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WHEN IS TIGHT CLOSURE
DETERMINED BY THE TEST IDEAL?

JANET C. VASSILEV AND ADELA N. VRACIU

ABSTRACT. We characterize the rings in which the equal-
ity (τI : τ) = I∗ holds for every ideal I ⊂ R. Under certain
assumptions, these rings must be either weakly F-regular or
one-dimensional.

1. Introduction. Test ideals play a major role in the theory of tight
closure. The tight closure of arbitrary ideals is very difficult to compute,
even in relatively simple rings, but the test ideal can be frequently
computed, especially in Gorenstein rings. Moreover, test ideals encode
geometric information about the nature of the singularity of the ring.
We recall the definitions and basic facts.

Throughout this paper, (R, m) is a local domain of characteristic p.
We denote positive integer powers of p by q.

Definition 1.1. Let I ⊂R be an ideal. We say that x∈R is in the
tight closure, I∗, of I if there is a c �=0 such that cxq ∈I [q] =({iq|i∈I}).
We say that I is tightly closed if I = I∗.

Definition 1.2. The test ideal τ is defined by

τ =
⋂

I⊂R

(I : I∗),

where I runs over all ideals I ⊂ R.

The fact that τ �= (0) is a highly nontrivial and important result.
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It is clear from the definition that I∗ ⊆ I : τ , and thus I : τ provides
an upper bound for tight closure. This bound can be somewhat refined
with additional assumptions on the ring, as shown in the following
result of the second author:

Theorem 1.3. [15] If R is a complete domain of characteristic p,
then the test ideal is a strong test ideal, i.e. we have τI = τI∗, and
thus I∗ ⊆ (τI : τ) for all ideals I ⊂ R.

Also in the case when the test ideal is the maximal ideal, a theorem
of Hara and Smith [5] says that over any local ring with test ideal equal
to the maximal ideal, the test ideal is the strong test ideal.

We say that tight closure is determined by the test ideal if the equality
I∗ = τI : τ holds. This is known to hold if the ideal I is generated
by a system of parameters in a Gorenstein ring R (Corollary 4.2 (2) in
[11]), or, more generally, if I is an ideal of finite projective dimension
in a Gorenstein ring (Theorem 1(a) in [16]). The main result of this
paper shows, under certain assumptions, that the equality cannot hold
for all ideals I ⊂ R unless the ring is weakly F-regular (i.e. τ = R) or
one-dimensional.

In a similar vein, we mention a result of Yao [Thm. 2.5 (ii)] in [17],
which states that if R has finite Frobenius representation type, then
there exists a finitely generated R-module N such that I∗ = (IN :R N)
for every ideal I ⊂ R. Thus, our result indicates that the R-module N
cannot be an ideal unless R is one-dimensional or weakly F-regular.

A different motivation for our work comes from the following result
of Heinzer, Ratliff and Rush in [6, Theorem 7.5]:

Theorem 1.4. Let (R, m) be a local ring. A necessary and sufficient
condition for every nonzero m-primary ideal of R to be basically full is
that m is principal and that R is a principal ideal ring.

In their terminology, anm-primary ideal I is basically full if(mI :m)=I,
and for any ideal I, (mI : m) is called the basically full closure of I. The
original motivation for this paper was the desire to extend Theorem 6
to take tight closure into account. Thus, we asked the question: when
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is (mI : m) = I∗ for all m-primary ideals I ⊂ R? Theorem 3.2 shows
that (under certain assumptions) this is the case if and only if R is
one-dimensional.

2. ∗-T -basically full ideals. We extend the definition of the
basically full closure in [6] using any ideal T to define the T -basically
full closure of an ideal I to be ITbf = (TI : T ). This is a true closure
operation as:

Proposition 2.1. Let (R, m) be a local domain. The T -basically full
closure of an ideal (TI : T ) is a closure operation satisfying:

(1) I ⊆ ITbf .

(2) If I ⊆ J , then ITbf ⊆ JTbf .

(3) (ITbf )Tbf = ITbf .

(4) ITbfJTbf ⊆ (IJ)Tbf .

Proof. (1) and (2) are clear.

For (3) note that if I is any ideal and ITbf = (TI : T ), TITbf =
T (TI : T ) = TI, hence (TITbf : T ) = (TI : T ) = ITbf .

