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EXTENDED MODULES

WOLFGANG HASSLER AND ROGER WIEGAND

Introduction. Suppose R and S are local rings and (R,m) → (S,n)
is a flat local homomorphism. Given a finitely generated S-module N ,
we say N is extended (from R) provided there is an R-module M such
that S ⊗R M is isomorphic to N as an S-module. If such a module
M exists, it is unique up to isomorphism (cf. [9, (2.5.8)]), and it is
necessarily finitely generated.

The m-adic completion R → R̂ and the Henselization R → Rh are
particularly important examples. One reason is that the Krull-Remak-
Schmidt uniqueness theorem holds for direct-sum decompositions of
finitely generated modules over a Henselian local ring. Indeed, failure
of uniqueness for general local rings stems directly from the fact that
some modules over the Henselization (or completion) are not extended.
Understanding which Rh-modules are extended is the key to unraveling
the direct-sum behavior of R-modules.

Throughout, we assume that (R,m) and (S,n) are Noetherian local
rings and thatR → S is a flat local homomorphism. Many of our results
generalize easily to a mildly non-commutative setting. Moreover, it
is not always necessary to assume that our rings are local. Thus,
we assume that A is a commutative ring, that B is a faithfully flat
commutative A-algebra, and that Λ is a module-finite A-algebra.

Given a finitely generated left B ⊗A Λ-module N , we say that N is
extended (from Λ) provided there is a finitely generated left Λ-module
M such that B ⊗AM is isomorphic to N as a B ⊗A Λ-module.

In Sections 1 and 2 of the paper, we examine how the extended
modules sit inside the family of all finitely generated modules. In
Sections 3 – 4 we consider rings of dimension 2 and 1, respectively, find
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criteria for a module to be extended, and show how the extendedness
problem for one-dimensional rings reduces to the Artinian case. In
Section 5, we find situations where every finitely generated B-module
is a direct summand of an extended module, and in Section 6 we make
a few observations about the Artinian case.

1. Two out of three: direct sums. Our goal in this section is to
prove the following theorem, which generalizes Proposition 3.1 of [12]:

Theorem 1.1. Let A → B be a faithfully flat homomorphism of
commutative, Noetherian, semilocal rings. Let Λ be a module-finite A-
algebra, and let N,N ′ and N ′′ be finitely generated left B⊗AΛ-modules,
with N ∼= N ′ ⊕N ′′. If two of the modules N,N ′, N ′′ are extended, so
is the third.

The first step in the proof is to observe that finitely generated modules
over Γ := B ⊗A Λ satisfy direct-sum cancellation. This is essentially
contained in E. G. Evans’s paper [8], but we need a little argument to
deal with the non-commutative setting.

Lemma 1.2. Let Γ be a module-finite algebra over a commutative
Noetherian semilocal ring B, and let U, V and W be finitely generated
left Γ-modules. If U ⊕W ∼= V ⊕W , then U ∼= V .

Proof. Let E be the endomorphism ring EndΓ(W ), and let J(−)
denote the Jacobson radical. Then E/ J(E) is a module-finite B/ J(B)-
algebra and therefore is Artinian. (Thus E is “semilocal” in the non-
commutative sense.) Therefore E has 1 in the stable range (cf. [10,
Theorem 4.4]), and by [8, Theorem 2] we have U ∼= V .

If, in Theorem 1.1, N ′ and N ′′ are extended, then N is obviously
extended. The other two implications are symmetric, and so we want
to prove that if N and N ′ are extended, then so is N ′′.

It is convenient to use the notation “X |Λ Y ”, for Λ-modules X and
Y , to mean that there is a Λ-module Z such that X ⊕ Z ∼= Y . When
the ring Λ is understood, we will write “X | Y ”.
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Assume, now, that N ∼= B ⊗A M and N ′ ∼= B ⊗A M ′, where M
and M ′ are left Λ-modules. Then (B ⊗A M ′) ⊕ N ′′ ∼= B ⊗A M , so
B⊗AM ′ |B⊗AΛ B⊗AM . Suppose we can conclude that M ′ |Λ M , say,
M ′⊕M ′′ ∼= M . Then we will have (B⊗AM ′)⊕(B⊗AM ′′) ∼= B⊗AM ,
and, by Lemma 1.2, N ′′ ∼= B ⊗A M ′′. Therefore Theorem 1.1 is a
consequence of the following result (where we no longer need to assume
that B is semilocal):

Theorem 1.3. Let A → B be a faithfully flat homomorphism of
commutative Noetherian rings, with A semilocal. Let Λ be a module-
finite A-algebra, and let M and M ′ be finitely generated left Λ-modules.
If B ⊗AM ′ |B⊗AΛ B ⊗AM , then M ′ |Λ M .

Note that this includes the well-known result on faithfully flat descent
of isomorphism [9, (2.5.8)]: If B⊗AM ′ ∼=B⊗AΛ B⊗AM , Theorem 1.3
implies that M ′ | M and M | M ′, and it follows easily that M ′ ∼= M .
Our proof of the theorem is based on the following beautiful result due
to R. Guralnick:

Theorem 1.4. [13, Theorem A] Let (R,m, k) be a local ring
and Λ a module-finite R-algebra. Given finitely generated left Λ-
modules U and V , there is an integer e = e(U, V ), depending only
on U and V , with the following property: For each positive integer f
and each Λ-homomorphism ξ : U/me+fU → V/me+fV , there exists
σ ∈ HomΛ(U, V ) such that σ and ξ induce the same homomorphism
U/mfU → V/mfV . (Thus the outer and bottom squares in the
diagram below both commute, though the top square may not.)

U �
σ

�

V

�

U/me+fU �

ξ

�

V/me+fV

�

U/mfU �

ξ = σ
V/mfV
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Proof. Choose exact sequences of left Λ-modules

Λ(n) α−→ Λ(m) → U → 0,

Λ(n) β−→ Λ(m) → V → 0.

Define a Λ-homomorphism

T : EndΛ(Λ(m)) × EndΛ(Λ(n)) → HomΛ(Λ(n),Λ(m))

by T (μ, ν) = μα − βν. Applying the Artin-Rees Lemma to the
submodule Im(T ) of HomΛ(Λ(n),Λ(m)), we get a positive integer
e = e(U, V ) such that

(1) Im(T ) ∩ me+f HomΛ(Λ(n),Λ(m)) ⊆ mf Im(T ) for each f > 0.

