 which are not implied by the variables in Pa,C,b,D

correspond to rank conditions on disjoint slices of the tensor p; hence,
they generate a binomial prime ideal over any field.

Proposition 6.3. All minimal primes of Igl (K2,N−2) except the toric
component IK2,N−2 are of the form Pa,C,b,D. Specifically:

1. If N = 4, then the set of minimal primes consists of the toric
component and all primes of the form Pa,C,a,D, where a ∈ {3, 4},
∅ 
= C 
= [da], and ∅ 
= D 
= [da].
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2. If N > 4, then the set of minimal primes consists of the toric
component and all primes of the form Pa,C,b,D, where a, b ∈ {3, . . . , N},
∅ 
= C 
= [da], and ∅ 
= D 
= [db].

The proof of Proposition 6.3 makes use of the following lemma.

Lemma 6.4. For any K ∈ ∏n
i=3[di],

Igl (K2,N−2) : p11Kp22K = Igl (K2,N−2) : p12Kp21K = IK2,N−2 .

In particular, if P is a minimal prime of Igl (K2,N−2) and not the toric
component IK2,N−2 , then p11Kp22K ∈ P and p12Kp21K ∈ P .

Proof. We need to prove that both p11kLp22kLB
L11L12L21L22

a;i1i2
and

p12kLp21kLB
L11L12L21L22

a;i1i2
belong to Igl (K2,N−2) and, by symmetry, it

suffices to treat the first binomial. Moreover, by symmetry we may
assume a = 3. The calculation can be done using tableau notation:⎡

⎢⎢⎢⎢⎢⎣

1 1 k1 L11

1 2 k2 L12

2 1 k2 L21

2 2 k1 L22

1 1 k L

2 2 k L

⎤
⎥⎥⎥⎥⎥⎦

∗
+

∗
+

−→

⎡
⎢⎢⎢⎢⎢⎣

1 1 k L11

1 2 k2 L12

2 1 k2 L21

2 2 k L22

1 1 k1 L

2 2 k1 L

⎤
⎥⎥⎥⎥⎥⎦ ∗

∗

−→

⎡
⎢⎢⎢⎢⎢⎣

1 1 k L11

1 2 k2 L12

2 1 k2 L21

2 2 k L22

1 2 k1 L

2 1 k1 L

⎤
⎥⎥⎥⎥⎥⎦

∗
+

∗
+

−→

⎡
⎢⎢⎢⎢⎢⎣

1 1 k L11

1 2 k1 L12

2 1 k1 L21

2 2 k L22

1 2 k2 L

2 1 k2 L

⎤
⎥⎥⎥⎥⎥⎦ ∗

∗

−→

⎡
⎢⎢⎢⎢⎢⎣

1 1 k L11

1 2 k1 L12

2 1 k1 L21

2 2 k L22

1 1 k2 L

2 2 k2 L

⎤
⎥⎥⎥⎥⎥⎦

∗

+

∗
+

−→

⎡
⎢⎢⎢⎢⎢⎣

1 1 k2 L11

1 2 k1 L12

2 1 k1 L21

2 2 k2 L22

1 1 k L

2 2 k L

⎤
⎥⎥⎥⎥⎥⎦.

Here, the first tableau and the last tableau correspond to the two
monomials of p11kLp22kLB

L11L12L21L22

3;k1k2
.

Proof of Proposition 6.3. We use a set-theoretic argument. Let p be
any point in the variety of Igl (K2,N−2), and consider the (d3×· · ·×dN )-

tensors Aij with Aij
K = pijK . If no coordinate of p vanishes, then p

is contained in the variety of IK2,N−2 . Therefore, suppose pijK = 0
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for some ijK ∈ ∏N
i=1[di]. The CI statements gl (K2,N−2) imply that

all Aij have rank one. Hence, there must be an index a such that
pijK′ = 0 whenever K ′ ∈ ∏N

i=3[di] satisfies K
′
a = Ka. In other words,

for all i, j ∈ {1, 2}, the pattern of zeros within Aij is a union of (N−3)-
dimensional slices.