For (4), note that

ITbfJTbf = (TI : T )(TJ : T ) ⊆ (T (TI : T )(TJ : T ) : T )
⊆ (TI(TJ : T ) : T ) ⊆ (TIJ : T ) = (IJ)Tbf .

We want to determine the domains which satisfy ITbf = I∗ for all
m-primary ideals I. This prompts the following definition:

Definition 2.2. I is T -basically full if ITbf = I. We will say that I
is ∗-T -basically full if ITbf = I∗.

Theorem 2.3. Let (R, m) be a complete local normal Cohen
Macaulay domain of positive characteristic with perfect residue field
having a canonical module and let τ be the test ideal. If T is an ideal
of grade at least two, then every m-primary ideal is ∗-T -basically full if
and only if R is weakly F -regular and T = R. In particular, every m-
primary ideal is ∗-τ-basically full if and only if R is weakly F-regular.
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Before the proof, note that the normal assumption is necessary. If
R is a one-dimensional domain (in which case normal is equivalent
to regular and therefore it is also equivalent to weakly F-regular) the
following Proposition shows that every m-primary ideal is ∗-τ -basically
full.

Proposition 2.4. Assume that (R, m) is complete domain with
infinite residue field. If R has Krull dimension one, then every m-
primary ideal is ∗-τ-basically full.

Proof. In a one-dimensional domain with infinite residue field, every
m-primary ideal I has a principal minimal reduction (x). For principal
ideals, tight closure is the same as integral closure, and it follows that
I∗ = (x)∗ (see [12, Example 1.6.2]).

We have

(τI : τ) ⊆ (τI∗ : τ) = (τ(x)∗ : τ) = (τ(x) : τ) ⊆ (x) = (x)∗ = I∗.

The equality τ(x)∗ : τ = τ(x) : τ uses the fact that τ is a strong test
ideal, and the inclusion τ(x) : τ ⊆ (x) uses the determinant trick.

Since τ is a strong test ideal, the inclusion I∗ ⊆ (τI : τ) also holds.

Note that in the case of a one-dimensional domain, the only non m-
primary ideals are (0) and R, and thus Theorem 2.3 shows that in this
case I∗ = τI : τ holds for every ideal I, hence the tight closure of every
ideal in a one-dimensional domain is determined by the test ideal.

Proof of 2.3. Note that the last statement follows from the previous
one, since in an excellent normal ring the test ideal always has depth
at least two (see Theorem 6.2 in [9]).

One implication is clear: if R is weakly F -regular and T = R, then
I∗ = I = TI : T for every ideal I ⊂ R.

Conversely, suppose that all m-primary ideals are ∗-T -basically full.
It is enough to prove that T must be a principal ideal, because then
the grade assumption implies that T = R, and thus I∗ = TI : T = I
for every m-primary ideal I, which implies that R is weakly F-regular.
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Assume by contradiction that the minimal number of generators of
T is ν(T ) = n ≥ 2, and write T = (y1, y2, . . . , yn).

Following the argument (2.2.1), the proof of Theorem 2.2.2 in [2],
suppose J is a canonical ideal and choose x1, . . . , xd a system of
parameters for R such that x1 ∈ J , and x2, . . . , xd form a regular
sequence modulo J . Note that a = (J, x2, . . . xd) is an irreducible ideal,
and at = (xt−1

1 J, xt
2, . . . x

t
d) are irreducible for all t ≥ 2. Let v denote

the socle element of a, i.e. (a : m) = (a, v) and let vt = (x1 · · ·xd)t−1v
be the socle element of at.

By Matlis duality, we have

λ

(
(at : mT )
(at : T )

)
= λ

(
at + T

at + mT

)
= λ

(
T

at ∩ T + mT

)
.

Note that at ∩ T ⊆ mt ∩ T ⊆ mT for t 	 0 by the Artin-Rees Lemma,
and therefore this length is equal to one if and only if T is a principal
ideal.

Fix a t0 large enough so that

λ

(
(at0 : mT )
(at0 : T )

)
≥ 2

and choose u1, u2 ∈ (at0 : mT ) such that their images are linearly
independent in the vector space (at0 : mT )/(at0 : T ).