Suppose now that ξ : U/me+fU → V/me+fV . We can lift ξ to
homomorphisms μ0 and ν0 making the following diagram commute:

(2)

(Λ/me+fΛ)(n)
�

α

�

ν0

(Λ/me+fΛ)(m)
�

�

μ0

U/me+fU �

�

ξ

0

(Λ/me+fΛ)(n)
�

β
(Λ/me+fΛ)(m)

� V/me+fV � 0

Lifting μ0 and ν0 to maps μ0 ∈ EndΛ(Λ(m)) and ν0 ∈ EndΛ(Λ(n)), we
see, by commutativity of (2), that T (μ0, ν0) ∈ me+f HomΛ(Λ(n),Λ(m)).
By (1), T (μ0, ν0) ∈ mf Im(T ). Therefore there is a pair (μ1, ν1) ∈
mf (EndΛ(Λ(m)) × EndΛ(Λ(n))) such that T (μ1, ν1) = T (μ0, ν0). Set
(μ, ν) := (μ0, ν0) − (μ1, ν1). Then T (μ, ν) = 0, so μ induces a Λ-
homomorphism σ : U → V . Since μ and μ0 agree modulo mf , σ and ξ
induce the same map U/mfU → V/mfV .

Corollary 1.5. [13, Corollary 2]. Let (R,m, k) be a local ring and
Λ a module-finite R-algebra. Given finitely generated left Λ-modules U
and V , put � := max{e(U, V ), e(V, U)}, where e(−,−) is as in Theorem
1.4. If U/m�+1U | V/m�+1V , then U | V .

Proof. Choose Λ-module homomorphisms ξ : U/m�+1U → V/m�+1V
and η : V/m�+1V → U/m�+1U such that ηξ = 1U/m�+1U . By Theorem
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1.4 there exist Λ-homomorphisms σ : U → V and τ : V → U such
that σ agrees with ξ modulo m and τ agrees with η modulo m.
By Nakayama’s lemma, τσ : U → U is surjective and therefore an
automorphism. It follows that U | V .

We need one more preliminary result before we can prove Theorem
1.3.

Lemma 1.6. [22, 1.2] Let A→ B be a faithfully flat homomorphism
of commutative rings, let Λ be a module-finite A-algebra, and let U and
V be finitely presented left Λ-modules. If B ⊗A U |B⊗AΛ B ⊗A V , then
there is a positive integer r such that U |Λ V (r).

Proof. Choose B ⊗A Λ-homomorphisms B ⊗A U α−→ B ⊗A V and
B ⊗A V

β−→ B ⊗A U such that βα = 1B⊗AU . Since ΛV is finitely
presented, the natural map

B ⊗A HomΛ(V, U) → HomB⊗AΛ(B ⊗A V,B ⊗A U)

is an isomorphism. Therefore we can write β = b1 ⊗ σ1 + · · ·+ br ⊗ σr,
with bi ∈ B and σi ∈ HomΛ(V, U) for each i. Put σ := [σ1 · · ·σr ] :
V (r) → U . Then

(1B ⊗ σ)

[ b1
...
br

]
α = 1B⊗AU ,

so 1B ⊗ σ : B ⊗A V (r) → B ⊗A U is a split surjection. It follows that
1B ⊗ σ induces a surjective map HomB⊗AΛ(B ⊗A U,B ⊗A V (r)) →
HomB⊗AΛ(B ⊗A U,B ⊗A U). Since ΛU is finitely presented, this
map is obtained by change of rings from the map HomΛ(U, V (r)) →
HomΛ(U,U) induced by σ. By faithful flatness, the map HomΛ(U, V (r)) →
HomΛ(U,U) is surjective, whence σ is a split surjection.

Proof of Theorem 1.3. Suppose first that A is local with maximal
ideal m. By choosing a maximal ideal n of B with mB ⊆ n, we can
replace A→ B by the flat local homomorphism A→ Bn. Thus we may
assume that B is local. By Corollary 1.5 we can replace A → B by
A/m�+1 → B/m�+1B and thereby assume that A is Artinian. Under
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these assumptions, we proceed by induction on the length of M ′ as a
Λ-module. Let

(B ⊗AM ′) ⊕ U ∼= B ⊗AM
as B ⊗A Λ-modules.

By Lemma 1.6, we have M ′ |Λ M (r) for some positive integer r.
Assuming M ′ 	= 0, write ΛM

′ = V ⊕X , where V is an indecomposable
left Λ-module. Then V |Λ M (r). By the Krull-Remak-Schmidt
Theorem for finite-length modules, V |Λ M , say, ΛM ∼= V ⊕ Y . Then

(B ⊗A V ) ⊕ (B ⊗A X) ⊕ U ∼= (B ⊗AM ′) ⊕ U ∼= B ⊗AM
∼= (B ⊗A V ) ⊕ (B ⊗A Y ).

By Lemma 1.2, (B⊗AX)⊕U ∼= B⊗A Y . By the inductive hypothesis,
X |Λ Y , and now M ′ |Λ M as desired. This completes the proof of
Theorem 1.3 in the case of a local ring A.

For the general case, we use a typical “partition of unity”. Let
m1, . . . ,mt be the maximal ideals of A. We know, by the local case,
that M ′

mi
|Λmi

Mmi for each i. Choose Λmi-homomorphisms

M ′
mi

ϕi−→Mmi

ψi−→M ′
mi

such that ψiϕi = 1M ′
mi

for i = 1, . . . , t. Since ΛM
′ is finitely presented,

the natural map Ami ⊗A HomΛ(M ′,M) → HomΛmi
(M ′

mi
,Mmi) is an

isomorphism for each i. Therefore there is a homomorphism σi : M ′ →
M , whose localization at mi agrees with ϕi up to multiplication by a
unit. Similarly, there is a homomorphism τi : M → M ′ that localizes
to a unit multiple of ψi. For each i, the composition τiσi induces a
surjective endomorphism of M ′

mi
.

Choose, for each i, an element

ri ∈ (m1 ∩ · · · ∩ m̂i ∩ · · · ∩ mt) − mi ,

and put ϕ :=
∑t

i=1 riσi and ψ :=
∑t

i=1 riτi. By Nakayama’s lemma,

the composition M ′ ϕ−→ M
ψ−→ M ′ is surjective and therefore an

isomorphism (since M ′ is a Noetherian Λ-module). It follows that ϕ is
a split injection, with splitting map (ψϕ)−1ψ.
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This completes the proof of Theorem 1.3 and, consequently, of The-
orem 1.1.