For each a = 3, . . . , N , let Eij
a be the largest subset of [da] such

that pijK = 0 whenever Ka ∈ Eij
a . Then Aij

K 
= 0 if and only

if K ∈ ([d3] \ Eij
3 ) × · · · × ([dN ] \ Eij

N ). By Lemma 6.4, if p does

not lie in the toric component, then pijK = Aij
K = 0 for all K ∈

([d3]\Eij
3 )×· · ·×([dN ]\Eij

N ) (remember that ij denotes the “opposite”
string to ij, obtained by exchanging 0 ↔ 1 in each position). Again,
each of these entries must be contained in an (N − 3)-slice of zeros.
Hence, there must be an index aij such that [daij ] \ Eij

aij
is a subset of

Eij
aij

; for otherwise, if for each a there exists ia ∈ ([da]\Eij
a )∩([da]\Eij

a ),
then pijIpijI 
= 0, where Ia = ia for all a. This implies that we can

find subsets C ⊆ [da11 ], D ⊆ [da12 ], such that p ∈ V (Pa11,C,a12,D). This
shows the first statement, and it remains to see that certain choices of
Pa,C,b,D do not appear.

If C = ∅, then Pa,C,b,D contains the toric component: Indeed,
Pa,∅,b,D contains all monomials of the form p22K , and hence Pa,∅,b,D

contains all quartics. Therefore, Pa,∅,b,D is not a minimal prime, and
the same is true if C = [da], D = ∅ or D = [db]. Similarly, if N = 4,
then P3,C,4,D contains both monomials of any quartic.

It follows that all minimal primes are among the ideals Pa,C,b,D

listed in the statement of the theorem. It remains to show that all
these ideals are indeed minimal primes. Note that each of these ideals
contains a different set of variables of the same size, so they do not
contain each other. Furthermore, they each leave out at least one of
the quartic moves. Indeed, choose an index c ∈ {3, . . . , N} \ {a, b},
choose k1, k2 ∈ [dc], and choose L11, L12, L21, L22 ∈ ∏

i≥3,i	=c[di] such
that (L11)a /∈ C, (L22)a ∈ C, (L12)b /∈ D, (L21)b ∈ D. Then Pa,C,b,D

does not contain BL11L12L21L22

a;k1k2
, and so IK2,N−2 
⊆ Pa,C,b,D.

Theorem 6.5. The global Markov ideal Igl (K2,N−2) is a radical ideal
when d1 = d2 = 2, with irredundant prime decomposition

Igl (K2,N−2) = IK2,N−2 ∩
⋂

Pa,C,b,D
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with the intersection running over all a, b ∈ {3, . . . , N}, C ⊂ [da],
D ⊂ [db], C,D 
= ∅. When N = 4, we also require a = b.

Proof. Let J be the intersection of the toric component with all
minimal primes Pa,C,b,D. Lemma 6.2 shows I ⊆ J , and it remains
to show the opposite inclusion. It suffices to consider binomials: By
Proposition 6.3, the radical of I equals J , and therefore J is generated
by binomials [13, Theorem 3.1].

Let pu − pv ∈ J . If there exists a prime Pa,C,b,D such that pu

does not contain any of the variables defining Pa,C,b,D, then pu − pv

actually belongs to the ideal generated by the binomial part of Pa,C,b,D,
and hence pu − pv ∈ I. Therefore, we may assume in the following
that, for any prime Pa,C,b,D, the monomial pu contains at least one
of the variables defining Pa,C,b,D. Since pu − pv ∈ IK2,N−2 , there is a
decomposition pu − pv =

∑r
i=1(p

ui−1 − pui), where u0 = u, ur = v and
ui−1 − ui is an element of the Markov basis. If u0 − u1 is a quadratic
element of the Markov basis, then pu − pv − pu + pu1 is an element of
J and belongs to I if and only if pu − pv belongs to I (since pu − pu1

is contained in I as well as in each minimal prime).