Note that for all t ≥ 1, (x1 · · ·xd)tu1, (x1 · · ·xd)tu2 ∈ (at0+t : mT ),
and their images in (at0+t : mT )/(at0+t : T ) are linearly indepen-
dent, because the map R/at0 → R/at0+t given by multiplication by
(x1 · · ·xd)t is injective.

Consider the ideals

It1 = (at0+t, (x1 · · ·xd)tu2), It2 = (at0+t, (x1 · · ·xd)tu1).

We claim that (x1 · · ·xd)tui ∈ TIti : T for i = 1, 2 when t 	 0.

The key point in the proof of the claim is the observation that
the assumption that T has grade at least two implies that we can
choose x1, . . . , xd so that at least two of them belong to T (by prime
avoidance). With the xi’s chosen this way, we have

(2.1) (x1 · · ·xd)tat0 ⊆ T at0+t.
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For j = 1, . . . , n, we have uiyj ∈ at0 : m = (at0 , vt0). Moreover, since
ui /∈ at0 : T , for each i there exists a j = ji such that uiyji /∈ at0 ,
so that we can write uiyji = αvt0 (mod at0), where α is a unit. This
shows that vt0 ∈ (at0 , Tui) for all i, and therefore

(x1 · · ·xd)tvt0 ∈ ((x1 · · ·xd)tat0 , T (x1 · · ·xd)tui) ⊆ T (at0+t, (x1 · · ·xd)tui)

when t 	 0 by Equation 2.1. Combining Equation 2.1 with the above
chain of containments, we conclude that (x1 · · ·xd)t(at0 , vt0) ⊆ TIti

for each i (when t 	 0), which finishes the proof of the claim, since
(x1 · · ·xd)tuiT ⊆ (x1 · · ·xd)t(at0 , vt0) by the choice of u1, u2.

Since the ideals Iti are assumed to be ∗ − T−basically full, we have

(x1 · · ·xd)tui ∈ (TIti : T ) = I∗ti.

Note that the same argument works when u1 is replaced by u1 + αu2,
where α ∈ R is arbitrary. Therefore, Lemma 2.5 can be applied
to see that (x1 · · ·xd)tui ∈ a∗t0+t. This is a contradiction, since
(x1 · · ·xd)tui /∈ at0+t : T and T at0+t : T � at0+t : T which implies
that (x1 · · ·xd)tui /∈ a∗t0+t = T at0+t : T .

Lemma 2.5. Assume that R is a complete normal domain of positive
characteristic p, with perfect residue field. If I ⊂ R is an ideal, and
f, g ∈ R are such that f ∈ (I, g)∗ and g ∈ (I, f + αg)∗ for all α ∈ R,
then f, g ∈ I∗.

Proof. Theorem 2.1 in [13] shows that (I, g)∗ = (I, g)+(I, g)∗sp, and
therefore there exists an α ∈ R, a q0 = pe0 , and a c ∈ Ro such that c(f+
αg)q = bgq modI [q] for all q = pe, with b ∈ mq/q0 . On the other hand,
there exists c′ ∈ Ro such that c′gq = d(f + αg)q modI [q]. Combining
these two equations, we get cc′(f + αg)q = bd(f + αg)q modI [q].
Since bd ∈ mq/q0 and c, c′ are fixed, Proposition 2.4 in [1] shows that
f + αg ∈ I∗. Since g ∈ (I, f + αg)∗, we also get g ∈ I∗, and since
f ∈ (I, g)∗ we now get f ∈ I∗ as well.

We cannot remove the assumption of perfect residue field in Lemma 2.5.
Consider the following example motivated by [4, p. 381]:



WHEN IS TIGHT CLOSURE DETERMINED BY THE TEST IDEAL? 597

Example 2.6. Let R =
Z/pZ(u, v, w)[[x, y, z]]

(uxp + vyp + wzp)
which is a 2-

dimensional, Gorenstein normal domain as remarked by Epstein in
[4]. Let I = (x2, y2, z). x ∈ (I, y)F ⊆ (I, y)∗ and for all a ∈ R,
y ∈ (I, x + ay)F ⊆ (I, x + ay)∗. However, x, y /∈ I∗ = (xy, x2, y2, z).
Hence Lemma 2.5 requires a perfect residue field.