In the special case where (A,m) is a Noetherian local ring and B = Â,
the m-adic completion, Reiner and Roggenkamp [18] gave a simpler
proof of Theorem 1.3, which we sketch here. Their result was stated
only for the case where A is a discrete valuation ring, but the same
proof works in general (cf. also [23] and [25, Proposition 4.1]). With
Λ,M and M ′ as in Theorem 1.3, we identify B ⊗A Λ, B ⊗A M and
B ⊗AM ′ with their m-adic completions Λ̂, M̂ and M̂ ′, respectively.

Assuming M̂ ′ |
Λ̂
M̂ , we choose Λ̂-homomorphisms ϕ : M̂ ′ → M̂

and ψ : M̂ → M̂ ′ such that ψϕ = 1
M̂ ′ . Since H := HomΛ(M ′,M)

is a finitely generated A-module, it follows that Ĥ = B ⊗A H =
Hom

Λ̂
(M̂ ′, M̂). Therefore ϕ can be approximated to any order by

an element of H . In fact, order 1 suffices: Choose f ∈ HomΛ(M ′,M)
such that f̂ − ϕ ∈ m̂Ĥ. Similarly, we can choose g ∈ HomΛ(M,M ′)
with ĝ − ψ ∈ m̂Hom

Λ̂
(M̂, M̂ ′). Then ĝf̂ − 1

M̂ ′ = ĝf̂ − ψϕ =

ĝ(f̂ − ϕ) + (ĝ − ψ)ϕ, and it follows that the image of ĝf̂ − 1
M̂ ′ is

in m̂M̂ ′. Nakayama’s lemma now implies that ĝf̂ is surjective, and
therefore an isomorphism. It follows that ĝ is a split surjection (with
splitting map f̂(ĝf̂)−1). By faithful flatness g is a split surjection.

Examples 1.8. The assumption that A be semilocal cannot be
omitted from the hypotheses of Theorem 1.3. To see this, let A be
any Dedekind domain with a non-principal ideal I and suppose there
is an integral domain B containing A such that B is faithfully flat
as an A-module and IB is a principal ideal of B. Then I �A A, but
B ⊗A I |B B. For a specific example, take A to be the ring of integers
in an algebraic number field K with non-trivial class group, and let B
the integral closure of A in the Hilbert class field of K.

Alternatively, one can take A = R[X,Y ]/(X2 + Y 2 − 1), the affine
coordinate ring of the unit circle C. Let I = (x − 1, y)A and B =
C[X,Y ]/(X2 + Y 2 − 1). Then I2 = (x − 1)A, so I is an invertible
ideal. To see that I is not principal, suppose I = Bg, where g ∈ A.
Then g vanishes at the point (1, 0) but at no other point of the unit
circle. By the intermediate value theorem, g cannot change signs on
C −{(1, 0)}. We may assume that g(x, y) > 0 for (x, y) ∈ C −{(1, 0)}.
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Writing y = ag with a ∈ A, we see that the a must be positive on the
top half of the circle and negative on the bottom half. It follows that
a(1, 0) = 0. But then y would vanish to order at least 2 at (1, 0), which
is false.

In these examples, faithfully flat descent of isomorphism fails too. As
mentioned before, this condition is formally weaker than the conclusion
of Theorem 1.3, but we have no example to show that it is actually
weaker. Here we summarize the state of our ignorance regarding these
issues.

Questions 1.9. Let A → B be a faithfully flat homomorphism of
commutative Noetherian rings, and let Λ be a module-finite A-algebra.
Consider the following three conditions:

(1.9.1) (descent of isomorphism) If M1 and M2 are finitely generated
left Λ-modules and B ⊗AM1

∼=B⊗AΛ B ⊗AM2 then M1
∼=Λ M2.

(1.9.2) (“two out of three”) If N ′ and N ′′ are finitely generated left
B ⊗A Λ-modules and N ′ and N ′ ⊕N ′′ are extended from Λ, then N ′′

is extended from Λ.

(1.9.3) (descent of direct summand relations) If M ′ andM are finitely
generated left Λ-modules and B⊗AM ′ |B⊗AΛ B⊗AM , then M ′ |Λ M .

Clearly (1.9.3) implies (1.9.1). Are there any other implications
among the three conditions? We note that (1.9.2) can fail, even when
A is a field. Take, for example, the homomorphism R → B, where
B = R[X,Y, Z]/(X2 + Y 2 + Z2 − 1), the coordinate ring of the real 2-
sphere. The tangent bundle to the sphere provides a non-free projective
module V such that V ⊕B ∼= B(3). Obviously B and B(3) are extended,
but V is not.

2. Two out of three: short exact sequences. In this section we
restrict our attention to flat local homomorphisms ϕ : (R,m) → (S,n)
satisfying the property:

(†) (i) mS = n; and (ii) ϕ induces an isomorphism on residue fields.
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This condition is equivalent to the following: The induced homomor-
phism R/m → S/mS is bijective. Familiar examples satisfying (†)
include the completion R→ R̂ and the Henselization R→ Rh. Homo-
morphisms satisfying (†) are studied in detail in [12]. Our main result
in this section, Theorem 2.2, is a variant of [12, Proposition 3.2]. We
begin with an easy lemma, which we will need only in the case Λ = R,
and which is very familiar in the case of the completion:

Lemma 2.1. Let (R,m) → (S,n) be a flat local homomorphism
satisfying (†), and let Λ be a module-finite R-algebra.

(1) If N is a left S ⊗R Λ-module of finite length t, then N has length
t as a Λ-module.

(2) If M is a left Λ-module of finite length, then the natural map
M → S ⊗RM is an isomorphism.

Proof. Suppose first that N is simple as an S⊗RΛ-module. Since, by
[10, Proposition 1.2], n(S ⊗R Λ) is contained in the Jacobson radical
of S ⊗R Λ, n annihilates N . Therefore N is a simple module over
(S/n) ⊗R Λ = (R/m) ⊗R Λ = Λ/mΛ. This proves (1) in the case of a
simple S ⊗R Λ-module.

Next we prove (2) for a simple left Λ-module M . As above, mM = 0.
Also, n(S ⊗R M) = m(S ⊗R M) = 0. A glance at the following
commutative diagram now confirms (2):

M �

�

∼=
S ⊗RM

�

∼=

(R/m)⊗RM �

∼= (S/n) ⊗RM

We have now proved (1) and (2) for simple modules, and the general
cases follows easily by induction on length.

Theorem 2.2. Let (R,m) → (S,n) be a flat local homomorphism
satisfying (†), and let Λ be a module-finite R-algebra. Let

(ξ) 0 → N ′ α−→ N
β−→ N ′′ → 0
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be an exact sequence of finitely generated left S ⊗R Λ-modules.