Assume that u0−u1 corresponds to a quartic move, say BL11L12L21L22

3;k1k2

for some k1, k2 ∈ [c] and L11, L12, L21, L22 ∈ [d]. We use induction
on the number of mismatches of L11 and L22 and the number of
mismatches of L12 and L21 to show that we can replace this quartic with
a combination of quadratic Markov moves. This shows that pu − pu1

actually lies in I. If L11 = L22, then the calculation

⎡
⎢⎣
1 1 k1 L11

1 2 k2 L12

2 1 k2 L21

2 2 k1 L11

⎤
⎥⎦
∗

∗
−→

⎡
⎢⎣
1 2 k1 L11

1 2 k2 L12

2 1 k2 L21

2 1 k1 L11

⎤
⎥⎦

∗
∗
+
+

−→

⎡
⎢⎣
1 2 k2 L11

1 2 k1 L12

2 1 k1 L21

2 1 k2 L11

⎤
⎥⎦
∗

∗
−→

⎡
⎢⎣
1 1 k2 L11

1 2 k1 L12

2 1 k1 L21

2 2 k2 L11

⎤
⎥⎦

shows that BL11L12L21L11

3;k1k2
is a combination of quadratic Markov moves

and hence lies in I. By symmetry, the same is true when L12 = L21.
Therefore, we may assume L11 
= L22 and L12 
= L21 in the following.
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As shown above, there exists a variable pijkL that divides pu and

pu1 (in particular, pijkL is not involved in BL11L12L21L22

3;k1k2
). Without

loss of generality, assume i = j = 2. If there exists a ≥ 2 such that
La = (L11)a 
= (L22)a, then we can apply the moves[

2 2 k1 L22

2 2 k L

]
−
[
2 2 k1 L′

22

2 2 k L′

]
,

and [
2 2 k2 L22

2 2 k L

]
−
[
2 2 k2 L′

22

2 2 k L′

]
,

with

(L′
22)b =

{
(L22)b if b 
= a,

La if b = a,

and

L′
b =

{
Lb if b 
= a,

(L22)a if b = a,

to pu and pu1 . This effectively replaces L22 by L′
22, and L11 and L′

22

agree in more components than L11 and L22.

By symmetry, if there exist i, j ∈ {0, 1} and a ≥ 2 with L = Lij)a 
=
(Lij)a, then we can apply quadratic moves to make Lij and Lij more
similar to each other. Now we may assume that each variable pijkL
that divides pu satisfies La 
= (Lij)a. We show that it is still possible
for some i, j to reduce the number of mismatches between Lij and Lij .

Choose indices a and b such that (L11)a 
= (L22)a and (L12)b 
=
(L21)b. We claim that, in this case, there exist k3, k4 ∈ [d3] and
L5, L6 ∈

∏n
i=4[di] such that

• either (L5)a = (L6)a and p11k3L5p22k4L6 divides pu,

• or (L5)b = (L6)b and p12k3L5p21k4L6 divides pu.

Otherwise, pu would contain no defining variable of the prime Pa,C,b,D

with

C =

{
l ∈ [da] : p11kL does not divide pu for all k ∈ [d1],

L ∈
n∏

s=2

[ds] with La = l

}
,
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D =

{
l ∈ [db] : p12kL does not divide pu for all k ∈ [d1],

L ∈
n∏

s=2

[ds] with Lb = l

}

(note that if N = 4, then a = b). By symmetry, it suffices to consider
the first case, i.e., (L5)a = (L6)a and p11k3L5p22k4L6 divides pu. We
can then apply the moves[

1 1 k1 L11

1 1 k3 L5

]
−
[
1 1 k1 L′

11

1 1 k3 L′
5

]
and [

2 2 k1 L22

2 2 k3 L6

]
−
[
2 2 k1 L′

22

2 2 k3 L′
6

]
with

(L′
11)c =

{
(L11)c if c 
= a,

(L5)a if c = a,
(L5)

′
c =

{
(L5)c if c 
= a,

(L22)a if c = a,

and

(L′
22)c =

{
(L22)c if c 
= a,

(L6)a if c = a,
(L6)

′
c =

{
(L6)c if c 
= a,

(L22)a if c = a,

to pu and pu1 . This effectively replaces L11 by L′
11 and L22 by L′

22, and
L′
11 and L′

22 agree in more components than L11 and L22. This proves
the induction step and shows that pu − pv lies in I.