It may be however that Theorem 2.3 holds when the residue field is
not perfect, as the above ring does not satisfy I∗ = (τI : τ) for all I. To
see this we will compute the test ideal for R and exhibit the offending
m-primary ideal I.

We claim that for all t ≥ p we have (yt, zt)∗ = (yt, zt) + m2t−1 =
(yt, zt) : mp−1, and thus τ = mp−1.

In order to prove the first equality, it is enough to consider monomials
of the form xkyrzs, with k ≤ p−1. Note that xkyrzs ∈ (yt, zt) ⇔ xk ∈
(yt−r, zt−s)∗ ⇔ xkp ∈ (y(t−r)p, z(t−s)p).

We have

xkp = (− 1
u

(vyp + wzp))k =
(−1)k

uk

k∑
i=0

(
k
i

)
viwk−iyipz(k−i)p,

and thus the tight closure membership can be tested inside the regular

ring k[[y, z]]. Since k ≤ p − 1, none of the binomial coefficients
(

k
i

)

is equal to zero, and thus we see that xk ∈ (yt−s, zt−s)∗ ⇔ for all
i = 0, . . . , k we have either i ≥ t− r, or k − i ≥ t− s. This amounts to
k ≥ 2t− r − s − 1, which proves the first equality.

For the second equality, it is enough to show that (yt, zt) : m2t−1 =
(yt, zt) + mp−1 (since the ring is Gorenstein). It is easy to see that
(yt, zt) : m = (xt, yt, yt−1zt−1xp−1) = (yt, zt) + m2t+p−3, and one can
check by induction on l that (yt, zt) : ml = (yt, zt) + m2t+p−2−l for all
l ≥ 1. Taking l = 2t − 1 yields the desired conclusion.

Now we show that for p ≥ 5, these rings do not have the property
that every m-primary ideal is ∗-τ -basically full.

Consider I = (x3, y3, z3) and r = xy2. We have r ∈ (mp−1I : mp−1);
however, r /∈ I∗. Using the relation, zp = − u

wxp − v
wyp, we see that

z3p = − u3

w3
x3p − 3

u2v

w3
x2pyp − 3

uv2

w3
xpy2p − v3

w3
y3p.



598 JANET C. VASSILEV AND ADELA N. VRACIU

Hence if xy2 ∈ I∗, then xpy2p ∈ (x3p, y3p, z3p)∗ = (x3p, y3p, u2vx2pyp +
uv2xpy2p)∗, implying that xpy2p ∈ (x3p, y3p, x2pyp)∗ in the regular ring
k[[x, y]]. This leads to a contradiction.

For p = 3, consider the ideal I = (x4, y4, z4) and r = xy3. Note
that r ∈ (m2I : m2) if and only if x3y3 ∈ I which is the case as
x3y3 = u

v x6 + v
uy6 + 2w2

uv z6 ∈ (x4, y4, z4). As in the argument above,
xy3 ∈ I∗ is equivalent to xy3 ∈ (x4, y4, x3y)∗ in the regular ring k[[x, y]].
Again this leads to a contradiction.

For p = 2, we have not found an ideal I for which (mI : m) �= I∗.
For characteristic 3 and higher, the ring k[[x, y, z]]/(x2 + y2 + z2) is

F -rational. Certainly,
Z/2Z(u, v, w)[[x, y, z]]

(ux2 + vy2 + wz2)
is not as (y, z)∗ = m, but

it may be that this ring satisfies (mI : m) = I∗ for all m-primary ideals
I.

Since we do not know whether the conclusion of Theorem 2.3 holds in
the absence of the perfect residue field assumption, it is worth pointing
out that if R is a Gorenstein ring and T is an ideal of grade at least
two such that for every m-primary ideal I we have I∗ = TI : T , then
T is forced to be the test ideal. In particular, this shows that the full
conclusion of Theorem 2.3 holds for the rings considered in Example 2.6
for p ≥ 3.

Before the following proposition, we recall a definition of Hochster in
his paper on Cyclic Purity [7, Definition 1.1]:

Definition 2.7. A local Noetherian ring (R, m) is approximately
Gorenstein if for every N > 0, there is an m-primary ideal I ⊆ mN

which is irreducible.

Hochster noted in [7, Remark 4.8(b)] that a generically Gorenstein
Cohen Macaulay ring with a canonical module is approximately Goren-
stein.