(1) Assume N ′ and N ′′ are extended. If Ext1S⊗RΛ(N ′′, N ′) has finite
length as an R-module (e.g., if N ′′

P is ΛP -free for each prime P 	= n),
then N is extended.

(2) Assume N and N ′′ are extended. If HomS⊗RΛ(N,N ′′) has finite
length as an R-module (e.g., if S⊗RΛN

′′ has finite length), then N ′ is
extended.

(3) Assume N ′ and N are extended. If HomS⊗RΛ(N ′, N) has finite
length as an R-module (e.g., if S⊗RΛN

′ has finite length), then N ′′ is
extended.

Proof. For (1), write N ′ = S ⊗R N ′
0 and N ′′ = S ⊗R N ′′

0 , where
N ′

0 and N ′′
0 are finitely generated left Λ-modules. The natural map

S ⊗R Ext1Λ(N ′′
0 , N

′
0) → Ext1S⊗RΛ(N ′, N ′′) is an isomorphism (because

R → S is flat, N ′′
0 is finitely generated and Λ is Noetherian). By

faithful flatness, Ext1Λ(N ′′
0 , N

′
0) has finite length as an R-module. Now

(2) of Lemma 2.1 implies that the natural map Ext1Λ(N ′′
0 , N

′
0) →

S ⊗R Ext1Λ(N ′′
0 , N

′
0) is an isomorphism. Combining these two natural

isomorphisms, we see that the given exact sequence (ξ), regarded as
an element of Ext1S⊗RΛ(N ′′, N ′), comes from a short exact sequence
0 → N ′

0 → N0 → N ′′
0 → 0. Clearly, then, S ⊗R N0

∼= N .

To prove (2), we write N = S ⊗R N0 and N ′′ = S ⊗R N ′′
0 , where N0

and N ′′
0 are finitely generated left Λ-modules. As in the proof of (1)

we see that the natural map HomΛ(N0, N
′′
0 ) → HomS⊗RΛ(N,N ′′) is

an isomorphism. Therefore the S ⊗R Λ-homomorphism β comes from
a homomorphism β0 ∈ HomΛ(N0, N

′′
0 ). Clearly, N ′ ∼= S ⊗R Ker(β0).

The proof of (3) is essentially the same: Write N = S ⊗R N0 and
N ′ = S ⊗R N ′

0. Show that α comes from α0 ∈ HomΛ(N ′
0, N0), and

deduce that N ′′ ∼= S ⊗R Coker(α0).

Part (1) of the theorem was used by Christensen, Piepmeyer, Striuli
and Takahashi [6] to characterize the local rings having only finitely
many isomorphism classes of indecomposable totally reflexive modules.
More recently it was used by Crabbe and Striuli [5] to build indecom-
posable modules that are free of large constant rank on the punctured
spectrum. In both cases, special properties of the completion (e.g., the
Krull-Remak-Schmidt Theorem) were exploited, in order to prove the
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desired results in the complete case. The general result then followed
by descent, via the theorem above.

3. Normal domains of dimension two. The ideal class group
provides a perfect obstruction in the extendeness problem for normal
domains of dimension 2. We refer to [2, Chapter VII, §4.7] for basic stuff
about the divisor class group Cl(A) of a Noetherian normal domain A.
In particular, Cl(A) is the group of isomorphism classes of divisorial
fractional ideals of A. To each finitely generated S-module M , one
assigns a divisor class [M ] ∈ Cl(A), in such a way that (a) Cl(−) is
additive on short exact sequences of finitely generated A-modules, and
(b) for each non-zero fractional ideal J of A, [J ] is the isomorphism
class of (J−1)−1.

Theorem 3.1. Let (R,m) and (S,n) be normal local domains
of dimension 2, and let (R,m) → (S,n) be a flat local homomorphism
satisfying (†) (that is, the induced map R/m → S/mS is bijective). Let
N be a finitely generated torsion-free S-module. Then N is extended
if and only if the divisor class [N ] is in the image of the natural map
Φ : Cl(A) → Cl(B).

Proof. Suppose first that N ∼= S ⊗R M . By faithful flatness, M
is finitely generated and torsion-free. By “Bourbaki’s Theorem” [2,
Chapter VII, §4.9, Theorem 6], there is an exact sequence 0 → F →
M → J → 0, where J is a non-zero ideal of R and F is a free R-module.
One checks, using (a) and (b), that [N ] = Φ([M ]).

For the converse, we apply Bourbaki’s Theorem to N , getting a short
exact sequence

(1) 0 → G→ N → L→ 0,

where G is a free S-module and L is a non-zero ideal of S. Then
[L] = [N ], so by hypothesis there is a divisorial ideal I of R such that
[S ⊗R I] = [L], that is, S⊗R I ∼= (L−1)−1. Next, we consider the short
exact sequence

(2) 0 → L→ (L−1)−1 → (L−1)−1

L
→ 0.
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For each non-zero prime ideal P 	= n, SP is a discrete valuation ring,
so LP = ((L−1)−1)P . The module (L−1)−1

L therefore has finite length
and hence is extended, by Lemma 2.1. Since (L−1)−1 is extended, part
(2) of Theorem 2.2 implies that L is extended. For each prime ideal
P 	= n, we have LP ∼= SP and it follows that Ext1S(L,G) has finite
length. Now (1) of Theorem 2.2 implies that N is extended.

This theorem was used in [19] to show that for each positive integer
r there is a Cohen-Macaulay local ring R having an indecomposable
module G such that R̂⊗RG is isomorphic to the direct sum of r copies
of the canonical module ω

R̂
.

In order to describe another application, we need some notation
and terminology. Given a finitely generated module M over a local
ring (R,m), we let add(M) denote the additive semigroup consisting
of isomorphism classes [N ] of finitely generated modules that are
isomorphic to direct summands of direct sums of copies of M . Write
M̂ = V

(c1)
1 ⊕ · · · ⊕ V

(ct)
t , where V1, . . . , Vt are pairwise non-isomorphic

indecomposable R̂-modules and the ci are positive. If [N ] ∈ add(M),
then, by the Krull-Remak-Schmidt Theorem, N̂ ∼= V

(n1)
1 ⊕ · · · ⊕ V

(nt)
t ,

and the sequence (n1, . . . , nt) is uniquely determined by [N ]. The map
ν : [N ] 
→ (n1, . . . , nt) embeds add(M) as a subsemigroup of the free
semigroup N

(t)
0 . Moreover, Theorem 1.3 implies that if x, y ∈ add(M)

and ν(x) ≤ ν(y) (in the coordinatewise partial order on N
(t)
0 ), then

there is an element z ∈ add(M) such that x + z = y. In other
words, add(M) is isomorphic to a full subsemigroup [1, §6.1] of N

(t)
0 .