With this primary decomposition, we can analyze the positive mar-
gins property.

Theorem 6.6. For N ≥ 4, the complete bipartite graph K2,N−2,
where the first group of nodes is binary, has the positive margins
property if and only if N = 4.

Proof. We check the condition in Lemma 4.1. If N = 4, then each
minimal prime is of the form P = Pa,C,a,D. Because of the symmetry
we may assume a = 3. Then

mP =
∏

k,l:k/∈C

p11kl
∏

k,l:k/∈D

p12kl
∏

k,l:k∈D

p21kl
∏

k,l:k∈C

p22kl.
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Suppose that C and D intersect. Then the {1, 3}-marginal of the
exponent vector of mP is not strictly positive, since any variable p1jkl
that divides mP satisfies k /∈ C ∩ D. Similarly, if C and D do not
intersect, then C intersects the complement of D, and hence the {2, 3}-
marginal cannot be strictly positive.

If N > 4, then consider a prime of the form P = P3,C,4,D. Then

mP =
∏

K:Ka /∈C

p11K
∏

K:Kb /∈D

p12K
∏

K:Kb∈D

p21K
∏

K:Ka∈C

p22K ,

and the exponent vector has strictly positive margins. Indeed, take
for example the {1, a}-marginal. For any k ∈ [da], choose K,L ∈
[d3] × · · · × [dN ] such that Kb /∈ D,Lb ∈ D and Ka = k = La. Then
p12Kp21L divides mP , and hence the {1, k}-count and the {2, k}-count
of the {1, a}-marginal are larger than zero.

Finally, we want to prove that K2,N−2 satisfies the interior point
property. We first describe additional inequalities of the marginal cone.

Lemma 6.7. Let N ≥ 4, and assume d1 = d2 = 2. For any table
u ∈ Nn, denote by y = Au the vector of K2,N−2-marginals, which has

components yijkl for i = 1, 2, j = 3, . . . , N , and (k, l) ∈ [2]×[dj]. Let a, b
be such that 3 ≤ a < b ≤ N , and let C ⊂ [da], D ⊂ [db] be non-empty
subsets such that C 
= [da] and D 
= [db]. For any choice of a, b, C,D,

(6.2)
∑
k∈C

y1a1k +
∑
k/∈C

y2a2k +
∑
l∈D

y2b1l −
∑
l∈D

y1b1l ≥ 0.

Proof. It suffices to show that each unit vector in Nn satisfies (6.2).
Consider the unit vector ex corresponding to x ∈ X . If the last
summand

∑
l∈D y1b1l (ex) vanishes, then (6.2) holds. Otherwise, x1 = 1

and xl ∈ D, and so this sum equals one. In this case, at least one of
the following three possibilities happens. Either xa ∈ C, or xa /∈ C and
x2 = 2, or x2 = 1. In any case,

∑
k∈C y1a1k +

∑
k/∈C y2a2k +

∑
l∈D y2b1l ≥ 1,

and so (6.2) holds.

Theorem 6.8. Assume that d1 = d2 = 2. If u ∈ Nn has strictly
positive K2,N−2-margins, and if u satisfies all inequalities of the form
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(6.2) with strict inequality, then the fiber of u is connected by quadratic
moves.

Proof. We apply Lemma 2.5. Let P = Pa,C,b,D be a minimal prime.
If a = b, then the proof of Theorem 6.6 shows that the exponent vector
uP of mP has at least one vanishing marginal. If a 
= b, then a direct
verification shows that uP satisfies∑

k∈C

y1a1k +
∑
k/∈C

y2a2k +
∑
l∈D

y2b1l −
∑
l∈D

y1b1l = 0.

Proof of Theorem 4.6. Combine Theorems 6.6 and 6.8.
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