Proposition 2.8. Assume that (R, m) is an approximately Goren-
stein ring with test ideal τ . If T is an ideal such that every m-primary
ideal of R is ∗-T -basically full, then T ⊆ τ .

If we moreover assume that R is Gorenstein and T has grade at least
two, then T = τ .
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Note that the assumption that T has grade at least two is necessary in
the second part of the Proposition. If R is a weakly F-regular domain
and T is a principal ideal, then I∗ = I = TI : T for every I, but
T �= τ = R.

Proof. Let {at} be a sequence of irreducible ideals cofinal with the
powers of m. We have

τ =
⋂
t

at : a∗t =
⋂
t

at : (T at : T ) ⊇
⋂
t

at : (at : T ) =
⋂
t

(at + T ) = T.

Now assume that R is Gorenstein and T has grade at least two. Let
x1, . . . , xd be a system of parameters for R such that at least two of
them belong to T .

Let at = (xt
1, x

t
2, . . . , xt

d). We claim that a∗t = at : T for all t.
Assuming the claim, we obtain

T =
⋂
t

(at + T ) =
⋂
t

(at : (at : T )) =
⋂
t

(at : a∗t ) = τ.

In order to prove the claim, consider u ∈ at : T . Since at least two out
of x1, . . . , xd belong to T , we have (x1 · · ·xd)at ⊆ T at+1, and therefore
(x1 · · ·xd)u ∈ T at+1 : T = a∗t+1. Thus, u ∈ a∗t+1 : (x1 · · ·xd) ⊆ a∗t .

3. When the basically full closure and the tight closure
correspond for all m-primary ideals. In this section we extend the
definition of basically full closure of [6] in a slightly different direction,
using the maximal ideal m instead of τ (thus, this version is closer to
the original one in [6]).

Definition 3.1. We will say an m-primary ideal I is ∗-basically full
if (mI : m) = I∗.

Theorem 3.2. Let (R, m) be a local Cohen Macaulay domain.

(a). If R is a one-dimensional ring with test ideal equal to m, then
all m primary ideals are ∗-basically full.
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(b). Assume in addition that R is normal and has perfect residue
field. Then R is a one-dimensional ring if and only if all m primary
ideals are ∗-basically full.

Proof. (a). Follows from the same proof as in Proposition 2.4 (using
the fact that when m is the test ideal, it is a strong test ideal even
without assuming that the ring is complete).

(b). Assume that all m primary ideals are ∗-basically full. Note that
this assumption implies that τ = m or τ = R, since

τ =
⋂

I⊂R

(I : I∗) =
⋂

I⊂R

(I : (mI : m)) ⊇
⋂

I⊂R

(I : (I : m)) ⊇ m.

If τ = m, then we are under the assumptions of Theorem 2.4, and
thus τ = R, which is a contradiction. If τ = R, then we have
(mI : m) = I∗ = I, i.e. every m-primary ideal is basically full, and
Theorem 1.4 applies to show that R must have dimension one.

To see some examples we will use the following theorem from the first
author’s thesis [14]:

Theorem 3.3. Let (R, m) be a one-dimensional domain. The test
ideal of R is equal to the conductor, i.e. τ = c = {c ∈ R|φ(1) = c, φ ∈
HomR(R, R)}.

Note, in a one-dimensional local semigroup ring, the semigroup is
a sub-semigroup of N0. For each sub-semigroup S of N0, there is a
smallest m such that for all i ≥ m, i ∈ S. The conductor of such a one
dimensional semigroup ring is c =< tm, tm+1, tm+2, . . . >, [3, Exercise
21.11].

Example 3.4. The rings k[[t2, t3]] and k[[t3, t4, t5]] are one dimen-
sional domains with test ideal equal to the maximal ideal. Every m-
primary ideal of each ring is ∗-basically full.

Example 3.5. The test ideal of k[[t2, t5]] is (t4, t5) , hence there
are ideals in k[[t2, t5]] which are not ∗-basically full. For example,
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(t4)∗ = (t4) : (t4, t5) = (t4, t5) and (m(t4) : m) = (t4, t7) ⊆ (t4, t5).
In fact, for all n ≥ 4,

(tn)∗ = (tn, tn+1) � (tn, tn+3) = (m(tn) : m).
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