Semigroups that have such an embedding are called positive affine
normal semigroups in [1, §6.1] and reduced, finitely generated Krull
monoids in the literature on abstract commutative monoids, e.g. [4,
11]. In other places, these gadgets are called Diophantine monoids,
since they can be realized as the set of non-negative integer solutions
to a homogeneous system of linear equations with integer coefficients
(cf. Exercise 6.4.16 in [1]). The main theorem in [24], which makes use
of Theorem 3.1, is that given any Diophantine monoid H there exist
a local unique factorization domain and a finitely generated reflexive
module M such that add(M) ∼= H . Thus every bit of pathology (and
there is plenty!) in the behavior of Diophantine monoids can be realized
as bad direct-sum behavior among modules over local rings.
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4. One-dimensional rings. For one-dimensional rings, the
extendedness problem quickly reduces, via Theorem 2.2, to the same
problem over Artinian (zero-dimensional) rings. This phenomenon was
discovered and exploited by Levy and Odenthal in [17]. Here is how it
works: Given any commutative ring R, let K(R) be the ring of fractions
obtained by inverting the elements outside the union of the minimal
prime ideals of R. Then K(R) is a zero-dimensional semilocal ring. (Of
course the canonical map R→ K(R) is not necessarily one-to-one, but
that does not matter.)

We return to the context of Theorem 2.2, but assume in addition that
R has dimension one.

Theorem 4.1. [17] Let (R,m) → (S,n) be a flat local homo-
morphism satisfying (†) of §2, and let Λ be a module-finite R-algebra.
Assume dim(R) = 1. Let N be a finitely generated left S⊗R Λ-module.
Then N is extended from Λ if and only if K(S)⊗S N is extended from
K(R) ⊗R Λ.

Proof. To simplify notation, we let K = K(R) and L = K(S). We
observe first that S is one-dimensional too, by [1, Theorem A.11]. Also,
if Q is a minimal prime ideal of S, then Q∩R is a minimal prime ideal
of R, since “going down” holds for flat extensions [1, Lemma A.9].
Therefore the inclusion R → S induces a homomorphism K → L, and
this homomorphism is faithfully flat, since the map Spec(S) → Spec(R)
is surjective [1, Lemma A.10]. The “only if” direction is clear from the
change-of-rings diagram:

(†)
S � L

R

�

� K

�

For the converse, let X be a finitely generated K ⊗R Λ-module such
that L ⊗K X ∼= L ⊗S N . Since K ⊗R Λ is a localization of Λ, there is
a finitely generated left Λ-module M such that K ⊗R M ∼= X . Since
L⊗S N ∼= L⊗S (S⊗RM), there is a homomorphism α : N → S⊗RM
inducing an isomorphism from L ⊗S N to L ⊗S (S ⊗R M). Thus
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the kernel U and cokernel V of α have finite length and therefore are
extended, by Lemma 2.1. Now we break the exact sequence

0 → U → N
α−→ S ⊗RM → V → 0

into two short exact sequences:

0 → U → N →W → 0
0 →W → S ⊗RM → V → 0

Applying (2) of Theorem 2.2 to the second short exact sequence, we
see that W is extended. Now we apply (1) of Theorem 2.2 to the first
short exact sequence, to conclude that N is extended.

Even in the case Λ = R, the question of which K(S)-modules are
extended from K(R) appears to be difficult. In the last section of
the paper we will discuss this problem. If, however, S is reduced
(i.e., has no non-zero nilpotent elements), then K(R) and K(S) are
direct products of fields, and the extendedness problem comes down
to a simple combinatorial problem of compatibility of vector-space
dimensions (cf. Corollary 4.4 below). We leave the proof of the
following observation to the reader.

Proposition 4.2. Let K = K1 × · · · × Ks, where each Ki is an
Artinian local ring. For each i, let Ki → Li1, . . . ,Ki → Liti be flat local
homomorphisms, with each Lij Artinian. Put Li = Li1 × · · · × Liti
for each i, and let L = L1 × · · · × Ls. Given a finitely generated
projective L-module N , let rij be the rank of the free Lij-module LijN ,
for i = 1, . . . , s and j = 1, . . . , ti. Then N is extended from K if and
only if ri1 = · · · = riti for i = 1, . . . , s.

Suppose, now, that R and S are Noetherian local rings and that
(R,m) → (S,n) is a flat local homomorphism satisfying (†) of §2.
(For example, S might be the completion or the Henselization of R.)
Assume, further, that R is one-dimensional (and consequently S is
one-dimensional as well, by [1, Theorem A.11]). Let N be a finitely
generated S-module such that K(S) ⊗R N is K(S)-projective (where,
as above, K(S) is the localization of S outside the union of the minimal
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prime ideals of S). For each minimal prime ideal Q of S, we define the
rank of N at Q to be the rank of the free SQ-module NQ.

Corollary 4.3. Let (R,m) → (S,n) be a flat local homomor-
phism satisfying (†) of §2. Assume R and S are Noetherian and
one-dimensional. Let N be a finitely generated S-module, and as-
sume that K(S) ⊗R N is K(S)-projective. Then N is extended from
R if and only if the rank of N is constant on each fiber of the map
Spec(S) − {n} → Spec(R) − {m}.

Proof. This is an immediate consequence of Theorem 4.1 and Propo-
sition 4.2.

Corollary 4.4 Let (R,m) be a local Noetherian ring and (R,m) →
(S,n) a flat local homomorphism satisfying (†) of §2. Assume, further,
that R is one-dimensional and that S is reduced. Let N be a finitely
generated S-module. Then N is extended from R if and only if the
rank of N is constant on each fiber of the map Spec(S) − {n} →
Spec(R) − {m}.

Proof. Since S is reduced, each SQ is a field, and thus K(S)⊗R N is
K(S)-projective. Therefore Corollary 4.3 applies.

Corollary 4.5. Let (R,m) and (S,n) be one-dimensional Noethe-
rian local rings, and let (R,m) → (S,n) be a flat local homomorphism
satisfying (†) of §2. These are equivalent:

(1) If N is a finitely generated S-module such that K(S) ⊗R N is
K(S)-projective, then N is extended.

(2) The natural map Spec(S) → Spec(R) is bijective.

Proof. By Corollary 4.3, (2) implies (1). For the converse, suppose
there are two minimal primes Q1 and Q2 of S lying over the same
minimal prime of R. The following lemma provides a finitely generated
S-module N such that K(S)⊗S N is K(S)-projective and the ranks of
N at Q1 and Q2 are 1 and 0, respectively. By Corollary 4.3, N is not
extended.
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Lemma 4.6. Let (S,n) be a one-dimensional Noetherian local
ring with minimal primes Q1, . . . , Qn. For each i, there is a finitely
generated S-module Gi such that

(1) K(S) ⊗S Gi is K(S)-projective, and

(2) the rank of Gi at Qj is δij .

Proof. For each i, let Fi be the image of the natural map S → SQi .
Then Fi is a finitely generated S-module, and (Fi)Qi = SQi . Fix i, and
choose an element ri ∈ Q1 ∩ · · · ∩ Q̂i ∩ · · · ∩ Qn − Qi. Put si := rqi

i ,
where the exponent qi is chosen so large that si maps to 0 in SQj for
j 	= i. The module Gi = siFi clearly does the job.

4.7. Much ado about something. There are well-known examples of
flat local homomorphisms where the map on spectra is not bijective.
For an arithmetic example, take R = Z(5)[5i]. This is an integral
domain, but the Henselization and the completion each have two
minimal primes. Similarly, C[X,Y ](X,Y )/(Y 2 −X3 −X2) is a domain,
but the Henselization and the completion each have two minimal
primes. (The completion is C[[X,Y ]]/(Y 2 −X3 −X2), and Y 2 −X3 −
X2 = (Y +X

√
X + 1)(Y −X

√
X + 1).)

As a segue into the next section, we mention the following:

Corollary 4.8. Let (R,m) → (S,n) be a flat local homomorphism
satisfying (†) of §2. Assume, further, that R is one-dimensional. Let
N be a finitely generated S-module, and assume that K(S) ⊗R N is
K(S)-projective. Then N is a direct summand of an extended module.
In particular, if S is reduced, then every finitely generated S-module is
a direct summand of an extended module.

Proof. Let Q1, . . . , Qn be the minimal prime ideals of S. For each
i, let ri be the rank of N at Qi. Let r = max{ri : 1 ≤ i ≤ n}, and
put G :=

∑n
i=1G

(r−ri)
i , where the Gi are the modules given by Lemma

4.6. Then G is a finitely generated S-module, K(S) ⊗S G is K(S)-
projective, and N ⊕G has constant rank r at the minimal primes of S.
By Corollary 4.3, N ⊕G is extended.
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Question 4.9. Is Corollary 4.8 still true without the assumption that
K(S) ⊗R N be K(S)-projective?

5. Direct summands of extended modules. Suppose (R,m) →
(S,n) is a flat local homomorphism of Noetherian local rings. To prove
that finite representation type ascends fromR to S, it is enough to know
that every S-module is a direct summand of an extended module. In
fact, flatness is not essential here.

Theorem 5.1. [22, Lemma 2.1] Let A→ B be a homomorphism of
commutative, Noetherian rings, with B semilocal. Let A, respectively,
B, be a class of finitely generated A-modules, respectively B-modules.
Assume the following:

(1) A and B are closed under direct summands and under isomor-
phism.

(2) A contains only finitely many isomorphism classes of indecom-
posable modules.

(3) For each N ∈ B, there exists M ∈ A such that N |B B ⊗AM .

Then B contains only finitely many isomorphism classes of indecom-
posable B-modules.

Proof. Given a ring C and a C-module V , we let addC(V ) be the class
of C-modules that are isomorphic to direct summands of direct sums
of finitely many copies of V . Our goal is to find a finitely generated
B-module V such that B ⊆ addB(V ). Since B is Noetherian and
semilocal, it is known [22, Theorem 2.1] that there are only finitely
many isomorphism classes of indecomposable B-modules in addB(V );
so this will complete the proof.

Let L1, . . . , Lt be a complete list of representatives for the isomor-
phism classes of indecomposable modules in A. Let L := L1 ⊕ · · ·⊕Lt,
and put V = B ⊗A L. Given N ∈ B, we want to show that
N ∈ addB(V ). Choose, using assumption (3), a module M ∈ A such
that N |B B ⊗AM . Since A is Noetherian, we can express M as a di-
rect sum of finitely many indecomposable A-modules, and by (1) each
of these is isomorphic to some Li. Therefore M ∈ addA(L), and it
follows that N ∈ addB(V ).



498 W. HASSLER AND R. WIEGAND

Recall [16] that an étale neighborhood (sometimes called a pointed
étale neighborhood) of a Noetherian local ring (R,m) is a flat local
homomorphism (R,m) → (S,n) such that

(1) condition (†) of §2 holds,

(2) the diagonal map S ⊗R S → S splits as S − S-bimodules, and

(3) S is essentially of finite type over R (that is, S is a localization of
a finitely generated R-algebra).

The isomorphism classes of étale neighborhoods of (R,m) form a
direct system, and the Henselization (R,m) → (Rh,mRh) is the direct
limit of all of them.

The crucial condition, for our purposes, is (2), which is usually
referred to as separability [7]. A local homomorphism essentially of
finite type that satisfies (2) is said to be unramified [16]. The following
result was proved in [22], although it was not stated explicitly there:

Theorem 5.2. [12, Theorem 3.4] Let ϕ : (R,m) → (S,n) be
a flat local homomorphism of Noetherian local rings, and assume S
is separable over R (that is, the diagonal map S ⊗R S → S splits as
S ⊗R S-modules). Then every finitely generated S-module is a direct
summand of a finitely generated extended module.

Proof. Given a finitely generated S-moduleN , we apply −⊗SN to the
diagonal map, getting a split surjection of S-modules π:S ⊗RN � N ,
where the S-module structure on S⊗RN comes from the S-action on S,
not on N . Thus we have a split injection of S-modules j:N → S⊗RN .
Now write N as a direct union of finitely generated R-modules Mi.
The flatness of ϕ implies that S ⊗RN is a direct union of the modules
S ⊗RMi. The finitely generated S-module j(N) must be contained in
some S ⊗RMi. Since j(N) is a direct summand of S ⊗RN , it must be
a direct summand of the smaller module S ⊗RMi.

Corollary 5.3. Let R be a Noetherian local ring. Then every finitely
generated module over the Henselization Rh is a direct summand of an
extended module.
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Proof. Let N be a finitely generated Rh-module. Since Rh is a direct
limit of pointed étale neighborhoods of R, there exist a pointed étale
neighborhood S of R and a finitely generated S-module M such that
N ∼=Rh Rh ⊗S M . By Theorem 5.2, there is a finitely generated R-
module X such that M |S S ⊗S X . Then N |Rh Rh ⊗R X .

In [22], these ideas were used to show that if (R,m) is a Cohen-
Macaulay local ring of finite Cohen-Macaulay type, then the Henseliza-
tion Rh also has finite Cohen-Macaulay type. Of course, in order to
use Theorem 5.1 to prove this, one needs a substantial improvement of
Corollary 5.3: If N is a maximal Cohen-Macaulay S-module, then there
is a maximal Cohen-Macaulay R-module X such that N |Rh Rh ⊗RX .
This was proved in [22], under the additional assumption that RP is
Gorenstein for each prime ideal P 	= m. Fortunately, the additional
assumption is always satisfied in this situation [14]: If R has finite
Cohen-Macaulay type then in fact RP is a regular local ring for every
P 	= m.

Question 5.4. Let R be a Cohen-Macaulay Noetherian local ring, and
let N be a maximal Cohen-Macaulay Rh-module. Is there necessarily
a maximal Cohen-Macaulay R-module X such that N |Rh Rh ⊗R X?

The analogous question for the completion has a negative an-
swer, even if we delete the second occurrence of “maximal Cohen-
Macaulay”. For example, let k be any countable field, and put
R = k[X,Y, Z](X,Y,Z)/(Z2). Let V1, V2, V3, . . . be a complete list of rep-
resentatives for the finitely generated R-modules. Write each R̂⊗RVi as
a direct sum of indecomposable R̂-modules, and let S be the (countable)
set of indecomposable R̂-modules that occur in these decompositions.
Since the Krull-Remak-Schmidt Theorem holds for complete rings, the
modules in S are, up to isomorphism, the only indecomposable R̂-
modules that are direct summands of extended modules. But by [15,
Theorem 1.3] R̂ has uncountable Cohen-Macaulay type, because its sin-
gular locus is two-dimensional. Therefore there are uncountably many
isomorphism classes of indecomposable maximal Cohen-Macaulay R̂-
modules that are not direct summands of extended modules.
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If we delete both occurrences of “maximal Cohen-Macaulay” in Ques-
tion 5.4, the answer is “no” for every countable Noetherian local ring
(R,m) of dimension at least two. (Compare with Corollary 4.8.) To see
this, it suffices to show that the completion R̂ has uncountably many
isomorphism classes of indecomposable finitely generated R-modules.
The maximal ideal m̂ is a union of height-one prime ideals, by Krull’s
Principal Ideal Theorem. On the other hand, R̂ has countable prime
avoidance [3, 20]. Therefore R̂ must have uncountably many height-
one prime ideals. The modules R̂/P , P ranging over the height-one
prime ideals, are pairwise non-isomorphic indecomposable R̂-modules.

6. Étale extensions of Artinian local rings. This section,
which is somewhat speculative and short on details, is motivated by
the problem of determining which finitely generated modules over the
Henselization of a one-dimensional Noetherian local ring are extended.
If (R,m) is a local ring, then every finitely generated module over the
Henselization is extended from some étale neighborhood of R. Suppose,
now, that we have an étale neighborhood (R,m) → (S,n) of one-
dimensional Noetherian local rings, and we seek criteria for a given
finitely generated S-module N to be extended from R. A version of
Zariski’s Main Theorem [16, p. 64] implies that S is essentially finite
over R, that is, it is a localization of a module-finite R-algebra. Let
K = K(R) and L = K(S), the Artinian localizations of R and S (cf.
§4.) By Theorem 4.1, N is extended from R if and only if L ⊗S N is
extended from K. Therefore we seek criteria for a finitely generated
L-module to be extended from K.

Of course K is a direct product of local rings, so we can work with
one component at a time and assume that K is local. Now write
L = L1×· · ·×Lt, where the Lj are local rings. Using [16, Chapter III,
(1.2)–(1.4)], one can see that each extension K → Lj is étale. If we can
solve the extendedness problem for each map K → Lj, we will obtain
the general answer by imposing compatibility requirements. That is, a
finitely generated L-module N is extended if and only if each LjN is
extended, say, LjN ∼=Lj Lj ⊗K Mj, and the Mj are all K-isomorphic
to each other.

Therefore, modulo elaborate bookkeeping, the extendedness problem
for the Henselization of a one-dimensional local ring reduces to the
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extendedness problem for an étale extension (K,m, k) → (L, n, l) of local
Artinian rings. We remark that the extension K → L is finite (since
it is essentially finite and since localization is surjective for Artinian
rings). Because K → L is flat, L is a finitely generated free K-module.

We want to enlarge L to a Galois extension [21] of K. Since l is a
finite separable extension of k, we can pass to the Galois closure l̄/k of
l/k. We have l̄ = l[X ]/(f), where f is a monic polynomial in l[X ]. Let
F ∈ L[X ] be a monic polynomial lifting f , and put L̄ := L[X ]/(F ).
Then L̄ is a local ring with maximal ideal n̄ := nL̄ and residue field l̄.
Moreover, L̄/K is a Galois extension whose Galois group is naturally
isomorphic to the Galois group of l̄/k.

Suppose, now, that N is a finitely generated L-module. If N is ex-
tended from K, then of course L̄ ⊗L N is extended from K. Con-
versely, if L̄⊗L N is extended from K, say, L̄⊗L N ∼=L̄ L̄⊗K M , then
N ∼=L L ⊗K M , by faithfully flat descent of isomorphism for the ex-
tension L→ L̄. Therefore, modulo more bookkeeping, we may change
notation and assume that L/K is a Galois extension of Artinian local
rings.

For the rest of the paper, we let L/K be a Galois extension of Artinian
local rings, and we let G be the Galois group. Thus G is a finite group
of ring automorphisms of L and K = LG (the fixed ring). These
two conditions, together with the following non-degeneracy condition,
characterize Galois extensions [7, Chapter III, Proposition 1.2]:

• For each non-trivial σ ∈ G there is an element x ∈ L such that
σ(x) − x is a unit of L.

There is a natural action of G on isomorphism classes of finitely
generated L-modules: Given a finitely generated L-module N and an
element σ ∈ G, we let σ(N) be the L-module whose underlying abelian
group is (N,+) and whose L-module structure is given by � ·σx = σ(�)x
for all � ∈ L and x ∈ N . Alternatively if N is the cokernel of the matrix
ϕ, then σ(N) is the cokernel of the matrix obtained by applying σ to
each entry of ϕ.

Theorem 6.1. [21, Proposition 2.5] Let N be a finitely generated
L-module. Then N is extended if and only if there is a linear action of
G on (N,+) satisfying σ(�x) = σ(�)σ(x) for all � ∈ L, x ∈ N .
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This gives, in some sense, a solution to the extendedness problem
for the Henselization of a one-dimensional local ring. The following
conjecture, if true, might provide a more workable solution:

Conjecture 6.2. Let L/K be a Galois extension of Artinian local
rings, with Galois group G, and let N be a finitely generated L-module.
Then N is extended if and only if N ∼=L σ(N) for each σ ∈ G.

The “only if” part of the conjecture is clearly true: If N ∼= L ⊗K M
for some K-module M , write M as the cokernel of some matrix ϕ over
K. The alternate description of the group action shows that, for each
σ ∈ G, σ(N) is the cokernel of the same matrix ϕ, regarded as a matrix
over L.

Here is a proof of a special case of the conjecture.

Theorem 6.3. Suppose, as above, that (K,m, k) is a module-finite
R-algebra with k = R, and let C⊗RK = (L, n, l) be its complexification.
Let σ be the non-trivial element of the Galois group G of L/K. The
finitely generated L-module N is extended if and only if N ∼=L σ(N).

Proof. We have already observed that the “only if” implication is
true. Therefore we assume that N ∼=L σ(N), and we shall show that
N is extended from a K-module. Without loss of generality we may
suppose that N is indecomposable. To see this, we observe first of all
that any L-module of the form V ⊕ σ(V ) is extended, since the action
σ(x, y) = (y, x) satisfies the criterion of Theorem 6.1. Suppose, now,
that N = N1 ⊕ · · · ⊕ Nr is the decomposition into indecomposable
L-modules Ni. Since σ(N) ∼= N , there exists, by the Krull-Remak-
Schmidt Theorem, a bijective map π : {1, . . . , r} → {1, . . . , r} such that
Ni ∼= σ(Nπ(i)) for all i ∈ {1, . . . , r}. Let I = {i | Ni 	∼= σ(Ni)}. If i ∈ I,
it follows from Krull-Remak-Schmidt that there exists j(i) ∈ I − {i}
such that σ(Ni) ∼= Nj(i). Then Ni ⊕Nj(i) is of the form V ⊕ σ(V ) and
is therefore extended. It follows that |I| is even and that

⊕
i∈I Ni is

extended. Therefore it is enough to show that Ni is extended for each
i /∈ I.

Thus we assume that LN is indecomposable and that N ∼=L σ(N).
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An easy argument shows that

(∗) L⊗K N ∼=L N ⊕ σ(N) ∼=L N ⊕N

Suppose we can show that N is decomposable as a K-module, say
N = M1 ⊕M2, with non-zero K-modules Mi. It will then follow from
(∗) and the Krull-Remak-Schmidt Theorem that L ⊗K M1

∼= N , and
the proof will be complete.

Suppose to the contrary that N is indecomposable as an R-module.
We seek a contradiction. Choose an isomorphism ψ ∈ HomL(N, σ(N)),
and put A = EndL(N) and B = EndK(N). Then A ⊆ B, ψ is a unit
of B, and ψ2 is a unit of A. By assumption, A and B are both local
rings in the non-commutative sense, that is, A/ J(A) and B/ J(B) are
both division rings. It follows that J(B) is exactly the set of nilpotent
elements of B and that J(A) = J(B) ∩A. Since nA is contained in the
Jacobson radical J(A) of A, it follows that D := A/ J(A) is a finite-
dimensional division algebra over C. Since C is algebraically closed,
D must be isomorphic to C. Therefore ψ2 ≡ κ1N (mod J(A)) for
some complex number κ. Upon replacing ψ by 1√

κ
ψ, we may assume

that ψ2 ≡ 1N (mod J(A)). Then ψ2 − 1 ≡ 0 (mod J(B)), and, since
B/ J(B) is a division ring, ψ ≡ ±1 (mod J(B)). Upon replacing ψ by
−ψ if necessary, we may assume that ψ ≡ 1 (mod J(B)), that is, ψ−1
is nilpotent.

Let V := N/mN = N/nN , a real vector space, and let ψ′ : V → V be
the R-linear endomorphism induced by ψ. Since ψ′ − 1V is nilpotent,
there is a non-zero vector v ∈ V such that ψ′(v) = v. Since ψ′ is
conjugate-linear with respect to the C-module structure on V , we have
ψ′(iv) = −iv. Choose an element w ∈ N such that w + nN = iv, and
note that (ψ − 1)w ≡ −2w (mod nN). Since w /∈ nN , this clearly
contradicts the fact that ψ − 1 is nilpotent.

We close with an easy example that illustrates some aspects of
Theorem 6.3.

Example 6.4. Let R = R[x, y] := R[X,Y ]/(X2, XY, Y 2), and let
S = C⊗RR = C[x, y]. Given a complex number c, putNc := S/(x+cy).
We claim that the following conditions are equivalent:

(1) Nc is extended.
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(2) There exists an n ≥ 1 such that N (n)
c is extended.

(3) c ∈ R.

Clearly (3) =⇒ (1) =⇒ (2). Assuming (2), we will prove (3).
Let σ be the non-trivial element of the Galois group of S over R.
Note that N (n)

c is the cokernel of the diagonal matrix D with x + cy

on the diagonal, and σ(N (n)
c ) is the cokernel of the diagonal matrix

D̄ with x + c̄y on the diagonal (where c̄ is the complex conjugate of
c). By Theorem 6.3 (or Theorem 6.1), N (n)

c
∼= σ(N (n)

c ), and thus the
matricesD and D̄ are equivalent over S. The entries of the two matrices
therefore generate the same ideal of S, that is, S(x+ cy) = S(x+ c̄y).
Write x + c̄y = s(x + cy) with s ∈ S, and write s = a + b with a ∈ C
and b ∈ Sx + Sy. Then x + c̄y = a(x + cy), whence a = 1 and c̄ = c.
This proves (3).

For c ∈ C−R, the moduleNc⊕Nc̄ is extended, say,Nc⊕Nc̄ = S⊗RM .
As in the proof of Theorem 6.3, the Krull-Remak-Schmidt theorem
implies that M is indecomposable. This shows that an indecomposable
R-module can decompose upon extension to S.
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